首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
魏浩 《地质与勘探》2015,51(2):283-394
阿拉伯-努比亚地盾(Arabian Nubian Shield,简称ANS)是900~550Ma期间冈瓦纳超大陆汇聚过程中形成的增生造山带,这一造山过程也被称为是泛非造山运动。它记录了一个长期的造山演化历史,经历了从大洋俯冲、岛弧形成及弧后的岩浆作用到大陆板块碰撞地体的拼合,再到新生地壳的逃逸构造、走滑剪切、张性断裂一系列的构造演化过程。这个演化可以分为四个阶段:(1)洋盆形成阶段(870~800 Ma);(2)洋壳俯冲阶段(800~670 Ma);(3)造山阶段(750~550 Ma);(4)后造山阶段(550 Ma~三叠纪),其中后三个阶段都有金的富集成矿作用。洋壳俯冲阶段的金矿化主要赋存在Algoma型含铁建造层(BIF)、凝灰质变质碎屑岩,以及火山成因的块状硫化物矿床内。造山阶段的主要金矿化类型为含金石英-碳酸盐脉状金矿化、与斑岩铜矿化有关的金矿化,以及与辉长岩类岩体有关的含金石英脉状矿化。与后造山阶段有关的金矿化以少量浸染状、网脉状并伴有Sn-W-Ta-Nb矿化的石英脉为特征。目前在ANS中发现了大量金矿床或矿点,它们具有各种不同的成因类型。根据构造背景及赋矿围岩,ANS原生金矿化可以划分为三类:(1)与火山沉积序列有关的金矿化,包括VMS型、浅成热液型;(2)空间分布上与碳酸盐化蛇绿岩带相关的金矿化;(3)与后造山或造山晚期闪长岩-花岗岩岩体或次火山岩有关的金矿化。  相似文献   

2.
The Younger Granites of Yahmid-Um Adawi area, located in the southeastern part of Sinai Peninsula, comprise two coeval Late Neoproterozoic post-collisional alkaline (hypersolvous alkali-feldspar granites; 608–580?Ma) and calc-alkaline (transsolvous monzo- and syenogranites; 635–590?Ma) suites. The calc-alkaline suite granitoids are magnesian and peraluminous to metaluminous, whereas the alkaline ones are magnesian to ferroan alkaline to slightly metaluminous. Both granitoid suites exhibit many of the typical geochemical features of A-type granites such as enrichment in Nb (>20?ppm), Zr (>250?ppm), Zn (>100?ppm) and Ce (>100?ppm) and high 10000*Ga/Al2O3 ratios (>2.6) and Zr?+?Nb?+?Y?+?Ce (>350?ppm). Accessory mineral saturation thermometers demonstrated former crystallization of apatite at high temperatures prior to zircon and monazite separation from the magma for both granitoid suites. The mild zircon saturation temperatures of the studied Younger Granites (around 800?°C) imply low-temperature crustal fusion and incomplete melting of the largely refractory zircon. The two Younger Granite suites were semi-synchronously evolved during the post-collisional stage of the Arabian-Nubian Shield subsequent to the collision between the juvenile shield crust and the older pre-Neoproterozoic continental blocks of west Gondwana. Their parental magmas has been generated by melting of crustal source rocks with minor involvement from mantle, which might participated chiefly as a source of heat necessary for fusion of the crustal precursor. Extensive in-situ gamma-ray spectrometry revealed anomalously high radioactivity of some Younger Granite exposures along Wadi Um Adawi (eU; 388–746?ppm and eTh; 1857–2527?ppm) and pegmatitic pockets pertaining to the calc-alkaline suite (equivalent U and Th; 212–252?ppm and 750–1757?ppm, respectively). The radioactivity of the syngenetic pegmatites arises from the primary radioactive minerals uranothorite and thorite together with the U- and/or Th-bearing minerals zircon, columbite, samarskite and monazite. The anomalously high radioactivity of some Younger Granite exposures in Wadi Um Adawi stem from their appreciable enclosure of the epigenetic uranium minerals metatorbenite and uranophane.  相似文献   

