首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
早元古陡岭群变质杂岩的岩石地球化学特征   总被引:4,自引:2,他引:4  
河南省淅川县大陡岭至西峡县田关一带分布的陡岭群变质杂岩,由角闪岩相的变质岩石组成,主要包括片麻岩、钙硅酸粒岩、斜长角闪岩,夹少量的大理岩、石墨片岩和极少量的石英岩。岩石地球化学特征表明:片麻岩的原岩为一套泥砂质的沉积碎屑岩,具有后太古沉积岩的组成特点,形成于活动大陆边缘环境;透辉石变粒岩的原岩为钙砂质的沉积碎屑岩,但可能与片麻岩有着不同的物源区;斜长角闪岩有明显不同的两种产出状态和不同的两类稀土模式,一类呈夹层状与片麻岩互层产出,总稀土含量较低和不强的轻重稀土分离,原岩为非大洋型的拉斑玄武质火山岩;另一类则呈透境状产出,并具有很高的总稀土含量和强的轻重稀土分离,及明显的Eu负异常,原岩为拉斑玄武质的深成侵入岩。陡岭群变质杂岩有与秦岭群类似的岩石组合、原岩建造和时代等特征,形成于非大洋的活动大陆边缘环境。  相似文献   

2.
《Geodinamica Acta》2013,26(5):301-321
The Pressure-Temperature-time paths of metapelites sampled on an east-west transect across the structural dome of Naxos (Greece) have been reconstructed on the basis of new geothermobarometric data and Rb/Sr dating, as well as previously published data. One sample from an intermediate structural level records pressure and temperature conditions of 10 kbar, 500°C, corresponding to its exhumation in a highpressure/low-temperature (HP/LT) setting. The corresponding Rb/Sr exhumation age is 29.3±1.3(2s) Ma. Toward the center of the dome, metamorphic assemblages record an increase in peak-temperature and corresponding pressure (from 500 to 700°C, and from 5 to 8 kbar), in a medium-pressure/medium-temperature (MP/MT) metamorphic field gradient. Whole-rock, muscovite and biotite on two samples from deep structural levels define ages of 5.2 and 7.0 Ma, whereas garnets fall outside the isochrons and retain earlier less radiogenic signatures. Rb/Sr data on these two samples demonstrate open system behaviour coeval with, or subsequent to MP/MT metamorphism. The interpretation of the Pressure-Temperature-time paths indicates a time span of 15-20 Ma for dome formation. It also suggests that the HP/LT to MP/MT transition is due to i) heating of deeper parts of the dome through magma injection or ii) either homogeneous (75 %) or localized thinning during dome formation.  相似文献   

3.
The Malino Metamorphic Complex (MMC) is located at the western end of the north arm of Sulawesi. It consists of mica schists and gneisses (derived from proximal turbidite and granitoid protoliths), with intercalations of greenschist, amphibolite, marble, and quartzite, forming an E-W elongated dome-like structure bounded on all sides by faults. The age of the MMC is constrained between Devonian and Early Carboniferous. This Paleozoic age, the presence of Archean and Proterozoic inherited zircons, and the isotopic signature of the mica schists and gneisses indicate that the terrane was derived from the New Guinea-Australian margin of Gondwana. Similarities with basement rocks in the Bird’s Head suggests a common origin. Greenschists forming a discontinuous selvage (metamorphic carapace) around the complex were derived from adjacent autochthonous Paleogene formations. The rocks of the MMC show a Barrovian-type progression from greenschist through epidote-amphibolite to amphibolite facies. P–T estimations suggest a depth of burial of up to 27–30 km. K/Ar and 40Ar/39Ar cooling ages of 23–11 Ma, and a 7 Ma age for unconformably overlying volcanic rocks, indicate that the complex was exhumed during the Miocene. Two tectonic scenarios are considered: 1. the continental fragment docked with Sulawesi during the Mesozoic and was exhumed as a metamorphic core complex during the Miocene; 2. it was subducted beneath the north arm during the late Oligocene and then rapidly returned back to the surface.  相似文献   

