首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The well-known Titius-Bode law (T-B) giving distances of planets from the Sun was improved by Basano and Hughes (1979) who found: $$a_n = 0.285 \times 1.523^n ;$$ a n being the semi-major axis expressed in astronomical units, of then-th planet. The integern is equal to 1 for Mercury, 2 for Venus etc. The new law (B-H) is more natural than the (T-B) one, because the valuen=?∞ for Mercury is avoided. Furthermore, it accounts for distances of all planets, including Neptune and Pluto. It is striking to note that this law:
  1. does not depend on physical parameters of planets (mass, density, temperature, spin, number of satellites and their nature etc.).
  2. shows integers suggesting an unknown, obscure wave process in the formation of the solar system.
In this paper, we try to find a formalism accounting for the B-H law. It is based on the turbulence, assumed to be responsible of accretion of matter within the primeval nebula. We consider the function $$\psi ^2 (r,t) = |u^2 (r,t) - u_0^2 |$$ , whereu 2(r, t) stands for the turbulence, i.e., the mean-square deviation velocities of particles at the pointr and the timet; andu 0 2 is the value of turbulence for which the accretion process of matter is optimum. It is obvious that Ψ2(r n,t0) = 0 forr n=0.285×1.523 n at the birth timet 0 of proto-planets. Under these conditions, it is easily found that $$\psi ^2 (r,t_0 ) = \frac{{A^2 }}{r}\sin ^2 [\alpha log r - \Phi (t_0 )]$$ With α=7.47 and Φ(t 0)=217.24 in the CGS system, the above function accounts for the B-H law. Another approach of the problem is made by considering fluctuations of the potentialU(r, t) and of the density of matter ρ(r, t). For very small fluctuations, it may be written down the Poisson equation $$\Delta \tilde U(r,t_0 ) + 4\pi G\tilde \rho (r,t_0 ) = 0$$ , withU(r, t)=U 0(r)+?(r, t 0 ) and \(\tilde \rho (r,t_0 )\) . It suffices to postulate \(\tilde \rho (r,t_0 ) = k[\tilde U(r,t_0 )/r^2 ](k = cte)\) for finding the solution $$\tilde U(r,t_0 ) = \frac{{cte}}{{r^{1/2} }}\cos [a\log r - \zeta (t_0 )]$$ . Fora=14.94 and ζ(t 0)=434.48 in CGS system, the successive maxima of ?(r,t 0) account again for the B-H law. In the last approach we try to write Ψ(r, t) under a wave function form $$\Psi ^2 (r,t) = \frac{{A^2 }}{r}\sin ^2 \left[ {\omega \log \left( {\frac{r}{v} - t} \right)} \right].$$ It is emphasized that all calculations are made under mathematical considerations.  相似文献   

2.
Sommaire Les lois du mouvement dans une variété riemannienneV 4 peuvent être déduites d'un principe de moindre action. Nous établissons dans cet article l'équivalence des relations ds=0 et dL=-L k dk, où ds 2=L 2 est une métrique riemannienne et d k /dt une fonction homogène de degré 1 des variables dx i/dt qui définit un espace de Weyl. Ce théorème permet de ramener une théorie de jaugen à un principe de moindre action. Il peut être utilisé dans la théorie de la double métrique de Dirac, obtenue en choissant la théorie des grands nombres comme condition de jauge. Une fibration de l'espace physiqueV 3 basée sur le théorème de Huyghens permet de déduire les propriétés dynamiques des particules des propriétés des photons dansV 3, et constitue en ce sens une unification des propriétés dynamiques des particules.
The laws of motion in a RiemannianV 4 manifold can be deduced from the principle of least action. We state in this work the equivalence between the equations ds=0 and dL=-L k dk, where ds 2 =L 2 is the Riemannian metric and d k /dt the homogeneous functions of first degree of the dx i/dt which define a Weylian space. This theorem can then reduce a gauge theory to a principle of least action. It can be used in the double metric theory of Dirac, obtained by means of the Large Number Hypothesis as a gauging condition. A fibration of the physical spaceV 3 based on Huyghens' theorem allows the deduction of the dynamical properties of particles by means of the properties of photons inV 3, and constitutes in this way an unification of the dynamical properties of particles.
  相似文献   

