首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper we report on the difference in angular sizes between radio-loud and radio-quiet CMEs. For this purpose we compiled these two samples of events using Wind/WAVES and SOHO/LASCO observations obtained during 1996 – 2005. We show that the radio-loud CMEs are almost twice as wide as the radio-quiet CMEs (considering expanding parts of CMEs). Furthermore, we show that the radio-quiet CMEs have a narrow expanding bright part with a large extended diffusive structure. These results were obtained by measuring the CME widths in three different ways.  相似文献   

2.
Kalaivani  P. Pappa  Prakash  O.  Shanmugaraju  A.  Feng  Li  Lu  Lei  Gan  Weigun  Michalek  G. 《Astrophysics》2021,64(3):327-344
Astrophysics - We analyze radio bursts observed in events with interacting/non-interacting CMEs that produced major SEPs (Ip > 10 MeV) from April 1997 to December 2014. We compare properties...  相似文献   

3.
The paper summarises the results to date of an ongoing multi-epoch, multi-frequency polarisation VLBI study of a complete sample of northern 1-Jy BL Lac objects. We discuss the physical origin of the characteristic polarisation properties of the core and jet structures as revealed by both general trends for the sample as a whole and more detailed observations of individual objects. It has been known for a decade that the distribution of the core polarisation position angles at moderate centimeter wavelengths is bimodal, with the corepolarisation angle being either aligned with or perpendicular to the direction of the inner VLBI jet. A preliminary analysis of the VLBI core spectral indices from 15–5 GHz suggests that this is the result of optical depth effects and that the two peaks in the distribution correspond to cores dominated by optically thin and thick regions of emission. This interpretation is supported by the results of quasi-simultaneous VLBI and optical polarisation observations, and also by VSOP polarisation observations of OJ287. Evidence for the presence of helical or toroidal magnetic fields associated with the VLBIjets is discussed. The collected results are discussed in the context of their possible implications for circular-polarisation studies of AGN. We are now beginning a search for parsec-scale circular polarisation in the complete sample BL Lac objects and hope to have our first results by June 2003.  相似文献   

4.

We have statistically analyzed a set of 115 low frequency (Deca-Hectometer wavelengths range) type II and type III bursts associated with major Solar Energetic Particle (SEP: Ep?>?10 MeV) events and their solar causes such as solar flares and coronal mass ejections (CMEs) observed from 1997 to 2014. We classified them into two sets of events based on the duration of the associated solar flares:75 impulsive flares (duration <?60 min) and 40 gradual flares (duration >?60 min).On an average, the peak flux (integrated flux) of impulsive flares?×?2.9 (0.32 J m?2) is stronger than that of gradual flares M6.8 (0.24 J m?2). We found that impulsive flare-associated CMEs are highly decelerated with larger initial acceleration and they achieved their peak speed at lower heights (??27.66 m s?2 and 14.23 Ro) than the gradual flare-associated CMEs (6.26 m s?2 and 15.30 Ro), even though both sets of events have similar sky-plane speed (space speed) within LASCO field of view. The impulsive flare-associated SEP events (Rt?=?989.23 min: 2.86 days) are short lived and they quickly reach their peak intensity (shorter rise time) when compared with gradual flares associated events (Rt?=?1275.45 min: 3.34 days). We found a good correlation between the logarithmic peak intensity of all SEPs and properties of CMEs (space speed: cc?=?0.52, SEcc?=?0.083), and solar flares (log integrated flux: cc?=?0.44, SEcc?=?0.083). This particular result gives no clear cut distinction between flare-related and CME-related SEP events for this set of major SEP events. We derived the peak intensity, integrated intensity, duration and slope of these bursts from the radio dynamic spectra observed by Wind/WAVES. Most of the properties (peak intensity, integrated intensity and starting frequency) of DH type II bursts associated with impulsive and gradual flare events are found to be similar in magnitudes. Interestingly, we found that impulsive flare-associated DH type III bursts are longer, stronger and faster (31.30 min, 6.43 sfu and 22.49 MHz h?1) than the gradual flare- associated DH type III bursts (25.08 min, 5.85 sfu and 17.84 MHz h?1). In addition, we also found a significant correlation between the properties of SEPs and key parameters of DH type III bursts. This result shows a closer association of peak intensity of the SEPs with the properties of DH type III radio bursts than with the properties DH type II radio bursts, atleast for this set of 115 major SEP events.