3.
The evolution of a Pan‐African (c. 900–550 Ma) suite of composite dikes, with latite margins and rhyolite interiors, from southwest Jordan is discussed. The dikes cut the Neoproterozoic calc‐alkaline granitoids and high‐grade metamorphic rocks (c. 800–600 Ma) of the northern Arabian‐Nubian Shield in Jordan and have been dated by the Rb‐Sr isochron method at 566±7 Ma. The symmetrically distributed latite margins constitute less than one‐quarter of the whole dike thickness. The rhyolite intruded a median fracture within the latite, while the latter was still hot but completely solidified. The dikes are alkaline and bimodal in composition with a gap in SiO2 between 61 and 74 wt%. Both end members display similar chondrite‐normalized rare earth element patterns. The rhyolites display the compositional signature of A‐type granites. The (La/Lu)N values are 6.02 and 4.91 for latites and rhyolites, respectively, and the rhyolites show a pronounced negative Eu anomaly, in contrast to the slight negative Eu anomaly of the latites. The chemical variability (e.g. Zr/Y, Zr/Nb, K/Rb) within and between latites and rhyolites does not support a fractional crystallization relationship between the felsic and mafic members of the dikes. We interpret the magma genesis of the composite dikes as the result of intrusion of mantle‐derived mafic magma into the lower crust in an extensional tectonic regime. The mafic magma underwent extensive fractional crystallization, which supplied the necessary heat for melting of the lower crust. The products of the initial stages of partial melting (5–10%) mixed with the fractionating mafic magma and gave rise to the latite melts. Further partial melting of the lower crust (up to 30%) produced a felsic melt, which upon 50% fractional crystallization (hornblende 15%, biotite 5%, feldspars 60%, and quartz 20%) gave rise to the rhyolitic magma. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Altered crystalline rocks occur at the peneplain exposed in southern Israel and in other localities across North Africa and Arabia where they underlie an extensive blanket of Cambro–Ordovician sandstones. This study focuses on the petrography, mineralogy and geochemistry of top basement rocks of the northern Arabian‐Nubian Shield. The altered rocks are shown to be weathering profiles that can be subdivided into three horizons interpreted as apparently unweathered granite, or saprock, which grades upwards to a saprolite, topped by a thin clayey plasmic zone. The plasmic zone is enriched in iron and aluminium and is depleted in silicon, calcium, magnesium and potassium relative to the underlying saprolite. The chemical index of alteration increases upward, but does not exceed 90 and, therefore, lags behind values observed in strongly leached present‐day tropical soils. Petrographic examinations reveal iron mobility under local fluctuating redox conditions, similar to modern and Proterozoic soils. A variety of birefringence fabrics induced by shrinkage and expansion of clays during wetting and drying cycles and clay illuviation strongly indicate pedogenic processes rather than a post‐depositional alteration. Illite and ordered illite‐smectite phases coexist with smectitic illite‐smectite in the lower part of the saprolite and with kaolinite in the plasmic zone, in line with increasing chemical index of alteration. Observations are in accordance with the current profile being a remnant of a thick weathering profile whose top was truncated by fluvial incision just prior to deposition of the overlying Early Cambrian sequence. A previously documented Devonian thermal event reaching temperatures of at least 200°C overprinted the studied rocks. During burial diagenesis, illitization affected original smectite rather than kaolinite. However, in spite of the elevated temperatures, illitization was incomplete implying restricted potassium addition. The sub‐Cambrian weathering reflects warm and humid conditions in a tropical or sub‐tropical climate, in line with several plate reconstructions placing Israel at low latitudes during Cambrian time.  相似文献   

