首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对河北后城基性岩墙进行系统研究,SiO2=47.07%~50.28%,(Na2O+K2O)在2.83%~3.75%之间变化.具有明显的轻稀土元素富集 ((La/Yb)N=4.40~4.86)和大离子亲石元素(Rb、Th和U等)富集现象,亏损高场强元素Nb和Ta.地球化学特征表明,岩墙产于板内拉张的构造环境,经过了橄榄石、单斜辉石、角闪石和黑云母等矿物的分离结晶作用.对La/Sm、Ta/La、Nb/La的分析表明,本区岩浆在上升过程中受到地壳物质的混染作用影响不明显,岩墙的源区与深俯冲作用引起的地幔交代作用有关.通过对微量元素及稀土元素比值的研究证明,基性岩墙源区为过渡型地幔源区,岩墙的母岩浆来自石榴子石二辉橄榄岩地幔,主要经历了石榴石+尖晶石二辉橄榄岩部分熔融,熔融程度在10%~20%之间,岩浆的起源深度在75kin左右.  相似文献   

2.
Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P) n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. δ 18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust.  相似文献   

3.
To investigate the formation and early evolution of the lunar mantle and crust we have analysed the oxygen isotopic composition, titanium content and modal mineralogy of a suite of lunar basalts. Our sample set included eight low-Ti basalts from the Apollo 12 and 15 collections, and 12 high-Ti basalts from Apollo 11 and 17 collections. In addition, we have determined the oxygen isotopic composition of an Apollo 15 KREEP (K - potassium, REE - Rare Earth Element, and P - phosphorus) basalt (sample 15386) and an Apollo 14 feldspathic mare basalt (sample 14053). Our data display a continuum in bulk-rock δ18O values, from relatively low values in the most Ti-rich samples to higher values in the Ti-poor samples, with the Apollo 11 sample suite partially bridging the gap. Calculation of bulk-rock δ18O values, using a combination of previously published oxygen isotope data on mineral separates from lunar basalts, and modal mineralogy (determined in this study), match with the measured bulk-rock δ18O values. This demonstrates that differences in mineral modal assemblage produce differences in mare basalt δ18O bulk-rock values. Differences between the low- and high-Ti mare basalts appear to be largely a reflection of mantle-source heterogeneities, and in particular, the highly variable distribution of ilmenite within the lunar mantle. Bulk δ18O variation in mare basalts is also controlled by fractional crystallisation of a few key mineral phases. Thus, ilmenite fractionation is important in the case of high-Ti Apollo 17 samples, whereas olivine plays a more dominant role for the low-Ti Apollo 12 samples.Consistent with the results of previous studies, our data reveal no detectable difference between the Δ17O of the Earth and Moon. The fact that oxygen three-isotope studies have been unable to detect a measurable difference at such high precisions reinforces doubts about the giant impact hypothesis as presently formulated.  相似文献   

4.
江西南部龙南-寻邬地区余田群菖蒲组的流纹岩形成于中侏罗世(164.8.1Ma~174.9Ma),为双峰式火山岩组合的酸性端元,属弱过铝质(ACNK平均为1.04)钙碱性系列(σ平均为1.90)。稀土元素含量高(平均为278.9μg/g),轻稀土富集(IMH平均为7.94),Eu亏损中等(δEu平均为0.41)。微量元素以富集Rb,Ba,Th,U,Zr,Y,Pb,而亏损Sr,Nb为特征。Pb,Nd,Sr同位素组成为:(^206Pb/^204Pb)t=17.89~18.58,(^207Pb/^204Pb)t=15.58~15.70,(^208Pb/^204Pb)t=37.94~38.82;εNd(t)=-7.44~-11.9;ISr=0.71126~0.71228。对赣南流纹岩微量元素采用蛛网图和模糊聚类分析方法进行对比研究的结果及Pb-Nd-Sr同位素相关特征为其上地壳成因提供了地球化学佐证。赣南流纹岩是由进入上地壳内高位岩浆房的石英拉斑玄武岩浆的底侵作用直接使上地壳部分熔融形成的产物。  相似文献   

