首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   

2.
We report high precision SIMS oxygen three isotope analyses of 36 chondrules from some of the least equilibrated LL3 chondrites, and find systematic variations in oxygen isotope ratios with chondrule types. FeO-poor (type I) chondrules generally plot along a mass dependent fractionation line (Δ17O ∼ 0.7‰), with δ18O values lower in olivine-rich (IA) than pyroxene-rich (IB) chondrules. Data from FeO-rich (type II) chondrules show a limited range of δ18O and δ17O values at δ18O = 4.5‰, δ17O = 2.9‰, and Δ17O = 0.5‰, which is slightly 16O-enriched relative to bulk LL chondrites (Δ17O ∼ 1.3‰). Data from four chondrules show 16O-rich oxygen isotope ratios that plot near the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line. Glass analyses in selected chondrules are systematically higher than co-existing minerals in both δ18O and Δ17O values, whereas high-Ca pyroxene data in the same chondrule are similar to those in olivine and pyroxene phenocrysts.Our results suggest that the LL chondrite chondrule-forming region contained two kinds of solid precursors, (1) 16O-poor precursors with Δ17O > 1.6‰ and (2) 16O-rich solid precursors derived from the same oxygen isotope reservoir as carbonaceous chondrites. Oxygen isotopes exhibited open system behavior during chondrule formation, and the interaction between the solid and ambient gas might occur as described in the following model. Significant evaporation and recondensation of solid precursors caused a large mass-dependent fractionation due to either kinetic or equilibrium isotope exchange between gas and solid to form type IA chondrules with higher bulk Mg/Si ratios. Type II chondrules formed under elevated dust/gas ratios and with water ice in the precursors, in which the ambient H2O gas homogenized chondrule melts by isotope exchange. Low temperature oxygen isotope exchange may have occurred between chondrule glasses and aqueous fluids with high Δ17O (∼5‰) in LL the parent body. According to our model, oxygen isotope ratios of chondrules were strongly influenced by the local solid precursors in the proto-planetary disk and the ambient gas during chondrule melting events.  相似文献   

3.
The oxygen three-isotope systematics of 36 chondrules from the Allende CV3 chondrite are reported using high precision secondary ion mass spectrometer (CAMECA IMS-1280). Twenty-six chondrules have shown internally homogenous Δ17O values among olivine, pyroxene, and spinel within a single chondrule. The average Δ17O values of 19 FeO-poor chondrules (13 porphyritic chondrules, 2 barred olivine chondrules, and 4 chondrule fragments) show a peak at −5.3 ± 0.6‰ (2SD). Another 5 porphyritic chondrules including both FeO-poor and FeO-rich ones show average Δ17O values between −3‰ and −2‰, and 2 other FeO-poor barred olivine chondrules show average Δ17O values of −3.6‰ and 0‰. These results are similar to those for Acfer 094 chondrules, showing bimodal Δ17O values at −5‰ and −2‰. Nine porphyritic chondrules contain olivine grains with heterogeneous Δ17O values as low as −18‰, indicating that they are relict olivine grains and some of them were derived from precursors related to refractory inclusions. However, most relict olivine grains show oxygen isotope ratios that overlap with those in homogeneous chondrules. The Δ17O values of four barred olivine chondrules range from −5‰ to 0‰, indicating that not all BO chondrules plot near the terrestrial fractionation line as suggested by previous bulk chondrule analyses. Based on these data, we suggest the presence of multiple oxygen isotope reservoirs in local dust-rich protoplanetary disk, from which the CV3 parent asteroid formed.A compilation of 225 olivine and low-Ca pyroxene isotopic data from 36 chondrules analyzed in the present study lie between carbonaceous chondrite anhydrous mineral (CCAM) and Young and Russell lines. These data define a correlation line of δ17O = (0.982 ± 0.019) × δ18O − (2.91 ± 0.10), which is similar to those defined by chondrules in CV3 chondrites and Acfer 094 in previous studies. Plagioclase analyses in two chondrules plot slightly below the CCAM line with Δ17O values of −2.6‰, which might be the result of oxygen isotope exchange between chondrule mesostasis and aqueous fluid in the CV parent body.  相似文献   