6.
Geochemical, isotopic and age constraints support a comagmatic origin for Ghuweir Mafics and the Feinan A-type granites. The two rocks types, named collectively in this paper as the Feinan Ghuweir Magmatic Suite (FGMS), formed between 556 and 572 Ma ago according to Rb-Sr whole-rock dating. FGMS has low Sr initial ratios, which preclude a significant contribution of much older crust in the magma genesis.The FGMS has a wide range of silica contents, with a gap at 55-65 wt% SiO2. It has a transalkaline to alkaline character; belongs to the medium to high K calc-alkaline series; it ranges from metaluminous to mildly peraluminous character and belongs to the alkali and alkali-calcic series. The Feinan granites and the Ghuweir rhyolites and rhyodacites are classified as A-type granites and belong to group A2 of Eby [Eby, N.G., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic iplications. Geology 20, 641-644].According to geochemical modeling the Ghuweir Mafics were derived from a subduction modified lithospheric mantle by 10% batch modal partial melting of a phlogopite-bearing spinel lherzolite. The intra-suite geochemical variations can be ascribed to fractional crystallization of olivine, pyroxene, and plagioclase. The accumulation of apatite in the most evolved samples is responsible for the high concentrations of REE.The Feinan granites and the Ghuweir rhyolites and rhyodacites were derived from the mafic magma by the fractional crystallization of ≈78% of the original magma to the mineral assemblage olivine+pyroxene+plagioclase+magnetite. The intra-suite geochemical variations in the Feinan A-type granites are due to the fractional crystallization of the mineral phases: amphibole +Na and K-feldspar+apatite +magnetite+zircon+allanite.The FGMS correlates with time-equivalent rocks in many parts of the Arabian-Nubian Shield and the surrounding areas.  相似文献   

7.
Gold mineralization in the Eastern Desert of Egypt is confined, almost completely, to the basement rocks of the Nubian Shield that was cratonized during the Panafrican orogeny.Island-arc, orogenic and post-orogenic stages are indicated for the tectonic-magmatic evolution of the Nubian Shield in Late Proterozoic times. Different styles of gold mineralization recognised in the Eastern Desert are inferred to have developed during these stages.In the island-arc stage, which is characterized by volcanic and volcaniclastic rocks in an ensimatic environment, gold mineralization is hosted in stratiform to strata-bound Algoma-type BIF and associated tuffaceous sedimentary rocks. Both types represent exhalative deposits, formed during breaks in sub-marine basaltic and bastalic–andesite volcanic eruptions. The volcanic rocks have a tholeiitic affinity and reflect an immature arc stage. Gold hosted in massive-sulphide deposits within calc-alkaline rhyolites represents another style of gold mineralization connected with mature island arc stage.During the orogenic-stage, ophiolites and island arc volcanic and volcaniclastic rocks were thrust onto the Pre-Panafrican continental margin. Subduction was active beneath the continent while the thrusting was still operative. A phase of calc-alkaline magmatic activity developed during this stage and the compressional deformation event was synchronous with regional metamorphism (greenschist–amphibolite facies). Extensional shear fractures (brittle–ductile shear zones) were broadly contemporaneous with the intense compressional tectonic regime. These fractures opened spaces in which the mineralizing fluids penetrated.Gold mineralization associated with the orogenic-stage is represented by vein-type mineralization that constituted the main target for gold since Pharaonic times. Other styles of gold mineralization during this stage are represented by altered ophiolitic serpentinites (listwaenites), Gold mineralization associated with intrusion related deposits (possibly porphyry copper deposits), as well as, auriferous quartz veins at the contacts of younger gabbros and G-2 granites.The post-orogenic stage is characterized by the dominance of intra-plate magmatism. Small amounts of the element in disseminations, stockworks and quartz veins of Sn–W–Ta–Nb mineralization represent gold mineralization connected with this stage.The link between these tectonic–magmatic stages and gold mineralization can be used as a criterion at any exploration strategy for new targets of gold mineralization in Egypt.  相似文献   