5.
The Edgecumbe volcanic field is a Holocene volcanic province located on Kruzof Island, SE Alaska. Exposed within the 260 km2 field are basalt, andesitic basalt, andesite, dacite and rhyodacite. The rhyodacites were erupted after the basalts and before the andesites. The volcanics, which are Al-rich (14–18 wt%) and lack an iron enrichment trend, range from tholeiites (47 wt% SiO2) through rhyodacites (72%), but a compositional gap of approximately 9 wt% separates the dacites and rhyodacites. Initial 87Sr/86Sr ranges from 0.70297 in the basalts to 0.70440 in a pyroxene andesite. δ 18O increases across the suite: 5.8‰ to 7.9‰. Plagioclase (An32–86) is the dominant phenocryst in all but one lava. Olivine (Fo58–86) occurs in the basic lavas (<53 wt% SiO2), but is replaced by orthopyroxene (En43–73) and clinopyroxene (En31Wo41-En48Wo40) in the more siliceous volcanics. In the basalts and rhyodacites, plagioclase is weakly zoned, but extreme zoning (<30 mole% An) is characteristic of phenocrysts in the intermediate lavas. Fractionation of the observed phenocryst assemblages could not have produced the more silicous volcanics. Instead they were generated by partial melting of intrusive basement (87Sr/86Sr=0.70487; δ 18O: 8.7–9.3) by basaltic magma and subsequent assimilation. Mass balance calculations show the rhyodacites are almost pure partial melt (<5% basaltic component) whereas the intermediate lavas contain between 30 and 60% partial melt.  相似文献   

6.
The iron isotope, trace and major element compositions of Eoarchean supracrustal rocks from southern West Greenland (Isua Supracrustal Belt, the islands of Akilia and Innersuartuut) were analyzed in order to identify protoliths and characterize the imprints of metamorphism and metasomatism. Banded iron formations (BIFs) from the Isua Supracrustal Belt (ISB) have trace element characteristics that are consistent with seawater derivation, including high Y/Ho ratios, positive Eu/Eu anomalies, positive La/La anomalies, and concave upward REE patterns. These rocks also have heavy Fe isotopic compositions relative to surrounding igneous rocks (∼+0.4‰/amu). The most likely interpretation is that this signature was inherited from partial oxidation in a marine setting of Fe emanating from a source similar to modern mid-ocean ridge hydrothermal vents (∼−0.15‰/amu).Banded quartz-rich rocks from the island of Akilia with high Fe/Ti ratios share many similarities with bona fide BIFs from Isua (heavy Fe isotopic compositions up to +0.4‰/amu, elevated Y/Ho ratios compared to igneous rocks, sometimes positive Eu/Eu anomalies) suggesting a chemical sedimentary origin.Iron-poor metacarbonates from the southwestern part of the ISB have light Fe isotopic compositions (∼−0.4‰/amu). This is consistent with derivation of these rocks by fluid flow through surrounding ultramafic rocks and deposition as metasomatic carbonates. Iron-rich metacarbonates from the northwest and northeast parts of the ISB have Fe isotopic compositions (from +0.1 to +0.4‰/amu) and trace element patterns (high Y/Ho ratios, positive Eu/Eu and La/La anomalies, and concave upward REE) similar to associated BIFs. The most likely interpretation is that these iron-rich metacarbonates were derived from mobilization of Fe in BIFs by metasomatic fluids.  相似文献   

7.
The investigation of stable and radiogenic isotopes and of platinum-group (PGE) and rare earth elements (REE) in chromitites and associated ultramafic rocks of the Kempirsai Massif, southern Urals, gives strong evidence for a multistage formation of giant ophiolitic-podiform chromite deposits present in the southeastern part of the massif. The Kempirsai ophiolite massif is divided by a shear zone into two parts: in the northwestern area, small bodies of Al-rich chromite formed from basaltic melts between 420 to 400 Ma, according to Sm-Nd mineral isochrons of harzburgite, pyroxenite, websterite and gabbro. Harzburgites and pyroxenites in this area are enriched in light REE and have ɛNd(400) > +6 and ɛSr(400) ∼ +5. Chromitites have scattered PGE distributions (Pd/Ir, 0.4–7.0), being partly enriched in Pd and Pt. γOs(400) of one chromitite is −4.4. The southeastern part of the Kempirsai Massif, well-known for its world-class deposits of podiform low-Al magnesiochromite, is characterized by harzburgite and dunite enriched in light REE with very low ɛNd(400) (+4.3 to –17.1) and positive ɛSr(400) (>+10) values. Chromitites are strongly enriched in Ir, Os and Ru and depleted in Pd and Pt. γOs(400) of three chromitites is uniform and approaches C1 and DMM compositions. In veins and pods postdating crystallization of massive chromite, pargasitic amphibole formed in equilibrium with fluid-inclusion-bearing chromite at temperatures close to 1000 °C. These amphiboles give 40Ar/39Ar stepwise heating ages of 365 to 385 Ma and are characterized by low ɛNd(400) (+0.6 to −4.6) and general enrichment in REE. The cooling ages correspond to a 379.3 ± 1.6 Ma Rb-Sr mineral isochron produced from amphibole and phlogopite of a pyroxenite vein in the western part of the massif. From these data it is concluded that parts of the Kempirsai Massif have been pervasively metasomatized by large amounts of fluids and melts derived from a subducted slab composed of oceanic crust and sediments. Subduction occurred at least 15–35 Ma after a melting event that produced a typical ophiolitic sequence in the Paleozoic Sakmara Zone. We conclude that large chromite orebodies formed from second-stage high-Mg melts that interacted with depleted mantle and fluids on their way upward in a suprasubduction zone regime, and in a fore-arc position to the Magnitogorsk island arc. Received: 21 January 1998 / Accepted: 24 August 1998  相似文献   