4.
5.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   

6.
Blocks of highly foliated amphibolite are locally embedded within a serpentinite mélange underlying the Yarlung Zangbo ophiolites in the Xigaze area of southern Tibet. The ophiolites are remnants of an Early Cretaceous back-arc basin within the Permo-Cretaceous Tethys Ocean, which are exposed along in the Yarlung Zangbo Suture Zone (YZSZ). These amphibolites are interpreted as fragments of a dismembered dynamothermal sole. Three types of amphibolite are present: (1) common amphibolite with assemblages of Hbl + Pl ± Ep ± Ap ± Ttn, (2) clinopyroxene-bearing amphibolite with Hbl ± Pl ± Cpx ± Ep ± Ttn ± Qtz ± Ap and (3) garnet–clinopyroxene-bearing amphibolite characterized by the assemblages Hbl + Cpx + Grt + Pl ± Rt and Grt + Hbl + Pl (corona assemblage). In all three types, plagioclase is pseudomorphed by late albite–prehnite. Retrograde cataclastic veins containing assemblages of Prh + Ab + Ep ± Chl are also present. P–T estimates indicate that the amphibolites reached peak metamorphic conditions of 13–15 kbar and 750–875 °C. Partial replacement of pyrope-rich (up to 35 mole%) garnet by Al-tschermakite (Al2O3 up to 21 wt%) reflects a high pressure (≈18 kbar, 600 °C) metamorphic event followed by rapid exhumation. Soon after exhumation, the amphibolites were intruded by very fine-grained diabase dykes that were then hydrothermally altered. The field relationships and metamorphic history of the amphibolites indicate formation during inception of subduction within a back-arc basin prior to obduction of the ophiolites onto the Indian passive margin.  相似文献   

7.
甘肃敦煌观音沟地区变质作用初步研究   总被引:2,自引:7,他引:2  
敦煌东南三危山观音沟地区,出露有石榴斜长角闪片麻岩,岩石中保存了三个阶段的变质矿物组合。进变质阶段的矿物组合(M1)以石榴子石变斑晶中的包裹体矿物组合(Hbl1+Pl1+Qtz1)为代表,形成条件约为550~575℃/5.2~5.7kbar(绿帘角闪岩相)。变质高峰期矿物组合(M2)主要由石榴子石变斑晶和基质矿物(Hbl2+Pl2+Qtz2±Cpx2)组成,形成温度670℃,压力11.9kbar(角闪岩相)。退变质阶段矿物组合(M3)为后成合晶矿物组合(Hbl3+Pl3+Qtz3),形成条件约为590~640℃/4.3~5.9kbar(角闪岩相)。观音沟石榴斜长角闪片麻岩记录了包含进变质、变质高峰、退变质过程的造山过程"西阿尔卑斯"型P-T轨迹,其中退变质阶段具有明显的近等温降压特征。变质作用P-T轨迹指示本地区可能经历了俯冲-碰撞-快速抬升的造山过程。结合年代学资料,该期造山事件可能发生于泥盆纪。  相似文献   