8.
The voluminous Pan-African calc-alkaline granitic suite of the Ras Gharib crustal segment in northeastern Eygpt provides a typical example of orogenic magmatism. The 552 ± 7 Ma-old granodiorite–adamellite and leucogranite suite is compositionally broad (58 to 77 wt.% SiO2) and exhibits calc-alkaline geochemical trends and trace-element characteristics typical of the volcanic-arc granites. The rocks contain oligoclase, albite, K-feldspar, calcic amphibole, biotite, titanite, zircon, and magnetite. The suite exhibits typical features characteristic of I-type granites. We contend that the magma was formed by partial melting of a modified oceanic crust at an active continental margin during the late stage of the Pan-African orogeny. The process may have involved assimilation of Early Pan-African dioritic country rocks. The more felsic units were produced by progressive fractionation of that magma. The petrological–geochemical evidence suggest that the Pan-African crust in northeastern Egypt did not develop in an extensional tectonic regime, as proposed recently.  相似文献   

9.
The Jabal Al-Hassir ring complex is located between latitudes 19°21′ and 19°42′ N,  and longitudes 42°55′ and 4312′ E, Southern Arabian Shield. It is an alkaline to highly fractionated calc-alkaline granite complex consisting of an inner core of biotite granite followed outward by porphyritic sodic-calcic amphibole (ferrobarroisite) granite. U–Pb zircon geochronology indicates that the Jabal Al-Hassir ring complex was emplaced at ca. 620 Ma. The granites display highly fractionated geochemical features (i.e., Eu/Eu* = 0.05–0.35; enrichment of K, Rb, Th, U, Zr, Hf, Y and REE; depletion of Ta, Nb, Ba, Sr, P, Eu, and Ti). Jabal Al-Hassir granites are post-collisional plutonic rocks and contain abundant microcline perthite and sodic-calcic amphibole, sharing the petrological and chemical features of A2-type granites. Sri values range from 0.70241 to 0.70424, are similar to those expected for magmas extracted from a Neoproterozoic depleted source and much lower than what would be expected, if there was minor involvement of pre-Neoproterozoic continental crust. The geochemical characteristics indicate that their magma was most plausibly represented by partial melting of juvenile lower crust following the collision between East and West Gondwana at the final stage of the Arabian Shield evolution. The data presented in this study are therefore consistent with an intraplate, post-collisional magmatism formed at the beginning of a transition from convergent to extensional tectonics.  相似文献   

10.
The Tertiary granitic intrusive body(~21 Ma) of the Jabal Sabir area was emplaced during the early stages of the Red Sea opening.This intrusive body occupies the southern sector of Taiz City.It is triangular in shape,affected by two major faults,one of which is in parallel to the Gulf of Aden,and the other is in parallel to the eastern margin of the Red Sea coast.The petrogenesis of such a type of intrusion provides additional information on the origin of the Oligo-Miocene magmatic activity in relation to the rifting tectonics and evolution of this part of the Arabian Shield.The granitic body of Jabal Sabir belongs to the alkaline or peralkaline suite of A-type granites.It is enriched in the REE.The tight bundle plot of its REE pattern reflects neither tectonism nor metamorphism.This granite body is characterized by high alkali(8.7%-10.13%),high-field strength elements(HFSE),but low Sr and Ba and high Zn contents.The abundance of xenoliths from the neighboring country rocks and prophyritic texture of the Jabal Sabir granite body indicate shallow depths of intrusion.The major and trace elements data revealed a fractional crystallization origin,probably with small amounts of crustal contamination.It is interpreted that the Jabal Sabir intrusion represents an anorogenic granite pertaining to the A-type,formed in a within-plate environment under an extensional tectonic setting pertaining to rift-related granites.  相似文献   