4.
Atmospheric heating alters the compositions and textures of micrometeorites. To understand the changes and to test a proposed relationship between a micrometeorite’s petrographic texture and its degree of heating, we made elemental and multiple isotope analyses of stony cosmic spherules (sCS) collected from the South Pole Water well. Specifically, we analyzed the elemental compositions of 94 sCS and the isotopic ratios of Fe, K and O, on 43, 12 and 8 of these sCS, respectively.Our results show that sCS classified as strongly heated generally have lower concentrations of volatile and moderately volatile elements. Of the 43 spherules analyzed for Fe isotopes, only 5 have δ57Fe >5‰. In contrast, enrichment of 41K is pervasive (δ41K >0 in all 12 spherules analyzed) and large (up to 183‰). The determination of K isotope abundances in sCS may therefore be useful in deciphering thermal histories. Three of the eight sCS analyzed for O isotopes are mass fractionated with δ18O >30‰. We attribute two of these three δ18O enrichments to evaporative losses of oxygen in the atmosphere and the third to the presence in the parent material of an exotic phase, perhaps a sulfate or a carbonate. The K isotope and O isotope data are broadly consistent with the proposed textural classification.Because most spherules were not heated enough to fractionate Al, Mg, or Si, we compared the measured Mg/Al and Si/Al ratios directly to those of conventional meteorites and their matrices. ∼30% of the sCS have compositions outside the range defined by the bulk and the matrix compositions of known meteorite groups but consistent with those of pyroxene- and olivine-rich materials and may be samples of chondrules. The other 70% have Mg/Al and Si/Al ratios similar to those of CI, CM, CO, and CV chondrites. Natural variability of the Mg/Al and Si/Al ratios precludes the assignment of an individual sCS to a particular class of C-chondrite.  相似文献   

5.
Two higher plant species (rye grass and clover) were cultivated under laboratory conditions on two substrates (solution, phlogopite) in order to constrain the corresponding Mg isotope fractionations during plant growth and Mg uptake. We show that bulk plants are systematically enriched in heavy isotopes relative to their nutrient source. The Δ26Mgplant-source range from 0.72‰ to 0.26‰ for rye grass and from 1.05‰ to 0.41‰ for clover. Plants grown on phlogopite display Mg isotope signatures (relative to the Mg source) ∼0.3‰ lower than hydroponic plants. For a given substrate, rye grass display lower δ26Mg (by ∼0.3‰) relative to clover. Magnesium desorbed from rye grass roots display a δ26Mg greater than the nutrient solution. Adsorption experiments on dead and living rye grass roots also indicate a significant enrichment in heavy isotopes of the Mg adsorbed on the root surface. Our results indicate that the key processes responsible for heavy isotope enrichment in plants are located at the root level. Both species also exhibit an enrichment in light isotopes from roots to shoots (Δ26Mgleaf-root = −0.65‰ and −0.34‰ for rye grass and clover grown on phlogopite respectively, and Δ26Mgleaf-root of −0.06‰ and −0.22‰ for the same species grown hydroponically). This heavy isotope depletion in leaves can be explained by biological processes that affect leaves and roots differently: (1) organo-Mg complex (including chlorophyll) formation, and (2) Mg transport within plant. For both species, a positive correlation between δ26Mg and K/Mg was observed among the various organs. This correlation is consistent with the link between K and Mg internal cycles, as well as with formation of organo-magnesium compounds associated with enrichment in heavy isotopes. Considering our results together with the published range for δ26Mg of natural plants and rivers, we estimate that a significant change in continental vegetation would induce a change of the mean river δ26Mg that is comparable to analytical uncertainties.  相似文献   