8.
The Yelapa-Chimo Metamorphic Complex forms part of the Jalisco Block in western Mexico and exposes a wide range of Early Cretaceous metamorphic rocks;such as paragneiss,orthogneiss,amphibolites,and migmatites.However,the pressure-temperature(P-T)conditions of metamorphism and partial melting remain poorly studied in the region.To elucidate metamorphic P-T conditions,phase equilibrium modelling was applied to two sillimanite-garnet paragneisses,one amphibole-orthogneiss,and one amphibolite.Sillimanite-garnet paragneisses exhibit a lepidoblastic texture with a biotite+sillimanite+kyanite+garnet+quartz+plagioclase+K-feldspar mineral assemblage.Amphibole-orthogneiss and amphibolite display a nematoblastic texture with an amphibole+(1)plagioclase+quartz+(1)titanite assemblage and an amphibole+(2)plagioclase+(2)titanite+ilmenite retrograde mineral assemblage.Pseudosections calculated for the two sillimanite-garnet paragneiss samples show P-T peak conditions at~6-7.5 kbar and~725-740℃.The results for amphibole-orthogneiss and the amphibolite yield P-T peak conditions at~8.5-10 kbar and~690-710℃.The mode models imply that metasedimentary and metaigneous units can produce up to~20 vol%and~10 vol%of melt,respectively.Modelling within a closed system during isobaric heating suggests that melt compositions of metasedimentary and metaigneous units are likely to have direct implications for the petrogenesis of the Puerto Vallarta Batholith.Our new data indicate that the Yelapa-Chimo Metamorphic Complex evolved through a metamorphic gradient between~23-33℃km^-1and the metamorphic rocks formed at depths between~22 km and~30 km with a burial rate of~2.0 km Ma^-1.Finally,the P-T data for both metasedimentary and metaigneous rocks provide new constraints on an accretionary framework,which is responsible for generating metamorphism and partial melting in the YelapaChimo Metamorphic Complex during the Early Cretaceous.  相似文献   

9.
The easternmost zone of the Dinaric‐Hellenic belt is represented by the Vardar Zone, in which the Kopaonik Metamorphic Complex (KMC) is regarded as the lowermost unit. This complex is topped by the unmetamorphosed Brzece unit and is intruded by the Oligocene Kopaonik Intrusive complex. The KMC is characterized by a stratigraphy that includes metapelites and meta‐carbonates of Late Triassic age, associated with metabasites. It is characterized by a complex deformation history that comprises four phases: D1 to D4. The D1 phase structures occur only as relict structures, whereas the D2 phase structures are represented by isoclinal F2 folds, associated with a well‐developed S2 foliation. The estimated P‐T conditions for the D1 and D2 metamorphism are consistent with the upper greenschist facies. The D3 phase is characterized by west‐verging thrusts associated with upright folds. In contrast, the D4 phase is characterized by open folds (F4) associated with low‐angle normal faults. The D1 and D2 deformation phases developed during the shortening related to continental collision, whereas the subsequent D3 and D4 phases can be related to the progressive exhumation of the KMC. The D4 phase probably developed during extensional tectonics during and after emplacement of the Kopaonik Intrusive Complex. The data show that the continental units belonging to the Vardar zone had a long‐lived deformation history that was more complex that previously thought. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Samples of volcanic rocks from Alborán Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr–Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alborán Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (0.5×N-MORB), especially Nb (0.2×N-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. 143Nd/144Nd ratios fall in the same range as many island-arc and back-arc basin samples, whereas 87Sr/86Sr ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with (87Sr/86Sr)0 up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr–Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies.

The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere arising from convective thinning of over-thickened lithosphere. Our data support recent models in which subsidence is caused by westward rollback of an eastward-dipping subduction zone beneath the westernmost Mediterranean. Moreover, severance of the lithosphere at the edges of the rolling-back slab provides opportunities for locally melting lithospheric mantle, providing a possible explanation for the shoshonitic volcanism seen in northern Morocco and more sporadically in SE Spain.  相似文献   


11.
豫西秦岭杂岩变质带的分布及主期变质时代的限定   总被引:1,自引:1,他引:1  
豫西秦岭杂岩中变质分级可呈与造山带大致平行的带状分布,从两侧向中心变质级别升高,尤其南侧分带明显:由南向北,依次为黑云母带-石榴子石带-蓝晶石带-夕线石带,直至斜方辉石带,而不是整体上经历了麻粒岩相变质作用。局部发生的麻粒岩相变质未见明显向角闪岩相变质转化的退变结构。通过几种岩石的锆石LA-MC-ICPMS测年研究,多数样品中的锆石经受了后期强烈的改造,同位素体系或多或少被重置。尽管如此,侵位花岗岩和伟晶岩年龄限定了主期变质作用的时代应老于484±3Ma,并可能与早期的榴辉岩相变质作用在演化上有联系。主期变质(不包括榴辉岩相变质)性质与经典的巴罗式变质带可以对比;此外,研究区未经历明显的地壳增厚,与高喜马拉雅结晶岩系类似,秦岭杂岩可能经历了中、下地壳物质沿隧道流上升过程。  相似文献   