3.
We consider a system of planets defined by a given distribution of mean mean motions and masses: we represent the osculating elliptic elements of their heliocentric orbits by quasi-periodic functions of time, through a method adapted to the commensurability case; these functions are the sum of the general solution of a critical system, expressed in long-period terms, and of a particular solution. As in the B. Brown's method (applied to the galilean satellites), the critical system contains the secular terms, the longperiod terms (great inequalities), and the resonant terms; the particular solution consists of short-period terms only, whose amplitude is an explicit function of the solution of the critical system.If all the long-period terms in the critical system are harmonic of one fundamental term, we can perform a simple change of variables which transforms the critical system in an autonomous one, and thus we reduce the resolution to an eigenvalue problem. Applying that to the galilean satellites of Jupiter and neglecting the solar perturbations, we obtain a differential system with constant coefficients, whose linear part concerns all the variables (including the major-axes and the mean longitudes) and gives, as a first approximation, the great inequalities, the free oscillations and the libration; nevertheless this solution agrees already with known results, but should be improved by taking into account the non-linear parts and the solar terms in a new approximation.

Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980  相似文献   

4.
We study a theory for the ninth satellite of Saturn, Phoebe, based on the literal solution we have obtained in the main problem of the lunar theory.These series were computed by solving, by successive approximations, the Lagrange's equations expressed in variables, functions of the elliptic elements.We may consider the case of Phoebe simpler than a lunar case because we seek less precision (1/10 geocentric) than in the Lunar case, although the eccentricity of Phoebe is stronger.Main problem: our series are computed to the complete seventh order and a great part of the perturbations of the eighth and ninth order, where we have attributed to the small lunar parameters the order 1 tom 0=n/n 0,e 0,e, sin (i 0/2), the order 2 to 0=(a 0/a)((M 1–)/(M 1+M)) and the order 4 toµ 0(a 0/a)M 1 M/M 1 2M 2.In the case of Phoebe,µ 0 equal zero and ±0 is the ratioa 0/a.We study the further development of these series by using, instead of parameterm 0, the quantity m 0=n/n 0m 1 wherem 1 is an approached value ofm 0, in order to accelerate the convergence of the series with respect tom 0.Comparison with a numerical integration we are adjusting a numerical integration to the observations. We have already more than 100 observations, for the period 1900–1957.At first, we compare the series of the main problem to a numerical integration of the Keplerian problem.

Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix. Namur, Belgium, 28–31 July, 1980.  相似文献   

5.
Résumé La rotation de la Lune autour de son centre de gravité est traitée par une méthode analytique, en tenant compte de son mouvement orbital. On développe une théorie Hamiltonienne en utilisant les variables d'Andoyer et l'on démontre que les écarts, purement périodiques, à trois relations de résonances similaires aux lois de Cassini, sont les variables canoniques du problème. Le potentiel est exprimé dans ces nouvelles coordonnées et l'Hamiltonien est développé jusqu'au deuxième degré en les petites variables. Un système d'équations donne le vrai centre de libration qu'on trouve proche du centre défini par les lois de Cassini. Un second système, résolu par un processus d'iterations, donne les séries de la libration, analytiques par rapport aux constantes du potentiel de la Lune et trigonométriques en les arguments de Delaunay. La question de convergence est brièvement abordée, mais sans démonstration.
The rotation of the Moon about its center of mass, taking into account the orbital motion, is treated analytically. A Hamiltonian theory is developed in terms of the Andoyer variables. The periodic parts of departures from three resonances, equivalent to Cassini's laws, are found to be the canonical variables of the problem. The potential is expressed as a function of these new coordinates and the whole Hamiltonian is developed to the second degree in these small variables. One system of equations gives the real center of libration which is found to be near the center defined by Cassini's laws. A second system solved by iterations, gives the libration as analytical series in the constants of the Moon's potential, and trigonometric series in Delaunay arguments. The question of convergence is briefly exposed without any demonstration.


Ce travail a été soutenu par une bourse du Centre National d'Etudes Spatiales.  相似文献   

6.
First, the lines identified on the spectrum region 3060–6100 Å of the Nova Delphini 1967, taken in November 1972, are given. The coronal lines of novae: Herculis 1960, Herculis 1963, Delphini 1967, Serpentis 1970, Scuti 1975, Cygni 1975 have been studied and the observational results of these as well as those obtained for older novae and the recurrent novae RS ophiuchi are given.By studying all the proposed mechanisms for the formation of the coronal lines and the observational results mentioned above, it is found that the shock waves, produced by the collision of the principal envelope with the dusty circumstellar envelope, heat the circumstellar envelope and the heated material then emits the coronal lines.  相似文献   

7.
In non-resonant cases, a constant part coming from the perturbations can be easily separated from the observed mean mean motion, which can be called the perturbed part. An another part created by resonance must be separated from the observed mean motion in the case of the first three Galilean satellites. The determination of it gives better value of the semi-major axis.In this investigation, the analytical process is chosen to avoid a mixture of orders in successive expansions and integrations.The main terms entering in the computation of the libration are the great inequalities of the first three satellites. Each of them is introduced in the development by its eight components; while in Sampson's theory, only the great inequality of Satellite 2 is given by two components.The equations of motion used in this work are derived from Sagnier's theory.

Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   

8.
Sans résumé

Presented at IAU Colloquium No. 9, The IAU System of Astronomical Constants', Heidelberg, Germany, August 12–14, 1970.  相似文献   

9.
The strange non-evidence of the solar-neutrino current by the experiments of DAVIS et al. postulates a fundamental revision of the theory of weak interactions and of its relations to gravitation theory. (We assume that the astrophysical stellar models are not completely wrong.) – Our paper is based on PAULI 's grand hypothesis about the connection between weak and gravitational interactions. According to PAULI and BLACKETT the (dimensionless) gravitation constant is the square of the (dimensionless) FERMI -interaction constant and according to the hypotheses of PAULI, DE BROGLIE , and JORDAN the RIEMANN -EINSTEIN gravitational metric gik is fusioned by the four independent WEYL ian neutrino fields (β-neutrinos and β-antineutrinos, μ-neutrinos and μ-antineutrinos). This fusion gives four reference tetrads hiA(xl) as neutrino-current vectors, firstly. Then, the metric gik is defined by the equation gik = ηAB hiAhηB according to EINSTEIN 's theory of tele-parallelism in RIEMANN ian space-times. The relation of the gravitation field theory to FERMI 's theory of weak interactions becomes evident in our reference-tetrads theory of gravitation (TREDER 1967, 1971). – According to this theory the coupling of the gravitation potential hiA with the matter Tιi is given by a potential-like (FERMI -like) interaction term. In this interaction term two WEYL spinor-fields are operating on the matter-tensor, simultanously. Therefore, the gravitation coupling constant is PAULI 's square of the FERMI -constant. Besides of the fusion of the RIEMANN -EINSTEIN metric gik by four WEYL spinors we are able to construct a conformal flat metric ĝik = ϕ2ηik by fusion from each two WEYL spinors. (This hypothesis is in connection with our interpretation of EINSTEIN 's hermitian field theory as a unified field-theory of the gravitational metric gik and a WEYL spinor field [TREDER 1972].) Moreover, from the reference-tetrads theory is resulting that the WEYL spinors in the “new metric” ĝik are interacting with the DIRAC matter current by a FERMI -like interaction term and that these WEYL spinors fulfil a wave equation in the vacuum. Therefore, we have a long-range interaction with the radiced gravitational constant \documentclass{article}\pagestyle{empty}\begin{document}$ \sqrt {\frac{{tm^2 }}{{hc}}} $\end{document} as a coupling constant. That means, we have a long-range interaction which is 1018 times stronger than the gravitation interaction. – However, according to the algebraic structure of the conform-flat this long-range interaction is effective for the neutrino currents, only. And for these neutrinos the interaction is giving an EINSTEIN -like redshift of its frequences. The characteristic quantity of this “EINSTEIN shift” is a second gravitation radius â of each body: N = number of baryons, m = mass of a baryon.) This radius â is 1018 times larger than the EINSTEIN -SCHWARZSCHILD gravitation radius a = fM/c2: But, this big “weak radius” â has a meaning for the neutrinos, only.–The determination of the exterior and of the interior “metrics” ĝik is given by an “ansatz” which is analogous to the ansatz for determination of strong gravitational fields in our tetrads theory. That is by an ansatz which includes the “self-absorption” of the field by the matter. For all celestial bodies the “weak radius” â is much greater than its geometrical dimension. Therefore, a total EINSTEIN redshift of the neutrino frequences v is resulting according to the geometrical meaning of our long-range weak interaction potential ĝik = ϕ2ηik. That means, the cosmic neutrino radiation becomes very weak and unable for nuclear reactions. Theoretically, our hypothesis means an ansatz for unitary theory of gravitation and of weak interaction. This unitary field theory is firstly based on EINSTEIN 's hermitian field theory and secondly based on our reference-tetrads theory of gravitation.  相似文献   