11.
The vorticity analysis technique was applied to measure the different lithological units,such as schist,metagranite and metavolcano-sedimentary rocks,which are present in the Halaban region.This work aims to interpret the relationship between the different lithologies and the tectonic setting,in order to elucidate the nature of kinematic analysis in the Halaban region.The kinematic analyses were applied to feldspar porphyroclasts,quartz and hornblende for twentysix samples.The kinematic vorticity number (W_m) for deformed rocks in the study area ranged from~0.6 to 0.9.The direction of the long axes for finite strain data (X axes) revealed a WNW trend with shallow dipping.The direction of the short axes for finite strain data (Z axes) were represented by vertical with associated horizontal foliation.The results of the kinematic vorticity and strain analyses are characterized by simple shear with different degrees of deformation in the Halaban region.Furthermore,our finite strain data shows no significant volume change during deformation.The subhorizontal foliation was synchronized with thrusting and deformation.Furthermore,throughout the overlying nappes,the same attitudes of tectonic contacts are observable,the nappes in the orogens being formed from simple shear deformation.  相似文献   

12.
The Transcaucasian Massif (TCM) in the Republic of Georgia includes Neoproterozoic–Early Cambrian ophiolites and magmatic arc assemblages that are reminiscent of the coeval island arc terranes in the Arabian–Nubian Shield (ANS) and provides essential evidence for Pan-African crustal evolution in Western Gondwana. The metabasite–plagiogneiss–migmatite association in the Oldest Basement Unit (OBU) of TCM represents a Neoproterozoic oceanic lithosphere intruded by gabbro–diorite–quartz diorite plutons of the Gray Granite Basement Complex (GGBC) that constitute the plutonic foundation of an island arc terrane. The Tectonic Mélange Zone (TMZ) within the Middle-Late Carboniferous Microcline Granite Basement Complex includes thrust sheets composed of various lithologies derived from this arc-ophiolite assemblage. The serpentinized peridotites in the OBU and the TMZ have geochemical features and primary spinel composition (0.35) typical of mid-ocean ridge (MOR)-type, cpx-bearing spinel harzburgites. The metabasic rocks from these two tectonic units are characterized by low-K, moderate-to high-Ti, olivine-hypersthene-normative, tholeiitic basalts representing N-MORB to transitional to E-MORB series. The analyzed peridotites and volcanic rocks display a typical melt-residua genetic relationship of MOR-type oceanic lithosphere. The whole-rock Sm–Nd isotopic data from these metabasic rocks define a regression line corresponding to a maximum age limit of 804 ± 100 Ma and εNdint = 7.37 ± 0.55. Mafic to intermediate plutonic rocks of GGBC show tholeiitic to calc-alkaline evolutionary trends with LILE and LREE enrichment patterns, Y and HREE depletion, and moderately negative anomalies of Ta, Nb, and Ti, characteristic of suprasubduction zone originated magmas. U–Pb zircon dates, Rb–Sr whole-rock isochron, and Sm–Nd mineral isochron ages of these plutonic rocks range between  750 Ma and 540 Ma, constraining the timing of island arc construction as the Neoproterozoic–Early Cambrian. The Nd and Sr isotopic ratios and the model and emplacement ages of massive quartz diorites in GGBC suggest that pre-Pan African continental crust was involved in the evolution of the island arc terrane. This in turn indicates that the ANS may not be made entirely of juvenile continental crust of Neoproterozoic age. Following its separation from ANS in the Early Paleozoic, TCM underwent a period of extensive crustal growth during 330–280 Ma through the emplacement of microcline granite plutons as part of a magmatic arc system above a Paleo-Tethyan subduction zone dipping beneath the southern margin of Eurasia. TCM and other peri-Gondwanan terranes exposed in a series of basement culminations within the Alpine orogenic belt provide essential information on the Pan-African history of Gondwana and the rift-drift stages of the tectonic evolution of Paleo-Tethys as a back-arc basin between Gondwana and Eurasia.  相似文献   