12.
A metamorphic core complex model is proposed for Khoshoumi Mountain uranium mineralization located in the Bafq–Saghand metallogenic zone of central Iran. Uranium mineralization occurred in the Chapedoni metamorphic complex. Detailed structural analysis of the complex leads to the interpretation that the mineralization is spatially concentrated in a low angle shear zone of mylonitized migmatite, the lower ductile part of the Chapedoni metamorphic complex. The shear zone that has top to the NE sense of shear in the northeastern and southeastern parts of the mountain and top to the WNW sense of shear in the southwestern part is a detachment zone to the Chapedoni Metamorphic Core Complex (CMCC). The Eocene granite is the plutonic core to the CMCC. The shear zone is cut by several NE‐trending left‐lateral strike‐slip faults. This later faulting is interpreted to account for the significant enrichment of uranium in the southern part of the mountain. The bimodal distribution of radiometric data gathered from exploratory drill holes in this part of the mountain constrains this interpretation. That is, the lower value is from the shear zone across the area but the higher value is from the places that the shear zone is cut by the transverse faults.  相似文献   

13.
Fluid inclusions trapped in quartz veins hosted by a leucogneiss from the southern part of the Naxos Metamorphic Core Complex (Attic‐Cycladic‐Massif, Greece) were studied to determine the evolution of the fluid record of metamorphic rocks during their exhumation across the ductile/brittle transition. Three sets of quartz veins (V‐M2, V‐BD & V‐B) are distinguished. The V‐M2 and V‐BD are totally or, respectively, partially transposed into the foliation of the leucogneiss. They formed by hydrofracturing alternating with ductile deformation accommodated by crystal‐plastic deformation. The V‐B is discordant to the foliation and formed by fracturing during exhumation without subsequent ductile transposition. Fluids trapped during crystal–plastic deformation comprise two very distinct fluid types, namely a CO2‐rich fluid and a high‐salinity brine, that are interpreted to represent immiscible fluids generated from metamorphic reactions and the crystallization of magmas respectively. They were initially trapped at ~625 °C and 400 MPa and then remobilized during subsequent ductile deformation resulting in various degrees of mixing of the two end‐members with later trapping conditions of ~350 °C and 140 MPa. In contrast, brittle microcracks contain aqueous fluids trapped at 250 °C and 80 MPa. All veins display a similar δ13C pointing to carbon that was trapped at depth and then preserved in the fluid inclusions throughout the exhumation history. In contrast, the δD signature is marked by a drastic difference between (i) V‐M2 and V‐BD veins that are dominated by carbonic, aqueous‐carbonic and high‐salinity fluids of metamorphic and magmatic origin characterized by δD between ?56‰ and ?66‰, and (ii) V‐B veins that are dominated by aqueous fluids of meteoric origin characterized by δD between ?40‰ and ?46‰. The retrograde PT pathway implies that the brittle/ductile transition separates two structurally, chemically and thermally distinct fluid reservoirs, namely (i) the ductile crust into which fluids originating from crystallizing magmas and fluids in equilibrium with metamorphic rocks circulate through a geothermal gradient of 30 °C km?1 at lithostatic pressure, and (ii) the brittle upper crust through which meteoric fluids percolate through a high geothermal gradient of 55 °C km?1 at hydrostatic pressure.  相似文献   

