首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 448-year teak chronology from northwestern Thailand is used to assess past changes in the strength of the summer monsoon. The chronology is based on 30 living trees that extend from 1604 to 2005, and a 47-stump chronology that spans from 1558 to 1903. We used methods of cross dating and chronology building that address problems specifically found in teak. The result is a robust chronology with strong signal strength back to 1600 ad, and with variability retained at the multi-decadal scale. Variability in annual growth in teak from this area is dependent on rainfall and soil moisture availability at both the beginning and end of the monsoon season as confirmed by comparisons with temperature, rainfall and PDSI data. These correlation analyses confirm that our record is a proxy for summer monsoon strength and/or duration, and highlight the importance of soil moisture availability in the seasons of transition. The chronology reveals two prominent periods of decadal-scale drought in the early and mid 1700s that correspond to persistently warm sea surface temperature anomalies in the tropical Pacific as derived from Galapagos Island coral records. Speleothem data from central India also indicate protracted periods of drought for the 1700s. While these broad-scale eighteenth-century persistent droughts may be related to protracted El Niño-like conditions in the tropical Pacific, regional climate forcing over the Indian Ocean and western Pacific sectors appears to be a strong contributor as well. Spectral analyses reveal power in the ENSO range of variability from 2.2 to 4 years, and at the multi-decadal scale at 48.5 years.  相似文献   

2.
Global solar radiation is of great significance to the balance of ground surface radiation, the energy exchange between the Earth’s surface and atmosphere, and the development of weather and climate systems in various regions. In this study, the monthly global radiation recorded at 23 stations over the Qinghai–Tibetan Plateau (QTP) was utilized to estimate global solar radiation (Q) from sunshine duration and to obtain improved fits to the variation coefficients of the monthly Angström–Prescott model (APM). The modeling results were evaluated by calculating the statistical errors, including mean bias error, mean absolute error, root mean square error, and mean relative error. We demonstrate that the monthly Q values can be predicted accurately by APM over the QTP. We also assess the variations of Q values at 116 meteorological stations by APM over the QTP during 1961–2000. The analysis shows that the annual mean sunshine duration amounted to more than 3,000 h over the whole plateau, implying promising prospects for economic applications of solar energy. During the past 40 years, the mean global solar radiation has been relatively high in the western QTP, extending northward to the Inner Mongolian Plateau. Although its decadal variations in the QTP and surrounding regions were inconsistent, the anomaly values of global solar radiation were generally positive during the 1960s and 1970s, indicating that the QTP’s global solar radiation has increased during those periods. The anomaly values were negative during the 1980s and 1990s, showing that the plateau’s global solar radiation has decreased during those periods. Global solar radiation over the QTP is negatively proportional to latitude but positively proportional to altitude and relative sunshine duration. Three factors, the sunshine duration, latitude, and altitude, exert great influence on global surface radiation, of which sunshine duration is most significant. A high-variation-coefficient zone of global solar radiation occurred in the western part of the QTP but, on average, the variation coefficient of the plateau’s global solar radiation was only 0.031, suggesting that the variation in global radiation was relatively stable over the whole QTP.  相似文献   

3.
4.
Temperature reconstructions from Europe for the past 500 years based on documentary and instrumental data are analysed. First, the basic documentary data sources, including information about climate and weather-related extremes, are described. Then, the standard palaeoclimatological reconstruction method adopted here is discussed with a particular application to temperature reconstructions from documentary-based proxy data. The focus is on two new reconstructions; January–April mean temperatures for Stockholm (1502–2008), based on a combination of data for the sailing season in the Stockholm harbour and instrumental temperature measurements, and monthly Central European temperature (CEuT) series (1500–2007) based on documentary-derived temperature indices of the Czech Republic, Germany and Switzerland combined with instrumental records from the same countries. The two series, both of which are individually discussed in greater detail in subsequent papers in this special edition, are here compared and analysed using running correlations and wavelet analysis. While the Stockholm series shows a pronounced low-frequency component, the CEuT series indicates much weaker low-frequency variations. Both series are analysed with respect to three different long-period reconstructions of the North Atlantic Oscillation (NAO) and are compared with other European temperature reconstructions based on tree-rings, wine-harvest data and various climate multiproxies. Correlation coefficients between individual proxy-based series show weaker correlations compared to the instrumental data. There are also indications of temporally varying temperature cross-correlations between different areas of Europe. The two temperature reconstructions have also been compared to geographically corresponding temperature output from simulations with global and regional climate models for the past few centuries. The findings are twofold: on the one hand, the analysis reinforces the hypothesis that the index-data based CEuT reconstruction may not appropriately reflect the centennial scale variations. On the other hand, it is possible that climate models may underestimate regional decadal variability. By way of a conclusion, the results are discussed from a broader point of view and attention is drawn to some new challenges for future investigations in the historical climatology in Europe.  相似文献   