13.
ABSTRACT

The dismembered ophiolites in Wadi Arais area of the south Eastern Desert of Egypt are one of a series of Neoproterozoic ophiolites found within the Arabian–Nubian Shield (ANS). We present new major, trace, and rare earth element analyses and mineral composition data from samples of the Wadi Arais ophiolitic rocks with the goal of constraining their geotectonic setting. The suite includes serpentinized ultramafics (mantle section) and greenschist facies metagabbros (crustal section). The major and trace element characteristics of the metagabbro unit show a tholeiitic to calc-alkaline affinity. The serpentinized ultramafics display a bastite, or less commonly mesh, texture of serpentine minerals reflecting harzburgite and dunite protoliths, and unaltered relics of olivine, orthopyroxene, clinopyroxene, and chrome spinel can be found. Bulk-rock chemistry confirms harzburgite as the main protolith. The high Mg# (91.93–93.15) and low Al2O3/SiO2 ratios (0.01–0.02) of the serpentinized peridotite, together with the high Cr# (>0.6) of their Cr-spinels and the high NiO contents (0.39–0.49 wt.%) of their olivines, are consistent with residual mantle rocks that experienced high degrees of partial melt extraction. The high Cr# and low TiO2 contents (0.02–0.34 wt.%) of the Cr-spinels are most consistent with modern highly refractory fore-arc peridtotites and suggest that these rocks probably developed in a supra-subduction zone environment.  相似文献   

14.
Aeromagnetic data covering an area of about 40,000 km2 at the west central Arabian Shield, Saudi Arabia has been collected and interpreted to provide structural map of the area. A number of normalized derivatives were used to help interpret the signature of magnetic data so that weak and small amplitude anomalies can be amplified relative to the stronger and larger amplitude anomalies. The interpretations obtained from these geophysical techniques of the field data demonstrated a strong correlation between magnetic anomalies and mapped subsurface geology. Based upon the variation in magnetic lineaments, shape amplitude, and trend structural map of the west central Arabian Shield on Saudi Arabia were obtained.  相似文献   

15.
东南沿海晚白垩世火山岩浆活动特征及其构造背景   总被引:13,自引:2,他引:13  
东南沿海晚白垩世火山岩浆活动微弱,研究程度不高,但构造意义重要。对浙闽沿海晚白垩世小雄组和石牛山组火山岩及其共生侵入岩类进行了较系统研究。测得小雄破火山中央侵入相正长斑岩和石牛山破火山中央侵入相正长花岗斑岩的锆石年龄分别为87.9±1.2Ma和93.8±1.3Ma;岩石学和地球化学特征表明,小雄组和石牛山组火山岩及其共生侵入岩类均属后造山A型花岗质岩类,它们是在东南沿海巨型白垩纪A型花岗岩带主体形成之后、岩石圈进一步强烈伸展的背景下形成的,是区域中生代最晚期的酸性火山岩浆活动产物,标志着燕山造山过程最终结束于约90Ma。  相似文献   

16.
Post-collisional alkaline magmatism (∼610–580 Ma) is widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield (ANS), i.e. the northern part of the Egyptian Eastern Desert and Sinai. Alkaline rocks of G. Tarbush constitute the western limb of the Katharina ring complex (∼593 ± 16 Ma) in southern Sinai. This suite commenced with the extrusion of peralkaline volcanics and quartz syenite subvolcanics intruded by syenogranite and alkali feldspar granite. The mineralogy and geochemistry of these rocks indicate an alkaline/peralkaline within-plate affinity. Quartz syenite is relatively enriched in TiO2, Fe2O3, MgO, CaO, Sr, Ba and depleted in SiO2, Nb, Y, and Rb. The G. Tarbush alkaline suite most likely evolved via fractionation of mainly feldspar and minor mafic phases (hornblende, aegirine) from a common quartz syenite parental magma, which formed via partial melting of middle crustal rocks of ANS juvenile crust. Mantle melts could have provided the heat required for the middle crustal melting. The upper mantle melting was likely promoted by erosional decompression subsequent to lithospheric delamination and crustal uplift during the late-collisional stage of the ANS. Such an explanation could explain the absence or scarce occurrence of mafic and intermediate lithologies in the abundant late- to post-collisional calc-alkaline and alkaline suites in the northern ANS. Moreover, erosion related to crustal uplift during the late-collision stage could account for the lack or infrequent occurrence of older lithologies, i.e. island arc metavolcanics and marginal basin ophiolites, from the northern part of the ANS.  相似文献   