6.
We have conducted systematic investigations of formation age, chemical compositions, and mineralogical characteristics of ferromagnesian chondrules in Yamato-81020 (CO3.05), one of the most primitive carbonaceous chondrites, to get better understanding of the origin of chemical groups of chondrites. The 26Al-26Mg isotopic system were measured in fourteen FeO-poor (Type I), six FeO-rich (Type II) and two aluminum-rich (Al-rich) chondrules using a secondary ion mass spectrometer. Excesses of 26Mg in plagioclase (1.0-13.5‰) are resolved with sufficient precision (mostly 0.4-6.6‰ at 2σ level) in all the chondrules studied except one. Chemical zoning of Mg and Na in plagioclase were investigated in detail in order to evaluate the applicability of 26Al-26Mg chronometer. We conclude that the Al-Mg isotope system of the chondrules in Y-81020 have not been disturbed by parent-body metamorphism and can be used as chronometer assuming homogeneous distribution of 26Al. Assuming an initial 26Al/27Al ratio of 5 × 10−5 in the early solar system, 26Al-26Mg ages were found to be 1.7-2.5 Ma after CAI formation for Type I, 2.0-3.0 Ma for Type II and 1.9 and 2.6 Ma for Al-rich chondrules.The formation ages of ferromagnesian chondrules in Y-81020 are in good agreement with those of L and LL (type 3.0-3.1) chondrites in the literature, which indicates that common chondrules in the CO chondrite were formed contemporaneously with those in L and LL chondrites. The concurrent formation of chondrules of CO and L/LL chondrites suggests that the chemical differences between CO and L/LL chondrites might be caused by spatial separation of chondrule formation environments in the protoplanetary disk.  相似文献   

7.
We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) meteorites. The accuracy of our new Mg isotope ratio measurement protocol is substantiated by a combination of standard addition experiments, the absence of mass independent effects in terrestrial samples and our obtaining identical values for rock standards using two different separation chemistries and three different mass-spectrometric introduction systems. Carbonaceous, ordinary and enstatite chondrites have irresolvable mean stable Mg isotopic compositions (δ25Mg = −0.14 ± 0.06; δ26Mg = −0.27 ± 0.12‰, 2SD), but our enstatite chondrite samples have lighter δ7Li (by up to ∼3‰) than our mean carbonaceous and ordinary chondrites (3.0 ± 1.5‰, 2SD), possibly as a result of spallation in the early solar system. Measurements of equilibrated, fertile peridotites give mean values of δ7Li = 3.5 ± 0.5‰, δ25Mg = −0.10 ± 0.03‰ and δ26Mg = −0.21 ± 0.07‰. We believe these values provide a useful estimate of the primitive mantle and they are within error of our average of bulk carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic samples, covering a variety of geological histories, show a broad positive correlation between bulk δ7Li and δ26Mg, which vary from −3.7‰ to +14.5‰, and −0.36‰ to + 0.06‰, respectively. Values of δ7Li and δ26Mg lower than our estimate of primitive mantle are strongly linked to kinetic isotope fractionation, occurring during transport of the mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H loss from nominally anhydrous minerals following degassing. Diffusion models suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities of Li and Mg in olivine. The isotopically lightest samples require ∼5-10 years of diffusive ingress, which we interpret as a time since volatile loss in the host magma. Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope ratios, likely as a result of little prior degassing in these explosive events. High δ7Li, coupled with high [Li], in rapidly cooled arc peridotites may indicate that these samples represent fragments of mantle wedge that has been metasomatised by heavy, slab-derived fluids. If such material is typically stirred back into the convecting mantle, it may account for the heavy δ7Li seen in some oceanic basalts.  相似文献   

8.
We report in situ measurements of O-isotopic compositions of magnetite, olivine and pyroxene in chondrules of the Ningqiang anomalous carbonaceous chondrite. The petrographic setting of Ningqiang magnetite is similar to those in oxidized-CV chondrites such as Allende, where magnetite is found together with Ni-rich metal and sulfide in opaque assemblages in chondrules. Both magnetite and silicate oxygen data fall close to the carbonaceous-chondrite-anhydrous-mineral line with relatively large ranges in δ18O in magnetite (−4.9 to +4.2‰) and in silicates (−15.2 to −4.5‰). Magnetite and silicates are not in O-isotopic equilibrium: the weighted average Δ17O (=δ17O − 0.52 × δ18O) values of magnetite are 1.7 to 3.6‰ higher than those of the silicates in the same chondrules. The petrological characteristics and O-isotopic disequilibrium between magnetite and silicates suggest the formation of Ningqiang magnetite by the oxidation of preexisting metal grains by an aqueous fluid during parent body alteration. The weighted average Δ17O of −3.3 ± 0.3‰ is the lowest magnetite value measured in unequilibrated chondrites and there is a positive correlation between Δ17O values of magnetite and silicates in each chondrule. These observations indicate that, during aqueous alteration in the Ningqiang parent asteroid, the water/rock ratio was relatively low and O-isotopic exchange between the fluid and chondrule silicates occurred on the scale of individual chondrules.  相似文献   