14.
闫方超  刘庆  马雪盈  何苗 《岩石学报》2021,37(8):2579-2598
P-T-t轨迹作为变质岩的重要研究方法之一,对揭示岩石的构造演化过程具有重要意义。北大别饶拔寨镁铁-超镁铁岩形成的构造环境和就位过程长期以来尚存争议。本文通过岩相学观察、矿物化学研究和温压计计算,揭示出饶拔寨石榴辉石岩经历了四个变质演化阶段:1)超高压变质阶段(M1):主要根据石榴子石中金红石的出溶,单斜辉石中石英的出溶和磷灰石中不透明矿物的出溶,结合前人研究,认为饶拔寨石榴辉石岩经历过超高压变质阶段(≥2.5GPa);2)高压麻粒岩相阶段(M2):矿物组合为石榴子石(变斑晶)和单斜辉石(基质)+斜长石(基质),记录的温压条件为T=648~700℃,P=1.47~1.94GPa;3)中压麻粒岩相阶段(M3):以石榴子石外围发育的主要由斜方辉石+斜长石组成的内圈"白眼圈"为特征,形成的温压条件为T=781~796℃,P=0.92~0.98GPa;4)角闪岩相阶段(M4):以石榴子石变斑晶周围发育的外圈"白眼圈"为特征,其矿物组合为角闪石+斜长石的后成合晶,形成的温压条件为T=663~685℃,P=0.50~0.58GPa。石榴辉石岩的锆石SIMS U-Pb定年得到了3组不同的交点年龄,分别为208.1~202.1Ma、227.6Ma和817.7Ma。根据锆石包裹体中角闪石+斜长石的组合,推断208.1~202.1Ma代表了角闪岩相变质年龄的下限,227.6Ma则是高压麻粒岩相的下限年龄,而新元古代年龄(817.7Ma)与区域上的变质岩原岩年龄一致,可能代表了其原岩年龄。结合前人研究,饶拔寨石榴辉石岩记录了顺时针的P-T-t轨迹,揭示了板片俯冲(超高压变质)-碰撞-折返(降压升温过程,~227Ma)-抬升(降压降温过程,208~202Ma)的完整过程。  相似文献   

15.
This paper characterizes the metamorphic thermal structure of the Higo Metamorphic Complex (HMC) and presents the results of a numerical simulation of a geotherm with melt migration and solidification. Reconstruction of the geological and metamorphic structure shows that the HMC initially had a simple thermal structure where metamorphic temperatures and pressures increased towards apparent lower structural levels. Subsequently, this initial thermal structure has been collapsed by E–W and NNE–SSW trending high‐angle faults. Pressure and temperature conditions using the analysis of mineral assemblages and thermobarometry define a metamorphic field P–T array that may be divided into two segments: the array at apparent higher structural levels has a low‐dP/dT slope, whereas that at apparent lower structural levels has a high‐dP/dT slope. This composite array cannot be explained by heat conduction in subsolidus rocks alone. Migmatite is exposed pervasively at apparent lower structural levels, but large syn‐metamorphic plutons are absent at the levels exposed in the HMC. Transport and solidification of melt within migmatite is a potential mechanism to generate the composite array. Thermal modelling of a geotherm with melt migration and solidification shows that the composite thermal structure may be formed by a change of the dominant heat transfer from an advective regime to a conduction regime with decreasing depth. The model also predicts that strata beneath the crossing point will consist of high‐grade solid metamorphic rocks and solidified melt products, such as migmatite. This prediction is consistent with the observation that migmatite was associated with the very high‐dP/dT slope. The melt migration model is able to generate the very high‐dP/dT segment due to the high rate of heat transfer by advection.  相似文献   