5.
Lu  Mengmeng  Yang  Song  Li  Zhenning  He  Bian  He  Shan  Wang  Ziqian 《Climate Dynamics》2018,51(4):1485-1498

We conduct several experiments using a fully-coupled climate model to understand the role of Tibetan Plateau (TP) surface heating in the climate variations over West Asia, South Europe, North Africa, and the North Atlantic during summer. Emphasis has been placed on the physical processes and responsible mechanisms that involve the shift of the Hadley cell and the important features of rotational and divergent response of the atmosphere to the TP heating. The relative importance of the TP to the Asian continent is also analyzed. A heating of the TP surface leads to local increases in tropospheric temperature and the thickness of the air column due to the so-called air pumping effect. In the upper troposphere, the South Asian high intensifies and extends westward. To the west of TP, especially in West Asia, South Europe, North Africa, and the North Atlantic, distinguished Rossby wave responses to the TP heating occur with anomalous high pressure and uniform warming in the entire troposphere. Correspondingly, descending motions intensify and precipitation decreases. However, the tropical Sahel rainfall increases because of a northward shift of the Atlantic intertropical convergence zone and the anomalous westerlies due to the weakening of the southeastern portion of the Atlantic subtropical high. These effects of the TP heating explain a remarkable portion of the effects by the Asian continent heating. In addition, the impacts of different magnitudes of TP surface heating are also discussed.

  相似文献   

6.
7.
8.
Existing multi-proxy climate reconstruction methods assume the suitably transformed proxy time series are linearly related to the target climate variable, which is likely a simplifying assumption for many proxy records. Furthermore, with a single exception, these methods face problems with varying temporal resolutions of the proxy data. Here we introduce a new reconstruction method that uses the ordering of all pairs of proxy observations within each record to arrive at a consensus time series that best agrees with all proxy records. The resulting unitless composite time series is subsequently calibrated to the instrumental record to provide an estimate of past climate. By considering only pairwise comparisons, this method, which we call PaiCo, facilitates the inclusion of records with differing temporal resolutions, and relaxes the assumption of linearity to the more general assumption of a monotonically increasing relationship between each proxy series and the target climate variable. We apply PaiCo to a newly assembled collection of high-quality proxy data to reconstruct the mean temperature of the Northernmost Atlantic region, which we call Arctic Atlantic, over the last 2,000 years. The Arctic Atlantic is a dynamically important region known to feature substantial temperature variability over recent millennia, and PaiCo allows for a more thorough investigation of the Arctic Atlantic regional climate as we include a diverse array of terrestrial and marine proxies with annual to multidecadal temporal resolutions. Comparisons of the PaiCo reconstruction to recent reconstructions covering larger areas indicate greater climatic variability in the Arctic Atlantic than for the Arctic as a whole. The Arctic Atlantic reconstruction features temperatures during the Roman Warm Period and Medieval Climate Anomaly that are comparable or even warmer than those of the twentieth century, and coldest temperatures in the middle of the nineteenth century, just prior to the onset of the recent warming trend.  相似文献   