9.
Chondritic Mg isotope composition of the Earth   总被引:2,自引:0,他引:2  
The processes of planetary accretion and differentiation have potentially been recorded as variations in the stable isotope ratios of the major elements between planetary objects. However, the magnitude of observed isotopic variations for several elements (Mg, Fe, Si) is at the limit of what current analytical precision and accuracy are able to resolve. Here, we present a comprehensive data set of Mg isotope ratios measured in ocean island and mid-ocean ridge basalts, peridotites and chondrites. The precision and accuracy were verified by isotopic standard addition for two samples, one carbonaceous chondrite (Murchison) and one continental flood basalt (BCR-1). In contrast with some previous studies, our data from terrestrial and chondritic materials have invariant Mg isotope ratios within the uncertainty of the method (0.1‰ for the 26Mg/24Mg ratio, 2SD). Although isotopic variations of less than about 0.1‰ could still be present, the data demonstrate that, at this level of uncertainty, the bulk silicate Earth and chondritic Mg reservoir have a homogeneous δ26Mg = −0.23‰ (26Mg/24Mg ratio of the sample relative to the DSM3 standard set to zero by definition). This implies that neither planetary accretion processes nor partial mantle melting and subsequent shallow-level differentiation have fractionated Mg isotope ratios. These observations imply in particular that the formation of the Earth cannot stem from preferential sorting of chondrite constituents that would have been fractionated in their Mg isotope composition. It also implies that unlike oxygen isotopes, there was no zonation in Mg isotopes in the inner solar system.  相似文献   

10.
Mg isotope ratios (26Mg/24Mg) are reported in soil pore-fluids, rain and seawater, grass and smectite from a 90 kyr old soil, developed on an uplifted marine terrace from Santa Cruz, California. Rain water has an invariant 26Mg/24Mg ratio (expressed as δ26Mg) at −0.79 ± 0.05‰, identical to seawater δ26Mg. Detrital smectite (from the base of the soil profile, and therefore unweathered) has a δ26Mg value of 0.11‰, potentially enriched in 26Mg by up to 0.3‰ compared to the bulk silicate Earth Mg isotope composition (although within the range of all terrestrial silicates). The soil pore-waters show a continuous profile with depth for δ26Mg, ranging from −0.99‰ near the surface to −0.43‰ at the base of the profile. Shallow pore-waters (<1 m) have δ26Mg values that are similar to, or slightly lower than the rain waters. This implies that the degree of biological cycling of Mg in the pore-waters is relatively small and is quantified as <32%, calculated using the average Mg isotope enrichment factor between grass and rain (δ26Mggrass-δ26Mgrain) of 0.21‰. The deep pore-waters (1-15 m deep) have δ26Mg values that are intermediate between the smectite and rain, ranging from −0.76‰ to −0.43‰, and show a similar trend with depth compared to Sr isotope ratios. The similarity between Sr and Mg isotope ratios confirms that the Mg in the pore-waters can be explained by a mixture between rain and smectite derived Mg, despite the fact that Mg and Sr concentrations may be buffered by the exchangeable reservoir. However, whilst Sr isotope ratios in the pore-waters span almost the complete range between mineral and rain inputs, Mg isotopes compositions are much closer to the rain inputs. If Mg and Sr isotope ratios are controlled uniquely by a mixture, the data can be used to estimate the mineral weathering inputs to the pore-waters, by correcting for the rain inputs. This isotopic correction is compared to the commonly used chloride correction for precipitation inputs. A consistent interpretation is only possible if Mg isotope ratios are fractionated either by the precipitation of a secondary Mg bearing phase, not detected by conventional methods, or selective leaching of 24Mg from smectite. There is therefore dual control on the Mg isotopic composition of the pore-waters, mixing of two inputs with distinct isotopic compositions, modified by fractionation. The data provide (1) further evidence for Mg isotope fractionation at the surface of the Earth and (2) the first field evidence of Mg isotope fractionation during uptake by natural plants. The coherent behaviour of Mg isotope ratios in soil environments is encouraging for the development of Mg isotope ratios as a quantitative tracer of both weathering inputs of Mg to waters, and the physicochemical processes that cycle Mg, a major cation linked to the carbon cycle, during continental weathering.  相似文献   