17.
The widely distributed late‐collisional calc‐alkaline granitoids in the northern Arabian–Nubian Shield (ANS) have a geodynamic interest as they represent significant addition of material into the ANS juvenile crust in a short time interval (∼630–590 Ma). The Deleihimmi granitoids in the Egyptian Central Eastern Desert are, therefore, particularly interesting since they form a multiphase pluton composed largely of late‐collisional biotite granitoids enclosing granodiorite microgranular enclaves and intruded by leuco‐ and muscovite granites. Geochemically, different granitoid phases share some features and distinctly vary in others. They display slightly peraluminous (ASI = 1–1.16), non‐alkaline (calc‐alkaline and highly fractionated calc‐alkaline), I‐type affinities. Both biotite granitoids and leucogranites show similar rare earth element (REE) patterns [(La/Lu)N = 3.04–2.92 and 1.9–1.14; Eu/Eu* = 0.26–0.19 and 0.11–0.08, respectively) and related most likely by closed system crystal fractionation of a common parent. On the other hand, the late phase muscovite granites have distinctive geochemical features typical of rare‐metal granites. They are remarkably depleted in Sr and Ba (4–35 and 13–18 ppm, respectively), and enriched in Rb (381–473 ppm) and many rare metals. Moreover, their REE patterns show a tetrad effect (TE1,3 = 1.13 and 1.29) and pronounced negative Eu anomalies (Eu/Eu* = 0.07 and 0.08), implying extensive open system fractionation via fluid–rock interaction during the magmatic stage. Origin of the calc‐alkaline granitoids by high degree of partial melting of mafic lower crust with subsequent crystal fractionation is advocated. The broad distribution of late‐collisional calc‐alkaline granitoids in the northern ANS is related most likely to large areal and intensive lithospheric delamination subsequent to slab break‐off and crustal/mantle thickening. Such delamination caused both crustal uplift and partial melting of the remaining mantle lithosphere in response to asthenospheric uprise. The melts produced underplate the lower crust to promote its melting. The presence of microgranular enclaves, resulting from mingling of mantle‐derived mafic magma with felsic crustal‐derived liquid, favours this process. The derivation of the late‐phase rare‐metal granites by open system fractionation via fluid interaction is almost related to the onset of extension above the rising asthenosphere that results in mantle degassing during the switch to post‐collisional stage. Consequently, the switch from late‐ to post‐collisional stage of crustal evolution in the northern ANS could be potentially significant not only geodynamically but also economically. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The southern Midyan terrane is a composite Tonian to Ediacaran tectonostratigraphic crustal block in the northern Arabian Shield that prior to Red Sea opening was contiguous with coeval rocks in the Eastern Desert of Egypt and Sinai. Ion microprobe (sensitive high-resolution ion microprobe [SHRIMP]) dating of 12 rock samples described here and the results of other dating programmes establish a clear timeframe for depositional, intrusive, and structural events in the region and provide a chronology of tectonism in this part of the Arabian-Nubian Shield. Deposition of Zaam and Bayda group volcanosedimentary rocks and emplacement of mafic-ultramafic complexes and TTG-type diorite, tonalite, and granodiorite denote formation of the Tonian (780–715 Ma) Zaam arc and fore-arc ophiolite above a possible west-dipping subduction system in the southern part of the Midyan terrane. Convergence with the Hijaz terrane farther south and obduction of ophiolite nappes resulted by ~700 Ma in development of the Yanbu suture. Ongoing or a new subduction system led to a ~705–660 Ma Cryogenian pulse of magmatism represented by I-type calc-alkaline diorite, granodiorite, and granite that have volcanic-arc and syn-collisional granite affinities. This was followed, after a brief end-Cryogenian hiatus, by a 635–~570 Ma period of Ediacaran magmatism marked by monzogranite, syenogranite, and minor gabbro and diorite. These rocks are reported to have within-plate to volcanic-arc and syncollision chemical characteristics but their precise tectonic setting is uncertain. Structurally, the intrusions are diapiric and were evidently emplaced in an extensional regime consistent with an overlap between intrusion and Najd faulting associated, at this time, with transpressional collision and northward extension through much of the ANS. Terminal magmatism in the southern Midyan terrane postdated cessation of Najd faulting at ~575 Ma and resulted in the emplacement of undeformed within-plate A-type alkali-feldspar granites and mafic (lamprophyre) and felsic dikes.  相似文献   