9.
The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.  相似文献   

10.
We describe the evolutionary response of northern and southern hemisphere summer monsoons to orbital forcing over the past 280,000 years using a fully coupled general circulation ocean-atmosphere model in which the orbital forcing is accelerated by a factor of 100. We find a strong and positive response of northern (southern) summer monsoon precipitation to northern (southern) summer insolation forcing. On average, July (January) precipitation maxima and JJA (DJF) precipitation maxima have high coherence and are approximately in phase with June (December) insolation maxima, implying an average lag between forcing and response of about 30° of phase at the precession period. The average lag increases to over 40° for 4-month precipitation averages, JJAS (DJFM). The phase varies from region to region. The average JJA (DJF) land temperature maxima also lag the June orbital forcing maxima by about 30° of phase, whereas ocean temperature maxima exhibit a lag of about 60° of phase at the precession period. Using generalized measures of the thermal and hydrologic processes that produce monsoons, we find that the summer monsoon precipitation indices for the six regions all fall within the phase limits of the process indices for the respective hemispheres. Selected observational studies from four of the six monsoon regions report approximate in-phase relations of summer monsoon proxies to summer insolation. However other observational studies report substantial phase lags of monsoon proxies and a strong component of forcing associated with glacial-age boundary conditions or other factors. An important next step will be to include glacial-age boundary condition forcing in long, transient paleoclimate simulations, along with orbital forcing.  相似文献   

11.
In this paper, the thermal comfort and its changes in the Qinghai–Tibet Plateau over the last 50 years have been evaluated by using the physiological equivalent temperature (PET), and a more complete tourism climate picture is presented by the Climate–Tourism–Information Scheme (CTIS). The results show that PET classes in the Qinghai–Tibet Plateau cover six out of the nine-point thermal sensation scale — very cold, cold, cool, slightly cool, neutral and slightly warm — and cold stress is prevailing throughout the year. A small number of slightly cool/warm and neutral days occur in summer months. There occur no warm, hot and very hot days. The frequency of PET classes varies among regions, depending on their altitude/latitude conditions. Xining, Lhasa and Yushu are the top three cities in terms of thermal favorability. With global warming, annual cumulative number of thermally favorable days has been increasing, and that of cold stress has been reducing. The change is more obvious in lower elevation than that in higher elevation regions. The improving thermal comfort in the Qinghai–Tibet Plateau might be a glad tiding for local communities and tourists. Besides PET, CTIS can provide a number of additional bioclimatic information related to tourism and recreational activities. CTIS for Lhasa and Xining shows that sunshine is plentiful all the year round, and windy days occur frequently from late January to early May. This is a useful bioclimatic information for tourism authorities, travel agencies, resorts and tourists.  相似文献   

12.
The two types of El Niño that have been identified, namely the eastern Pacific (EP) and central Pacific (CP) El Niños, are known to exert different climatic impacts on the North Atlantic region during winter. Here, we investigate the characteristics of the teleconnection of the two El Niño types with a focus on the stratosphere-troposphere coupling. During the EP El Niño, polar stratospheric warming and polar vortex weakening frequently occur with a strong tendency for downward propagation near the tropopause. Consequently, the atmospheric pattern within the troposphere over the North Atlantic sector during midwinter closely resembles the negative North Atlantic Oscillation pattern. In contrast, during CP El Niño events stratospheric warming events exhibit a much weaker downward propagation tendency. This difference in the stratospheric circulation response arises from the different seasonal evolution of the tropospheric wave response to the two El Niño types. For the EP El Niño, the Aleutian Low begins growing during December and is sustained throughout the entire winter (December to February), which provides favorable conditions for the continuous downward propagation of the stratospheric warming. We also discuss the origin of the difference in the teleconnections from the two types of El Niño associated with the distinct longitudinal position of the warm SST anomaly that determines troposphere-stratosphere coupling.  相似文献   