11.
Bottled waters are an increasingly significant product in the human diet. In this work, we present a dataset of stable isotope ratios for bottled waters sampled in Greece. A total of 25 domestic brands of bottled still waters, collected on the Greek market in 2009, were analysed for δ18O and δ2H. The measured stable isotope ratios range from − 9.9‰ to − 6.9‰ for δ18O and from − 67.50‰ to − 46.5‰ for δ2H. Comparison of bottled water isotope ratios with natural spring water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, showing that bottled water isotope ratios preserve information about the water sources from which they were derived and suggesting that in many cases bottled water should not be considered as an isotopically distinct component of the human diet. This investigation also helped to determine the natural origin of bottled water, and to indicate differences between the natural and production processes. The production process may influence the isotopic composition of waters. No such modification was observed for sampled waters in this study. The isotopic methods applied can be used for the authentication of bottled waters and for use in the regulatory monitoring of water products.  相似文献   

12.
Constraining magnesium cycling in marine sediments using magnesium isotopes   总被引:2,自引:0,他引:2  
Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid δ26Mg values increase with depth by as much as 2‰. Because carbonates preferentially incorporate 24Mg (low δ26Mg), the increase in pore-fluid δ26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid δ26Mg values decrease with depth by up to 2‰. The decline in pore-fluid δ26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured δ26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7‰ depleted in δ26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the studied sites, our results suggest that magnesium incorporated into clay minerals is enriched in δ26Mg by 0‰ to +1.25‰ relative to the precipitating fluid. This work demonstrates the utility of magnesium isotopes as a tracer for magnesium sources/sinks in low-temperature aqueous systems.  相似文献   

13.
Magnesium and strontium isotope signatures were determined during different seasons for the main rivers of the Moselle basin, northeastern France. This small basin is remarkable for its well-constrained and varied lithology on a small distance scale, and this is reflected in river water Sr isotope compositions. Upstream, where the Moselle River drains silicate rocks of the Vosges mountains, waters are characterized by relatively high 87Sr/86Sr ratios (0.7128-0.7174). In contrast, downstream of the city of Epinal where the Moselle River flows through carbonates and evaporites of the Lorraine plateau, 87Sr/86Sr ratios are lower, down to 0.70824.Magnesium in river waters draining silicates is systematically depleted in heavy isotopes (δ26Mg values range from −1.2 to −0.7‰) relative to the value presently estimated for the continental crust and a local diorite (−0.5‰). In comparison, δ26Mg values measured in soil samples are higher (∼0.0‰). This suggests that Mg isotope fractionation occurs during mineral leaching and/or formation of secondary clay minerals. On the Lorraine plateau, tributaries draining marls, carbonates and evaporites are characterized by low Ca/Mg (1.5-3.2) and low Ca/Sr (80-400) when compared to local carbonate rocks (Ca/Mg = 29-59; Ca/Sr = 370-2200), similar to other rivers draining carbonates. The most likely cause of the Mg and Sr excesses in these rivers is early thermodynamic saturation of groundwater with calcite relative to magnesite and strontianite as groundwater chemistry progressively evolves in the aquifer. δ26Mg of the dissolved phases of tributaries draining mainly carbonates and evaporites are relatively low and constant throughout the year (from −1.4‰ to −1.6‰ and from −1.2‰ to −1.4‰, respectively), within the range defined for the underlying rocks. Downstream of Epinal, the compositions of the Moselle River samples in a δ26Mg vs. 87Sr/86Sr diagram can be explained by mixing curves between silicate, carbonate and evaporite waters, with a significant contribution from the Vosgian silicate lithologies (>70%). Temporal co-variation between δ26Mg and 87Sr/86Sr for the Moselle River throughout year is also observed, and is consistent with a higher contribution from the Vosges mountains in winter, in terms of runoff and dissolved element flux. Overall, this study shows that Mg isotopes measured in waters, rocks and soils, coupled with other tracers such as Sr isotopes, could be used to better constrain riverine Mg sources, particularly if analytical uncertainties in Mg isotope measurements can be improved in order to perform more precise quantifications.  相似文献   