16.
The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMCC) and the geometry of quartz c-axis fabrics changes progressively from crossed girdles to single girdles in the same direction. Therefore, pure shear is dominant in the ESE part of the XMCC while simple shear becomes increasingly important towards WNW. However, the shear type does not change with the strain across the shear zone, thus the variation of shear type is of significance in indicating the formation mechanism. The granitic plutons within the XMCC came from the deep source and their emplacement was an active and forceful upwelling prior to the detachment faulting. The PTt path demonstrates that magmatism is an important cause for the formation of the XMCC. The formation mechanism of the XMCC is supposed to be active plutonism and passive detachment. Crustal thickening and magmatic do  相似文献   

17.
《China Geology》2018,1(2):225-235
For the first time, we present the rare earth element (REE) and sulfur isotopic composition of hydrothermal precipitates recovered from the Tangyin hydrothermal field (THF), Okinawa Trough at a water depth of 1206 m. The natural sulfur samples exhibit the lowest ΣREE concentrations (ΣREE= 0.65×10–6–4.580×10–6) followed by metal sulfides (ΣREE=1.71×10–6–11.63×10–6). By contrast, the natural sulfur-sediment samples have maximum ΣREE concentrations (ΣREE=11.54×10–6–33.06×10–6), significantly lower than those of the volcanic and sediment samples. Nevertheless, the δEu, δCe, (La/Yb)N, La/Sm, (Gd/Yb)N and normalized patterns of the natural sulfur and metal sulfide show the most similarity to the sediment. Most hydrothermal precipitate samples are characterized by enrichments of LREE (LREE/HREE=10.09–24.53) and slightly negative Eu anomalies or no anomaly (δEu=0.48–0.99), which are different from the hydrothermal fluid from sediment-free mid-oceanic ridges and back-arc basins, but identical to the sulfides from the Jade hydrothermal field. The lower temperature and more oxidizing conditions produced by the mixing between seawater and hydrothermal fluids further attenuate the leaching ability of hydrothermal fluid, inducing lower REE concentrations for natural sulfur compared with metal sulfide; meanwhile, the negative Eu anomaly is also weakened or almost absent. The sulfur isotopic compositions of the natural sulfur (δ34S=3.20‰–5.01‰, mean 4.23‰) and metal sulfide samples (δ34S=0.82‰–0.89‰, mean 0.85‰) reveal that the sulfur of the chimney is sourced from magmatic degassing.  相似文献   

18.
The Epupa Metamorphic Complex constitutes the southwestern margin of the Congo Craton and is exposed in a hilly to mountainous terrain of northwestern Namibia, bordering the Kunene River and extending into southern Angola. It consists predominantly of granitoid gneisses which are migmatized over large areas. This migmatization locally led to anatexis and produced crustal-melt granites such as the Otjitanda Granite. We have undertaken reconnaissance geochemical studies and single zircon U–Pb SHRIMP and Pb–Pb evaporation dating of rocks of the Epupa Complex. The granitoid gneisses, migmatites and anatectic melts are similar in composition and constitute a suite of metaluminous to peraluminous, calc-alkaline granitoids, predominantly with volcanic arc geochemical signatures. The zircon protolith ages for the orthogneisses range from 1861 ± 3 to 1758 ± 3 Ma. Anatexis in the migmatitic Epupa gneisses was dated from a melt patch at 1762 ± 4 Ma, and the anatectic Otjitanda Granite has a zircon age of 1757 ± 4 Ma. Migmatization and anatexis therefore occurred almost immediately after granitoid emplacement and date a widespread high-temperature Palaeoproterozoic event at ∼1760 Ma which has not been recorded elswhere in northern Namibia. The Nd isotopic systematics of all dated samples are surprisingly similar and suggest formation of the protolith from a source region that probably separated from the depleted mantle about 2.4–2.0 Ga ago. A major Archaean component in the source area is unlikely.  相似文献   