  相似文献   

5.
Kinetic Properties of CMEs Corrected for the Projection Effect   总被引:2,自引:0,他引:2  
Observations of coronal mass ejections (CMEs) with coronagraphs are subject to a projection effect, which results in statistical errors in many properties of CMEs, such as the eruption speed and the angular width. In this paper, we develop a method to obtain the velocity and angular width distributions of CMEs corrected for the projection effect, and then re-examine the relationship between CMEs and the associated flares. We find that (1) the mean eruption speed is 792 km s−1 and the mean angular width is 59, compared to the values of 549 km s−1 and 77, respectively before the correction; (2) after the correction, the weak correlation between CME speeds and the GOES X-ray peak flux of the flares gets unexpectedly poorer; and (3) before correction, there is a weak correlation between the angular width and the speed of CMEs, whereas the correlation is absent after the correction.  相似文献   

6.
耀斑软X射线流量的统计性质   总被引:1,自引:0,他引:1  
张平  刘四明 《天文学报》2015,56(1):35-43
为了更定量地研究太阳耀斑软X射线辐射的统计性质,发展了一套对于给定峰值流量区间的耀斑的自动识别程序,并用它分析了从1980年到2013年GOES(Geostationary Operational Environmental Satellite)在两个软X射线波段上对太阳耀斑的观测.研究发现耀斑软X射线流量在峰值附近变化的统计特征和耀斑流量峰值的绝对大小无关:平均而言耀斑流量的上升时间约是下降时间的一半,而且高能量通道的上升和下降时间比相应的低能量通道时间要短,但是这些时间还是会随着耀斑流量变化幅度的增加而增加.  相似文献   

7.
8.
From a large number of SOHO/MDI longitudinal magnetograms, three physical measures including the maximum horizontal gradient, the length of the neutral line, and the number of singular points are computed. These measures are used to describe photospheric magnetic field properties including nonpotentiality and complexity, which is believed to be closely related to solar flares. Our statistical results demonstrate that solar flare productivity increases with nonpotentiality and complexity. Furthermore, the relationship between the flare productivity and these measures can be well fitted with a sigmoid function. These results can be beneficial to future operational flare forecast models.  相似文献   

9.
The first near-side X-class flare of Solar Cycle 24 occurred in February 2011 (SOL2011-02-05T01:55) and produced a very strong seismic response in the photosphere. One sunquake was reported by Kosovichev (Astrophys. J. Lett. 734, L15, 2011), followed by the discovery of a second sunquake by Zharkov, Green, Matthews et al. (Astrophys. J. Lett. 741, L35, 2011). The flare had a two-ribbon structure and was associated with a flux-rope eruption and a halo coronal mass ejection (CME) as reported in the CACTus catalogue. Following the discovery of the second sunquake and the spatial association of both sources with the locations of the feet of the erupting flux rope (Zharkov, Green, Matthews et al., Astrophys. J. Lett. 741, L35, 2011), we present here a more detailed analysis of the observed photospheric changes in and around the seismic sources. These sunquakes are quite unusual, taking place early in the impulsive stage of the flare, with the seismic sources showing little hard X-ray (HXR) emission, and strongest X-ray emission sources located in the flare ribbons. We present a directional time–distance diagram computed for the second source, which clearly shows a ridge corresponding to the travelling acoustic-wave packet and find that the sunquake at the second source happened about 45 seconds to one minute earlier than the first source. Using acoustic holography we report different frequency responses of the two sources. We find strong downflows at both seismic locations and a supersonic horizontal motion at the second site of acoustic-wave excitation.  相似文献   

10.
Coronal Mass Ejections (CMEs) are important phenomena in coronal dynamics causing interplanetary signatures (ICMEs). They eject large amounts of mass and magnetic fields into the heliosphere, causing major geomagnetic storms and interplanetary shocks. Geomagnetic storms are often characterized by abrupt increases in the northward component of the earth’s field, called sudden commencements (SSC) followed by large decreases of the magnetic field and slow recovery to normal values. The SSCs are well correlated with IP shocks. Here a case study of 10–15 February 2000 and also the statistical study of CME events observed by IPS array, Rajkot, during the years 2000 to 2003 and Radio Astronomy Center, Ooty are described. The geomagnetic storm index Dst, which is a measure of geo-effectiveness, is shown to be well correlated with normalized scintillation index ‘g’, derived from Ooty Radio Telescope (ORT) observations.  相似文献   