14.
The sulfur isotopic compositions of putative primary troilite grains within 15 ferromagnesian chondrules (10 FeO-poor and 5 FeO-rich chondrules) in the least metamorphosed ordinary chondrites, Bishunpur and Semarkona, have been measured by ion microprobe. Some troilite grains are located inside metal spherules within chondrules. Since such an occurrence is unlikely to be formed by secondary sulfidization processes in the solar nebula or on parent bodies, those troilites are most likely primary, having survived chondrule-forming high-temperature events. If they are primary, they may be the residues of evaporation at high temperatures during chondrule formation and may have recorded mass-dependent isotopic fractionations. However, the supposed primary troilites measured in this study do not show any significant sulfur isotopic fractionations (<1 ‰/amu) relative to large troilite grains in matrix. Among other chondrule troilites that we measured, only one (BI-CH22) apparently has a small excess of heavy isotopes (2.7 ± 1.4 ‰/amu) consistent with isotopic fractionation during evaporation. All other grains have isotopic fractionations of <1 ‰/amu. Because sulfur is so volatile that evaporation during chondrule formation is probably inevitable, non-Rayleigh evaporation most likely explains the lack of isotopic fractionation in putative primary troilite inside chondrules. Evaporation through the surrounding silicate melt would have suppressed the isotopic fractionation after silicate dust grains melted. At lower temperatures below extensive melting of silicates, a heating rate of >104-106 K/h would be required to avoid a large degree of sulfur isotopic fractionation in the chondrule precursors. This heating rate may provide a new constraint on the chondrule formation processes.  相似文献   

15.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

16.
The mass-dependent fractionation laws that describe the partitioning of isotopes are different for kinetic and equilibrium reactions. These laws are characterized by the exponent relating the fractionation factors for two isotope ratios such that α2/1 = α3/1β. The exponent β for equilibrium exchange is (1/m1 − 1/m2)/(1/m1 − 1/m3), where mi are the atomic masses and m1 < m2 < m3. For kinetic fractionation, the masses used to evaluate β depend upon the isotopic species in motion. Reduced masses apply for breaking bonds whereas molecular or atomic masses apply for transport processes. In each case the functional form of the kinetic β is ln(M1/M2)/ln(M1/M3), where Mi are the reduced, molecular, or atomic masses. New high-precision Mg isotope ratio data confirm that the distinct equilibrium and kinetic fractionation laws can be resolved for changes in isotope ratios of only 3‰ per amu. The variability in mass-dependent fractionation laws is sufficient to explain the negative Δ17O of tropospheric O2 relative to rocks and differences in Δ17O between carbonate, hydroxyl, and anhydrous silicate in Martian meteorites. (For simplicity, we use integer amu values for masses when evaluating β throughout this paper.)  相似文献   