19.
《International Geology Review》2012,54(12):1521-1540
The late Carboniferous Dongwanzi Complex in the northern North China Craton is composed of intrusive pyroxenite, hornblendite, gabbro, and syenite. The mafic-ultramafic rocks of the complex exhibit typical cumulate textures, curved-upward REE patterns, and variable contents of compatible elements, suggesting a cumulate origin. The syenite shows Sr-Nd isotopic ratios similar to the mafic-ultramafic complex and positive Eu anomalies in the chondrite-normalized REE patterns, suggesting that the syenite may represent residual melt after significant fractional crystallization of mafic melt. The mafic-ultramafic cumulates have low HREE abundance and high (Tb/Yb)N (2.5–4.2) and Dy/Yb ratios (>2), indicating that they may have originated from melting of garnet peridotite in the mantle. The Dongwanzi Complex is characterized by a large variation in Sr-Nd isotopic composition, with ISr = 0.7035 to 0.7052 and εNd(t) = ?4.0 to +5.2, which may be accounted for by mixing melts of depleted asthenospheric and enriched lithospheric sources. The radiogenic Os isotopic compositions of the complex ((187Os/188Os)i = 0.1344 to 0.3090) suggest slight contamination by mafic lower crust (≤2.5% based on Os isotopic modelling). The Dongwanzi Complex exhibits arc-related whole-rock and mineral geochemical affinities, such as enrichment in LILE (e.g. Sr, Ba, K) and depletion in HFSE (e.g. Nb, Ta, Ti). The abundance of hornblende and high CaO contents (22–24 wt.%) of clinopyroxene suggest that the source was rich in H2O, probably due to the formation above a subduction zone. We conclude that the Dongwanzi Complex and the related crust–mantle interactions probably reflect formation in a back-arc extensional environment related to the subduction of the Palaeo-Asian Ocean beneath the northern margin of the North China Craton in late Palaeozoic time.  相似文献   

20.
The Brusque Metamorphic Complex (BMC) is one of the main units of the Tijucas Terrain within the Dom Feliciano Belt, located in the state of Santa Catarina in southern Brazil. In the Itapema region, the BMC is composed chiefly of metasediments, including subordinate metabasalts, meta-ultramafic rocks, and clinoamphibole schists. The metavolcanic rocks form 4 m-thick lenses interlayered with metapelites and calc-silicate schists. Based on the observed textures and the associated structural, bulk-rock geochemical, and mineral chemical data, these metamafites and ultramafites were ancient lava flows of tholeiitic basalts and ultramafic cumulates. The mineral parageneses of the metabasalts are albite?+?actinolite?+?chlorite?+?epidote?+?titanite?+?magnetite and oligoclase?+?hornblende?+?epidote?+?titanite?+?magnetite, indicating progressive transformations produced under greenschist to amphibolite facies conditions. Volcanogenic metasediments show the same geochemical patterns as the metabasalts, whereas the metamorphosed ultramafic rocks consist of cumulates generated by crystal fractionation and flow segregation. The studied rocks show similar rare-earth element (REE) patterns, characterized by clearly higher normalized contents of light REEs compared with heavy REEs, without Eu anomalies in the metabasalts and positive Eu anomalies in meta-ultramafic rocks and volcanogenic metasediments. In accordance with the trace element contents that indicate a within-plate nature, the corresponding mafic melts apparently formed in the mantle by partial fusion and were subsequently enriched with crustal components during ascent into the sialic crust. The analysed 143Nd/144Nd and 87Sr/86Sr ratios lie between 0.5123 and 0.5126 and 0.7067 and 0.7086, respectively, and are thus typical of tholeiitic basalts of the continental plateau type. Initial ?Nd(936) values and derived model ages (T DM) between 1028 and 1762 million years support a mantle source or sources, with extraction and emplacement in the Neoproterozoic. Field relations and geochemical data (including isotopic data) indicate the generation of the studied mafic and ultramafic rocks in a continental rift. In the regional geologic context, the formation of the BMC volcanic and metasedimentary units marks a period of fragmentation of the Palaeoproterozoic continental crust. This extensional event is preserved regionally in gneisses from the Santa Catarina Granulitic Complex and the Camboriú Complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号