11.
12.
We report on our results of X-ray spectral analysis for a sample of radio-loud quasars covering a wide range of the radio core-dominance parameter, R, from core-dominated to lobe-dominated objects, using data obtained mostly with the XMM-Newton Observatory. We find that the spectral shape of the underlying power-law continuum is flat even for the lobe-dominated objects (average photon index ~ 1.5), indistinguishable from that of core-dominated quasars. For lobe-dominated objects, contribution of X-rays from the jets is expected to be very small based on previous unification schemes, more than one order of magnitude lower than the observed X-ray luminosities. Assuming that radio-loud quasars follow the same X-ray-UV/optical luminosity relation for the disk-corona emission as found for radio-quiet quasars, we estimate the X-ray flux contributed by the disk-corona component from the optical/UV continuum. We find that neither the luminosity, nor the spectral shape, of the disk-corona X-ray emission can account for the bulk of the observed X-ray properties. Thus in lobe-dominated quasars, either the disk-corona X-ray emission is much enhanced in strength and flatter in spectral shape (photon index~1.5) compared to normal radio-quiet quasars, or their jet X-ray emission is much enhanced compared to their weak radio core-jet emission. If the latter is the case, our result may imply that the jet emission in X-rays is less Doppler beamed than that in the radio. As a demonstrating example, we test this hypothesis by using a specific model in which the X-ray jet has a larger opening angle than the radio jet.  相似文献   

13.
We present results of a population synthesis study of radio-loud and radio-quiet γ-ray pulsars from the Galactic plane and the Gould Belt. The simulation includes the Parkes multibeam pulsar survey, realistic beam geometries for radio and γ-ray emission from neutron stars and the new electron density model of Cordes and Lazio. Normalizing to the number of radio pulsars observed by a set of nine radio surveys, the simulation suggests a neutron star birth rate of 1.4 neutron stars per century in the Galactic plane. In addition, the simulation predicts 19 radio-loud and 7 radio-quiet γ-ray pulsars from the plane that EGRET should have observed as point sources. Assuming that during the last 5 Myr the Gould Belt produced 100 neutron stars, only 10 of these would be observed as radio pulsars with three radio-loud and four radio-quiet γ-ray pulsars observed by EGRET. These results are in general agreement with the recent number of about 25 EGRET error boxes that contain Parkes radio pulsars. Since the Gould Belt pulsars are relatively close by, the selection of EGRET radio-quiet γ-ray pulsars strongly favors large impact angles, β, in the viewing geometry where the off-beam emission from curvature radiation provides the γ-ray flux. Therefore, the simulated EGRET radio-quiet γ-ray pulsars, being young and nearby, most closely reflect the current shape of the Gould Belt suggesting that such sources may significantly contribute to the EGRET unidentified γ-ray sources correlated with the Gould Belt.  相似文献   

14.
We have used the Krall flux-rope model (Krall and St. Cyr, Astrophys. J. 2006, 657, 1740) (KFR) to fit 23 magnetic cloud (MC)-CMEs and 30 non-cloud ejecta (EJ)-CMEs in the Living With a Star (LWS) Coordinated Data Analysis Workshop (CDAW) 2011 list. The KFR-fit results shows that the CMEs associated with MCs (EJs) have been deflected closer to (away from) the solar disk center (DC), likely by both the intrinsic magnetic structures inside an active region (AR) and ambient magnetic structures (e.g. nearby ARs, coronal holes, and streamers, etc.). The mean absolute propagation latitudes and longitudes of the EJ-CMEs (18°, 11°) were larger than those of the MC-CMEs (11°, 6°) by 7° and 5°, respectively. Furthermore, the KFR-fit widths showed that the MC-CMEs are wider than the EJ-CMEs. The mean fitting face-on width and edge-on width of the MC-CMEs (EJ-CMEs) were 87 (85)° and 70 (63)°, respectively. The deflection away from DC and narrower angular widths of the EJ-CMEs have caused the observing spacecraft to pass over only their flanks and miss the central flux-rope structures. The results of this work support the idea that all CMEs have a flux-rope structure.  相似文献   