17.
Nineteen samples of metamorphosed carbonate-bearing rocks were analyzed for carbon and oxygen isotope ratios by ion microprobe with a ∼5-15 μm spot, three from a regional terrain and 16 from five different contact aureoles. Contact metamorphic rocks further represent four groups: calc-silicate marble and hornfels (6), brucite marble (2), samples that contain a reaction front (4), and samples with a pervasive distribution of reactants and products of a decarbonation reaction (4). The average spot-to-spot reproducibility of standard calcite analyses is ±0.37‰ (2 standard deviations, SD) for δ18O and ±0.71‰ for δ13C. Ten or more measurements of a mineral in a sample that has uniform isotope composition within error of measurement can routinely return a weighted mean with a 95% confidence interval of 0.09-0.16‰ for δ18O and 0.10-0.29‰ for δ13C. Using a difference of >6SD as the criterion, only four of 19 analyzed samples exhibit significant intracrystalline and/or intercrystalline inhomogeneity in δ13C at the 100-500 μm scale, with differences within individual grains up to 3.7‰. Measurements are consistent with carbon isotope exchange equilibrium between calcite and dolomite in five of six analyzed samples at the same scale. Because of relatively slow carbon isotope diffusion in calcite and dolomite, differences in δ13C can survive intracrystalline homogenization by diffusion during cooling after peak metamorphism and likely represent the effects of prograde decarbonation and infiltration. All but 2 of 11 analyzed samples exhibit intracrystalline differences in δ18O (up to 9.4‰), intercrystalline inhomogeneity in δ18O (up to 12.5‰), and/or disequilibrium oxygen isotope fractionations among calcite-dolomite, calcite-quartz, and calcite-forsterite pairs at the 100-500 μm scale. Inhomogeneities in δ18O and δ13C are poorly correlated with only a single mineral (dolomite) in a single sample exhibiting both. Because of relatively rapid oxygen isotope diffusion in calcite, intracrystalline inhomogeneities in δ18O likely represent partial equilibration between calcite and fluid during retrograde metamorphism. Calcite is in oxygen isotope exchange equilibrium with forsterite in one of four analyzed samples, in equilibrium with dolomite in none of six analyzed samples, and in equilibrium with quartz in neither of two analyzed samples. There are no samples of contact metamorphic rock with analyzed reactants and products of an arrested metamorphic reaction that are in oxygen isotope equilibrium with each other. The degree of departure from equilibrium in analyzed samples is variable and is often related, at least in part, to alteration of δ18O of calcite during retrograde fluid-rock reaction. In situ sub-grain-scale carbon and oxygen isotope analyses of minerals are advisable in the common applications of stable isotope geochemistry to metamorphic petrology. Correlation of sub-mm scale stable isotope data with imaging will lead to improved understanding of reaction kinetics, reactive fluid flow, and thermal histories during metamorphism.  相似文献   

18.
The oxygen-isotope compositions (obtained by laser fluorination) of hand-picked separates of isolated forsterite, isolated olivine and chondrules from the Tagish Lake carbonaceous chondrite describe a line (δ17O = 0.95 * δ18O − 3.24; R2 = 0.99) similar to the trend known for chondrules from other carbonaceous chondrites. The isolated forsterite grains (Fo99.6-99.8; δ18O = −7.2‰ to −5.5‰; δ17O = −9.6‰ to −8.2‰) are more 16O-rich than the isolated olivine grains (Fo39.6-86.8; δ18O = 3.1‰ to 5.1‰; δ17O = −0.3‰ to 2.2‰), and have chemical and isotopic characteristics typical of refractory forsterite. Chondrules contain olivine (Fo97.2-99.8) with oxygen-isotope compositions (δ18O = −5.2‰ to 5.9‰; δ17O = −8.1‰ to 1.2‰) that overlap those of isolated forsterite and isolated olivine. An inverse relationship exists between the Δ17O values and Fo contents of Tagish Lake isolated forsterite and chondrules; the chondrules likely underwent greater exchange with 16O-poor nebular gases than the forsterite. The oxygen-isotope compositions of the isolated olivine grains describe a trend with a steeper slope (1.1 ± 0.1, R2 = 0.94) than the carbonaceous chondrite anhydrous mineral line (CCAMslope = 0.95). The isolated olivine may have crystallized from an evolving melt that exchanged with 16O-poor gases of somewhat different composition than those which affected the chondrules and isolated forsterite. The primordial components of the Tagish Lake meteorite formed under conditions similar to other carbonaceous chondrite meteorite groups, especially CMs. Its alteration history has its closest affinities to CI carbonaceous chondrites.  相似文献   