13.
Climate at the time of inception of the Laurentide Ice Sheet (LIS) at ~115 kyr BP is simulated with the fully coupled NCAR Community Climate System Model (CCSM3) and compared to a simulated preindustrial climate (circa 1870) in order to better understand land surface and atmospheric responses to orbital and greenhouse cooling at inception. The interaction between obliquity and eccentricity produces maximum decrease in TOA insolation in JJA over the Arctic but increases occur over the tropics in DJF. The land surface response is dominated by widespread summer cooling in the Northern Hemisphere (NH), increases in snowfall, and decreases in melt rates and total precipitation. CCSM3 responds to the climate forcing at 115 kyr BP by producing incipient glaciation in the areas of LIS nucleation. We find that the inception of the LIS could have occurred with atmospheric circulation patterns that differ little from the present. The location of the troughs/ridges, mean flow over the Canadian Arctic and dominant modes of the atmospheric circulation are all very similar to the present. Larger changes in mean sea level pressure occur upstream of the inception region in the North Pacific Ocean and downstream in Western Europe. In the North Pacific region, the 115 kyr BP anomalies weaken both the Pacific high and Aleutian low making NH summers look more like the PREIND winters and vice versa. The occurrence of cold JJA anomalies at 115 kyr BP favors outbreaks of cold air not in the winter as in contemporary climates but during the summer instead and reinforces the cooling from orbital and GHG reductions. Increased poleward eddy transport of heat and moisture characterizes the atmospheric response in addition to reduced total cloud cover in the Arctic.  相似文献   

14.
15.
We compare the daily, interannual, and decadal variability and trends in the thermal structure of the Arctic troposphere using eight observation-based, vertically resolved data sets, four of which have data prior to 1948. Comparisons on the daily scale between historical reanalysis data and historical upper-air observations were performed for Svalbard for the cold winters 1911/1912 and 1988/1989, the warm winters 1944/1945 and 2005/2006, and the International Geophysical Year 1957/1958. Excellent agreement is found at mid-tropospheric levels. Near the ground and at the tropopause level, however, systematic differences are identified. On the interannual time scale, the correlations between all data sets are high, but there are systematic biases in terms of absolute values as well as discrepancies in the magnitude of the variability. The causes of these differences are discussed. While none of the data sets individually may be suitable for trend analysis, consistent features can be identified from analyzing all data sets together. To illustrate this, we examine trends and 20-year averages for those regions and seasons that exhibit large sea-ice changes and have enough data for comparison. In the summertime Pacific Arctic and the autumn eastern Canadian Arctic, the lower tropospheric temperature anomalies for the recent two decades are higher than in any previous 20-year period. In contrast, mid-tropospheric temperatures of the European Arctic in the wintertime of the 1920s and 1930s may have reached values as high as those of the late 20th and early 21st centuries.  相似文献   

16.
17.
The inter-annual variability of winter convective precipitation rate (CPR) in southeastern Europe and its connection to 500?hPa geopotential height (GH) is examined for the period 1950–2009 by using factor analysis and canonical correlation analysis. Two GH centers of action for CPR are found. The first one is located over Italy and it is associated with the typical winter depression activity regime over the Mediterranean Sea, controlling CPR in southern Italy, the southern Balkans, west Asia Minor, and the adjacent seas. The second one is located over the British Isles and it is associated with blocking activity over western Europe being responsible for a CPR seesaw teleconnection between (1) northern Italy, the Alps and the northwestern Balkans and (2) the south central Mediterranean Sea, south of Sicily. A CPR decrease in most of the areas under study and a CPR increase in the south central Mediterranean Sea are found.  相似文献   

18.
The Tibetan Plateau (TP) with an average elevation of over 4,000 m asl is the highest and most extensive highland in the world. We used monthly mean sunshine duration from the Chinese Meteorological Administration to examine the spatial and temporal variability of sunshine duration at 71 stations with elevations above 2,000 m asl in the eastern and central TP during the 1961–2005 period. The temporal evolution of the mean annual sunshine duration series shows a significant increase from 1961 to 1982 at a rate of 49.8 h/decade, followed by a decrease from 1983 to 2005 at a rate of ?65.1 h/decade, with an overall significant decrease at a rate of ?20.6 h/decade during the whole 1961–2005 period, which is mainly due to the summer and spring seasons. This confirms the evidence that sunshine duration in the TP ranges from brightening to dimming in accordance with sunshine duration trends in the rest of China. The surface solar radiation downwards from ERA-40 reanalysis data in the same region confirms the brightening/dimming phenomenon shown by the sunshine duration before/after the 1980s. Otherwise, additional climatic variables such as low cloud amount, total cloud amount, precipitation, relative humidity and water vapor pressure, in most cases, exhibit significant negative correlation with sunshine duration in the TP on an annual and seasonal basis before and after 1982, respectively. The trends of these variables suggest that changes in some of them might be related to the brightening and dimming detected with the use of sunshine duration measurements over the TP. We also hypothesize that the impact of anthropogenic aerosols upon the climatic variables analyzed cannot be rejected, especially in the significant increase in low cloud cover since approximately 1980.  相似文献   