15.
H. Li  J. You  Q. Du 《Solar physics》2006,235(1-2):107-123
We present our results of high temporal resolution spectroscopic observation and study in Hα, Ca II, and He I lines for the 2B/M1.9 confined disk flare on September 9, 2001, combining with GOES soft X-ray (SXR) and Yohkoh hard X-ray (HXR) observations. Apparent redshifted and red-asymmetric profiles were observed in the initial phase. The redshift lasted until the late phase. The derived velocity depends on both the spectral line and the used method. The redshift velocities computed from the line centers of the observed emission profiles (υ0) are of the order of 10 km s−1 both inside and outside the streak area. However, the velocities determined from the excess profiles by the bisector method (υ) are larger in the streak (18–50 km s−1). Both υ and the red full widths (RFWs) derived from the excess profiles show temporal variations similar to the HXR light-curve in the streak area. Moreover, the Hα line wings of nonthermal characteristics, the redshift velocities, and the lifetime of impulsive broadening suggest that the streak is related to nonthermal electron bombardment. Spectral simulations reveal that we cannot reproduce the observed profiles in the three lines simultaneously with a set of parameters, indicating that the flare atmosphere was not homogeneous along the line-of-sight. Most of the observed Hα profiles showed a ‘flat-top’ structure, implying the flare plasma was optically thick for this line. The electron temperatures (Te) deduced from the line-center intensity of the three lines are similar and estimated to be higher than 7200 K. The obvious central reversal of the Hα profiles due to absorption of materials in the impulsive phase lasted more than 2 min. However, the far blue wings of the Ca II profiles in the impulsive phase showed low-intensity emission, which is suggestive of the existence of large turbulence or macroscopic motion (> 50 km s−1), which is inconsistent with the current flare model.  相似文献   

16.
We analyze the evolution of the flare/postflare-loop system in the two-ribbon flare of November 3, 2003, utilizing multi-wavelength observations that cover the temperature range from several tens of MK down to 104 K. A non-uniform growth of the loop system enables us to identify analogous patterns in the height–time, h(t), curves measured at different temperatures. The “knees,” “plateaus,” and “bends” in a higher-temperature curve appear after a certain time delay at lower heights in a lower-temperature curve. We interpret such a shifted replication as a track of a given set of loops (reconnected field lines) while shrinking and cooling after being released from the reconnection site. Measurements of the height/time shifts between h(t) curves of different temperatures provide a simultaneous estimate of the shrinkage speed and cooling rate in a given temperature domain, for a period of almost ten hours after the flare impulsive phase. From the analysis we find the following: (a) Loop shrinkage is faster at higher temperatures – in the first hour of the loop-system growth, the shrinkage velocity at 5 MK is 20 – 30 km s−1, whereas at 1 MK it amounts to 5 km s−1; (b) Shrinking becomes slower as the flare decays – ten hours after the impulsive phase, the shrinkage velocity at 5 MK becomes 5 km s−1; (c) The cooling rate decreases as the flare decays – in the 5 MK range it is 1 MK min−1 in the first hour of the loop-system growth, whereas ten hours later it decreases to 0.2 MK min−1; (d) During the initial phase of the loop-system growth, the cooling rate is larger at higher temperatures, whereas in the late phases the cooling rate apparently does not depend on the temperature; (e) A more detailed analysis of shrinking/cooling around one hour after the impulsive phase reveals a deceleration of the loop shrinkage, amounting to ā ≈ 10 m s−2 in the T < 5 MK range; (f) In the same interval, conductive cooling dominates down to T ≈ 3 MK, whereas radiation becomes dominant below T ≈ 2 MK; (g) A few hours after the impulsive phase, radiation becomes dominant across the whole T < 5 MK range. These findings are compared with results of previous studies and discussed in the framework of relevant models.  相似文献   

17.
The relations between the kinematics of satellites and the properties of hosts and satellites themselves are investigated in this paper. Our sample of hosts and satellites is selected from the Sloan Digital Sky Survey (SDSS) data by adopting a self-adapted method developed by van den Bosch et al. Consistent with the previous studies, the average velocity dispersion increases with the mass of host galaxy, and is larger for red hosts than for blue hosts. We find that, on average, the velocity dispersion is independent of satellite mass around red hosts, however it increases with the satellite mass around blue hosts, and red satellites have a larger velocity dispersion than their blue counterparts. Our further investigations show that in the same halo, the velocity dispersion is independent of satellite mass, regardless of the host color. Interestingly, around red hosts, the red satellites tend to have a smaller velocity dispersion than the blue ones. It implies some interesting processes. In addition, we also find that if host galaxies only have red or blue (high mass or low mass) satellites, the system with red (high mass) satellites has a larger velocity dispersion than that with blue (low mass) satellites. It suggests that satellite properties are important for the measurement of dark halo mass.  相似文献   