19.
We dissolved Boulder Creek Granodiorite in a plug flow reactor for 5794 h at pH = 1 and T = 25 °C. The primary purpose of the experiment was to identify controls on dissolved δ44/40Ca, δ44/42Ca, and δ26/24Mg values during granite weathering. Herein, we also examine the origin of Ca and Mg isotopic variability among minerals composing the Boulder Creek Granodiorite, and we constrain fundamental characteristics of granite weathering important for quantifying the elemental and isotopic geochemistry of the reactor output. Nine Ca-bearing minerals display an 8.80‰ range of δ44/40Ca values and a 0.51‰ range of δ44/42Ca values. Three Mg-bearing minerals display a 1.53‰ range of δ26/24Mg values. These ranges expressed at the mineralogical scale are higher than the ranges thus far reported for bulk igneous rocks. Most of the δ44/40Ca variability reflects 40Ca enrichment in K-feldspar, and to a lesser extent, biotite, due to the radioactive decay of 40K over the 1.7 Ga age of the rock, whereas the entire range of δ44/42Ca values reflects mass-dependent isotope fractionation during igneous differentiation and crystallization. The range of δ26/24Mg values may represent either fractionation during the chloritization of biotite or interaction of the Boulder Creek Granodiorite with Mg-rich metamorphic fluids having low δ26/24Mg values.The elemental and isotopic composition of the reactor output varied substantially during the experiment. We synthesize the mineralogical and fluid data using coupled mass-conservation equations solved at non-steady-state. Model calculations reveal an intricate balance between increasing specific surface area and decreasing mineral concentrations. While surface area normalized dissolution rate constants were time-invariant, specific surface area increased as a power-law function of time through positive feedbacks between mechanical disaggregation, chemical dissolution, and mineral depletion. Variations in dissolved δ44/40Ca, δ44/42Ca, and δ26/24Mg values reflect conservative mixing rather than fractionation. Apatite and calcite initially control δ44/40Ca and δ44/42Ca values, followed by biotite, titanite, epidote, hornblende, and plagioclase. The release of radiogenic 40Ca clearly defines the period where biotite dissolution dominates. The brucite layer of chlorite initially controls δ26/24Mg values, followed by biotite, the TOT layer of chlorite, and hornblende. Through direct isotopic tracking, these results demonstrate that trace minerals, such as apatite and calcite in the case of Ca and brucite in the case of Mg, dominate elemental release during the incipient stages of granite weathering. The results further show that biotite dissolution dominates the middle stages of granite weathering and that plagioclase dissolution only becomes important during relatively late stages. The Ca and Mg isotope variations associated with these stages are distinct and potentially resolvable in soil mineral weathering studies.  相似文献   

20.
The calcium isotope ratios (δ44Ca = [(44Ca/40Ca)sample/(44Ca/40Ca)standard −1] · 1000) of Orbulina universa and of inorganically precipitated aragonite are positively correlated to temperature. The slopes of 0.019 and 0.015‰ °C−1, respectively, are a factor of 13 and 16 times smaller than the previously determined fractionation from a second foraminifera, Globigerinoides sacculifer, having a slope of about 0.24‰ °C−1. The observation that δ44Ca is positively correlated to temperature is opposite in sign to the oxygen isotopic fractionation (δ18O) in calcium carbonate (CaCO3). These observations are explained by a model which considers that Ca2+-ions forming ionic bonds are affected by kinetic fractionation only, whereas covalently bound atoms like oxygen are affected by kinetic and equilibrium fractionation. From thermodynamic consideration of kinetic isotope fractionation, it can be shown that the slope of the enrichment factor α(T) is mass-dependent. However, for O. universa and the inorganic precipitates, the calculated mass of about 520 ± 60 and 640 ± 70 amu (atomic mass units) is not compatible with the expected ion mass for 40Ca and 44Ca. To reconcile this discrepancy, we propose that Ca diffusion and δ44Ca isotope fractionation at liquid/solid transitions involves Ca2+-aquocomplexes (Ca[H2O]n2+ · mH2O) rather than pure Ca2+-ion diffusion. From our measurements we calculate that such a hypothesized Ca2+-aquocomplex correlates to a hydration number of up to 25 water molecules (490 amu). For O. universa we propose that their biologically mediated Ca isotope fractionation resembles fractionation during inorganic precipitation of CaCO3 in seawater. To explain the different Ca isotope fractionation in O. universa and in G. sacculifer, we suggest that the latter species actively dehydrates the Ca2+-aquocomplex before calcification takes place. The very different temperature response of Ca isotopes in the two species suggests that the use of δ44Ca as a temperature proxy will require careful study of species effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号