10.
11.
Résumé Nous appliquons la méthode des transformations canoniques à variables imposées à la réduction du problème newtonien des quatre corps. L'élimination du centre de gravité étant supposée faite, le problème est ramené à celui des trois corps fictifs. Alors nous menons à bien la réduction dûe aux intégrales des aires explicitement sous forme Hamiltonienne en tenant compte de l'aspect géométrique d'élimination des noeuds préconisé par Jacobi.Nous nous imposons trois fonctions comme nouvelles variables: la troisième intégrale des aires et deux fonctions in variantes; ces deux dernières fonctions resteront nulles lorsque nous prendrons comme troisième axe de coordonnées l'axe défini par le moment cinétique des quatre corps; elles sont choisies en involution avec la troisième intégrale des aires et de crochet un entre elles. Cela nous conduit à déterminer un système de quatorze variables canoniques que nous interprétons géométriquement. Il y a effectivement élimination des moeuds: il s'introduit un pseudo-noeud commun aux deuxième et troisième corps fictifs qui concide avec le noeud du premier corps fictif; ces noeud et pseudo-noeud sont repérés par un paramètre ignorable.
Elimination of nodes in the Newtonian four-body problem
We apply the method of canonical trasformations with imposed variables to the reduction of the Newtonian four-body problem. After the elimination of the center of gravity, the problem is reduced to that of three fictitious bodies. Then we proceed to the actual reduction using the integrals of angular momentum, in Hamiltonian formulation, and considering the geometrical aspects of the elimination of the nodes advocated by Jacobi.We impose three functions as new variables: the third integral of angular momentum and two invariant functions; these last two functions will remain null when we take as third coordinate axis the axis, defined by the momentum vector of the four bodies; they are chosen in involution with the third integral of momentum and so that their Poisson bracket is equal to one. Then we determine a system of fourteen canonical variables which have a simple geometrical interpretation. It is an actual elimination of the nodes: a pseudonode for the second and third fictitious bodies is introduced which coincides with the node of the first fictitious body; the node and the pseudo-node are referred to by an ignorable parameter.
  相似文献   

12.
To overcome a possible magnitude equation a weakly refracting prism fitted on the correcting plate of the Tautenburg Schmidt telescope was used, forming a secondary image of every object 3.8 mag weaker than the primary one. Because the distances between these two images are not constant, a polynomial was searched which could reflect these variation in dependence on the magnitude of a star and its position on the plate. For each of the 11 plates tested we have got another polynomial, therefore this way to tide over large magnitude differences is unefficient for astrometric investigations.  相似文献   

13.
Concerning the analytic evaluation of reaction rates we propose to use the integration theory of special functions and show for the special case of thermonuclear reactions in non-degenerate, nonrelativistic plasma that the non-resonant reaction rate can be evaluated in closed form by means of generalized hypergeometric functions. In connection with these closed-form results one can give differential and functional relations and series expansions. Also approximation considerations can be performed.  相似文献   

14.
It is shown that a rigourous determination of the argument in the limb charts of the Moon leads to a limb correction which, in some cases, may differ perceptibly from the one obtained by the traditional method. In the case of central occultations, the discrepancy may reach a maximum of 0″.9 when the Moon is near its maximum or minimum declination and introduces a statistical uncertainty of 0″.2 in the determination of the position of the Moon.  相似文献   

15.
Résumé Dans cet article nous étudions, dans un premier temps, la réduction des équations du mouvement du problème plan des 3 corps en introduisant le groupe des similitudes planes dans la 1-forme de Poincaré. Ceci permet de dégager le cas des trajectoires de moment cinétique nul et d'énergie nulle. Nous envisageons ensuite la réduction du problème dans l'espace en établissant un lien remarquable avec le problème plan.
In this article we first of all study the reduction of the equations of movement of the planar three body problem through the introduction of the group of similitude in Poincare's 1-form. This brings out the case of trajectories with zero angular momentum and zero energy. We then consider the reduction of the problem in space by establishing a remarkable link with the planar problem.