19.
陈永福 《地质与勘探》2014,50(Z1):1248-1256
吉黑东部金矿床集中分布于小兴安岭北麓、完达山和太平岭(东宁-延边),矿床类型以斑岩型-浅成低温热液型矿床为主。成矿年代大约为110 Ma左右。稳定同位素显示成矿流体具有岩浆水特征,而成矿物质则主要来源于深源岩浆,这说明吉黑东部金成矿可能与岩浆活动有关。同时,研究显示吉黑东部广泛发育一套120~95 Ma的中酸性火山-侵入岩,其与110 Ma金成矿事件时空关系密切。这套火山-侵入岩在矿区表现为英安-流纹质或安山-英安质火山岩组合和闪长玢岩、花岗斑岩及花岗岩等脉岩和小侵入体。而岩石化学特征则表明其属中酸性的钙碱性系列,为一套俯冲流体交代地幔楔起源的岩浆。区域对比研究表明,吉黑东部金成矿与俄罗斯远东地区Sikhote-Alin锡成矿、韩国南部金-银成矿可能处于同一大地构造环境的不同构造部位。成矿年代从吉黑东部向东南方向有变年轻的趋势,且成矿岩浆岩的酸性成分增强而幔源成分减少。综合区域岩浆岩和区域成矿特征,表明吉黑东部存在一期110 Ma的金成矿事件,其与中生代晚期板块俯冲及其后的岩石圈拆沉作用和弧后伸展有关,成矿大地构造环境为大陆边缘弧。  相似文献   

20.
《Precambrian Research》2005,136(1):27-50
The Wadi Mubarak belt in Egypt strikes west–east (and even northeast–southwest) and crosscuts the principal northwest–southeast trend of the Najd Fault System in the Central Eastern Desert of Egypt. The belt therefore appears to be a structural feature that formed postdate to the Najd Fault System. In contrast, it is shown here that the deformation in the Wadi Mubarak belt can be correlated with the accepted scheme of deformation events in the Eastern Desert of Egypt and that its geometry and apparently cross-cutting orientation is controlled by a large granite complex that intruded prior to the structural evolution. Structural correlation is facilitated by a series of intrusions that intrude the Wadi Mubarak belt and resemble other intrusions in the Eastern Desert. These intrusions include: (1) an older gabbro generation, (2) an older granite, (3) a younger gabbro and (4) a younger granite. The structural evolution is interpreted to be characterized by early northwest directed transport that formed several major thrusts in the belt. This event is correlated with the main deformation event in the Eastern Desert, elsewhere known as D2. During this event the regional fabric of the Wadi Mubarak belt was wrapped around the El Umra granite complex in a west–east orientation. The Wadi Mubarak belt was subsequently affected during D3 by west–east and northwest–southeast trending sinistral conjugate strike–slip shear zones. This event is related to the formation of the Najd Fault System. Detailed resolution of superimposed shear sense indicators suggest that D3 consisted of an older and a younger phase that reflect the change of transpression direction from east-southeast–west-northwest to eastnortheast–westouthwest. The El Umra granite complex is dated here with single zircon ages to consist of intrusion pulses at 654 and 690 my. These ages conform with the interpretation that it intruded prior to D2 and that the structural pattern of the Wadi Mubarak belt was initiated early during D2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号