19.
The land–sea thermal contrast is an important driver for monsoon interannual variability and the monsoon onset. The thermal contrast between the Tibetan Plateau and the tropical Indian Ocean at the mid–upper troposphere is proposed as a thermal contrast index (TCI) for South Asian monsoon. The authors investigate the TCI associated with South Asian summer monsoon (SASM) intensity and SASM onset. It is observed that the TCI considering the Tibetan Plateau and tropical Indian Ocean demonstrates a stronger and closer correlation with SASM intensity (0.87) than either the Tibetan Plateau (0.42) or tropical Indian Ocean (−0.60) singly. It is implied that the TCI could preferably represent the impact of land–sea thermal condition on SASM activity. Further analysis reveals that the evolution of TCI is related to the SASM onset. The TCI is almost always larger in early onset years than it is in late onset years during the period before SASM onset. In addition, the change of the pentad-by-pentad increment of TCI leads the SASM variation. The correlation coefficient between the TCI increment and SASM index reaches a maximum when the TCI increment leads by 15 pentads. The results of this study show that the TCI plays an important role in SASM activities and is a potential indicator for SASM onset forecasting.摘要本文基于1979–2017年逐日再分析资料, 通过分析对流层中上层青藏高原和印度洋之间的热力差异, 提出了一个热力对比指数 (TCI) , 并分析了TCI与南亚夏季风的强度和爆发时间的关系.研究表明:相比单独的青藏高原或者印度洋的温度, TCI能更好地表示南亚夏季风强度的变化.TCI越大时, 南亚夏季风爆发时间越早;TCI逐候增量的变化超前南亚季风指数的变化, 两者相关系数在TCI逐候增量超前南亚季风指数15候时达到最大.TCI是预报南亚夏季风爆发的一个潜在指标.  相似文献   

20.
After its maturity, El Ni?o usually decays rapidly in the following summer and evolves into a La Ni?a pattern. However, this was not the case for the 2018/19 El Ni?o event. Based on multiple reanalysis data sets, the space-time evolution and triggering mechanism for the unusual second-year warming in late 2019, after the 2018/19 El Ni?o event, are investigated in the tropical Pacific. After a short decaying period associated with the 2018/19 El Ni?o condition, positive sea surface temperature anomalies (SSTAs) re-intensified in the eastern equatorial Pacific in late 2019. Compared with the composite pattern of El Ni?o in the following year, two key differences are evident in the evolution of SSTAs in 2019. First, is the persistence of the surface warming over the central equatorial Pacific in May, and second, is the re-intensification of the positive SSTAs over the eastern equatorial Pacific in September. Observational results suggest that the re-intensification of anomalous westerly winds over the western and central Pacific, induced remotely by an extreme Indian Ocean Dipole (IOD) event, acted as a triggering mechanism for the second-year warming in late 2019. That is, the IOD-related cold SSTAs in the eastern Indian Ocean established and sustained anomalous surface westerly winds over the western equatorial Pacific, which induced downwelling Kelvin waves propagating eastward along the equator. At the same time, the subsurface ocean provided plenty of warm water in the western and central equatorial Pacific. Mixed-layer heat budget analyses further confirm that positive zonal advection, induced by the anomalous westerly winds, and thermocline feedback played important roles in leading to the second-year warming in late 2019. This study provides new insights into the processes responsible for the diversity of El Ni?o evolution, which is important for improving the physical understanding and seasonal prediction of El Ni?o events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号