18.
A detailed investigation on DH-type-II radio bursts recorded in Deca-Hectometer (hereinafter DH-type-II) wavelength range and their associated CMEs observed during the year 1997–2008 is presented. The sample of 212 DH-type-II associated with CMEs are classified into three populations: (i) Group I (43 events): DH-type-II associated CMEs are accelerating in the LASCO field view (a>15 m s−2); (ii) Group II (99 events): approximately constant velocity CMEs (−15<a<15 m s−2) and (iii) Group III (70 events): represents decelerating CMEs (a<−15 m s−2). Our study consists of three steps: (i) statistical properties of DH-type-II bursts of Group I, II and III events; (ii) analysis of time lags between onsets of flares and CMEs associated with DH-type-II bursts and (iii) statistical properties of flares and CMEs of Group I, II and III events. We found statistically significant differences between the properties of DH-type-II bursts of Group I, II and III events. The significance (P a ) is found using the one-way ANOVA-test to examine the differences between means of groups. For example, there is significant difference in the duration (P a =5%), ending frequency (P a =4%) and bandwidth (P a =4%). The accelerating and decelerating CMEs have more kinetic energy than the constant speed CMEs. There is a significant difference between the nose height of CMEs at the end time of DH-type-IIs (P a ≪1%). From the time delay analysis, we found: (i) there is no significant difference in the delay (flare start—DH-type-II start and flare peak—DH-type-II start); (ii) small differences in the time delay between the CME onset and DH-type-II start, delay between the flare start and CME onset times. However, there are high significant differences in: flare duration (P a =1%), flare rise time (P a =0.5%), flare decay time (P a =5%) and CMEs speed (P a ≪1%) of Group I, II and III events. The general LASCO CMEs have lower width and speeds when compared to the DH CMEs. It seems there is a strong relation between the kinetic energy of CMEs and DH-type-II properties.  相似文献   

19.
A detailed investigation on geoeffective CMEs associated with meter to Deca-Hectometer (herein after m- and DH-type-II) wavelengths range type-II radio bursts observed during the period 1997–2005 is presented. The study consists of three steps: i) the characteristics of m-and DH-type-II bursts associated with flares and geoeffective CMEs; ii) characteristics of geo and non-geoeffective radio-loud and quiet CMEs, iii) the relationships between the geoeffective CMEs and flares properties. Interestingly, we found that 92 % of DH-type-II bursts are extension of m-type-II burst which are associated with faster and wider geoeffective DH-CMEs and also associated with longer/stronger flares. The geoeffective CME-associated m-type-II bursts have higher starting frequency, lower ending frequency and larger bandwidth compared to the general population of m-type-II bursts. The geoeffective CME-associated DH-type-II bursts have longer duration (P?1 %), lower ending frequency (P=2 %) and lower drift rates (P=2 %) than that of DH-type-IIs associated with non-geoeffective CMEs. The differences in mean speed of geoeffective DH-CMEs and non-geoeffective DH-CMEs (1327 km?s?1 and 1191 km?s?1, respectively) is statistically insignificant (P=20 %).However, the mean difference in width (339° and 251°, respectively) is high statistical significant (P=0.8 %). The geo-effective general populations of LASCO CMEs speeds (545 km?s?1 and 450 km?s?1, respectively) and widths (252° and 60°, respectively) is higher than the non geo-effective general populations of LASCO CMEs (P=3 % and P=0.02 %, respectively). The geoeffective CMEs associated flares have longer duration, and strong flares than non-geoeffective DH-CMEs associated flares (P=0.8 % and P=1 %, respectively). We have found a good correlation between the geo-effective flare and DH-CMEs properties: i) CMEs speed—acceleration (R=?0.78, where R is a linear correlation coefficient), ii) acceleration—flare peak flux (R=?0.73) and, iii) acceleration—Dst index intensity (R=0.75). The radio-rich CMEs (DH-CMEs) produced more energetic storm than the radio-quiet CMEs (general populations of LASCO CMEs). The above results indicate that the DH-type-II bursts tend to be related with flares and geoeffective CMEs, although there is no physical explanation for the result. If the DH-type-II burst is a continuation of m-type-II burst, it could be a good indicator of geoeffective storms, which has important implications for space weather studies.  相似文献   

20.
Coronal Mass Ejections (CMEs) are important sources of Solar Proton Events (SPEs). Their speeds and source region locations have significant effects on the occurrence of SPEs. In this paper, all the halo CMEs observed in recent five years are statistically analyzed. The results show that the fast halo CMEs with small angular distances are more likely to produce SPEs, especially, those halo CMEs with a speed greater than 1200 km s?1 and an angular distance less than 60°. Three fast halo CMEs with no SPEs caused are elaborately studied. The results show that the ejection direction of the CME's main body and the variation of interplanetary magnetic field also have important impacts on the occurrence of SPEs. Consequently, in the practical daily space environment forecasts, an accurate forecast for SPEs must take various factors into account, such as the eruption speed, source region location, the main-body ejection direction of CMEs, and the interplanetary environment, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号