Proceedings of the Sixth Conference on Mathematical methods in Celestial Mechanics held at Oberwolfach (West Germany) from 14 to 19 August, 1978.  相似文献   

16.
The photoelectric measurements of the Ap star HD 219 749 were analysed. With different methods we have estimated the true period of light variation to P = 1.61883 days. The other periods which are given in the literature could excluded uncertainless.  相似文献   

17.
18.
Sommaire L'auteur se propose d'établir une formulation générale non relativiste des décalages spectraux à partir d'une méthode variationnelle.Le premier pas consiste à établir pour l'espace euclidien 3 une formulation duale de l'effet Doppler-Fizeau et à montrer que celle-ci peut s'interpréter comme un principe de moindre action. Nous faisons ressortir dans ce cas les hypothèses utilisées: isotropie de l'espace et uniformité du temps appliquées à un système lagrangien. Une telle façon d'opérer nécessite l'utilisation du groupe d'isométries de 3, la comparaison des trajectoires naturelle et variée ne pouvant s'effectuer qu'au voisinage de l'observateur. Dans le cas où le groupe d'isométries de 3 ne peut être utilisé, il y a surestimation systématique des décalages spectraux observés.La seconde étape est d'assimiler l'espace physique à une variété riemannienneV 3 et à montrer que le temps peut être défini à partir des géodésiques de cette variété. Cela est possible en assimilant. pour un observateur donné, les surfaces isochrones (t) à une variété quotientV 2 telle queV 3 =V 2 ×R. Cela implique l'existence de trajectoiresnon naturelles passant par deux points donnés deV 3, de longueurs plus petites que celles des géodésiques riemanniennes correspondantes. D'où l'existence d'un temps propre local, mesuré le long des géodésiques, variable d'un point à l'autre selon les différences de symétries de l'espace au voisinage de ces points.Nous pouvons alors considérer dans un troisième temps l'espace physique comme un système lagrangien nanti de temps propres uniformes et tels que l'on passe du lagrangienG, définissant les conditions de symétries de la variétéV 3, au lagrangien local G par une transformation conforme. Si l'on suppose que la fonction de transformationF(x,t) varie très lentement avec x ett, on est conduit à une relation entre les temps propres de deux points quelconques deV 3.L'application d'un principe de moindre action, avec ces hypothèses permet alors une formulation non relativiste des décalages spectraux, contenant à la fois l'effet Doppler-Fizeau, un effet gravitationnel et un effet cosmologique. On peut alors considérer l'effet Doppler-Fizeau comme résultant d'un principe de Fermat généralisé.
The aim of the author has been to establish a non-relativistic general formulation for the shift of spectral lines by means of a variational method.As a first step, we establish a dual formulation of the Doppler-Fizeau effect for Euclidean space 3, and we show this can be interpreted as a principle of least action. In this case, the hypothesis can be clearly exhibited: isotropy of space and uniformity of time applied toaa Lagrangian system. The use of the isometries group of 3 is required, since the comparison with the fiducial trajectory can be done only near the observer. A systematic overvaluation appears when incorrect use of this groups is made.The second step consists of an identification of the physical space with a Riemannian manifoldV 3. The time can be defined by means of geodesics ofV 3. This can be done by taking an isochronic surface (t) as aV 2 quotient manifold such asV 3 =V 2 ×R. This implies the existence ofnonnatural trajectories of less extent than the corresponding geodesics. From that, we deduce the existence of a local proper time, measured along geodesics, which depends on the local conditions of symmetry.In a third step, we can consider the physical space as a Lagrangian system with uniform proper time allowing us to proceed from LagrangianG, describing the symmetry conditions of theV 3 manifold, to a local Lagrangian G by means of a conformal transformation. If the transformation functionF(x,t) is supposed to be slowly variable with x andt, a relation between the proper times of any two points in the manifold can be found.With this hypothesis, the application of the principle of stationary action leads to a nonrelativistic formulation for shifts of spectral lines including, at the same time, the Doppler-Fizeau effect, the gravitational effect, and the cosmological effect. In this case, we can consider the Doppler-Fizeau effect as the result of a generalised Fermat principle.
  相似文献   

19.
The distribution of the Martian clouds observed at Hamburg Observatory during the oppositions 1948, 1958, 1963, 1965 and 1967 is graphically displayed. The number of clouds per degree longitude shows a positive correlation with the 21°.5 North radar-altitude.  相似文献   

20.
The VSOP82 and TOP82 theories intend to represent the motion of planets, with a satisfactory accuracy, over an interval of 1000 years from and after J2000.0. The precision of the newtonian part of the solutions for the system of the sun and eight point masses is given in table 1. We present the construction of complements in order to keep this accuracy over one thousand years for the real motion: the relativistic perturbations, the perturbations by the minor planets, the perturbations by the Moon. Besides, we have undertaken the improvement of the solutions through lengthening the interval of validity up to six thousand years from and after J2000.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号