8.
We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10–20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C–1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than 12 kbar.  相似文献   

9.
扬子块体西缘新元古代岩浆活动十分强烈,其成因对于研究Rodinia超大陆的演化有重要意义.目前对这些岩浆的成因和形成的构造背景存在地幔柱和岛弧两种不同的观点.本文对川西康滇裂谷中四川西昌一带出露的摩挲营花岗岩体和性质相似的周边花岗质小岩体,以及岩体中出露的基性岩墙进行了SHRIMP锆石U-Pb年龄、元素和Sr-Nd同位素的研究表明这些酸性、基性岩体形成于842~790Ma,基本为同时代的侵入岩;花岗岩基中普遍发育中性包体,为岩浆混合作用的表现;花岗岩起源于古老的下地壳,基性岩起源于亏损的软流圈地幔.本文的研究结果支持华南位于澳大利亚和Laurentia大陆之间的Rodinia超大陆重建模式.  相似文献   

10.
The paper presents major and trace element data and mineral compositions for a series of foiditic-tephritic to phonolitic rocks coming from Monte Vulture, Southern Italy, and investigates their origin, evolution and relationship with the other centres of the Roman province.Major and trace element variation in the foiditic to tephritic suite agrees with a hypothesis of evolution by simple crystal/liquid fractionation, whereas the early erupted phonolitic trachytes and phonolites have geochemical characteristics which do not support their derivation from tephritic magma by crystal fractionation. Foiditic and phonolitic rocks have mineral compositions which are interpreted as indicating magma mixing. However geochemical evidence shows that this process did not play an important role during the magma evolution.The Vulture rocks have compositional peculiarities such as high abundance of Na2O, CaO, Cl and S, when compared with other Roman volcanics. Instead, the distribution of incompatible elements is similar to those of Roman rocks, except for a lower content of Rb and K, higher P and lower Th/Ta and Th/Nb ratios which are still close to the values of arc volcanics.The high contents of Na, Ca and of volatile components are tentatively attributed to the interaction of magma with aqueous solutions, rich in calcium sulphate and sodium chloride, related to the Miocene or Triassic evaporites occurring within the sedimentary sequence underlying the volcano. The distribution pattern of the incompatible elements is interpreted as indicative of magma-forming in a subduction modified upper mantle and of the peculiar location of M. Vulture.  相似文献   

11.
12.
Products of voluminous pyroclastic eruptions with eruptive draw-down of several kilometers provide a snap-shot view of batholith-scale magma chambers, and quench pre-eruptive isotopic fractionations (i.e., temperatures) between minerals. We report analyses of oxygen isotope ratio in individual quartz phenocrysts and concentrates of magnetite, pyroxene, and zircon from individual pumice clasts of ignimbrite and fall units of caldera-forming 0.76 Ma Bishop Tuff (BT), pre-caldera Glass Mountain (2.1-0.78 Ma), and post-caldera rhyolites (0.65-0.04 Ma) to characterize the long-lived, batholith-scale magma chamber beneath Long Valley Caldera in California. Values of '18O show a subtle 1‰ decrease from the oldest Glass Mountain lavas to the youngest post-caldera rhyolites. Older Glass Mountain lavas exhibit larger (~1‰) variability of '18O(quartz). The youngest domes of Glass Mountain are similar to BT in '18O(quartz) values and reflect convective homogenization during formation of BT magma chamber surrounded by extremely heterogeneous country rocks (ranging from 2 to +29‰). Oxygen isotope thermometry of BT confirms a temperature gradient between "Late" (815 °C) and "Early" (715 °C) BT. The '18O(quartz) values of "Early" and "Late" BT are +8.33 and 8.21‰, consistent with a constant '18O(melt)=7.8ǂ.1‰ and 100 °C temperature difference. Zircon-melt saturation equilibria gives a similar temperature range. Values of '18O(quartz) for different stratigraphic units of BT, and in pumice clasts ranging in pre-eruptive depths from 6 to 11 km (based on melt inclusions), and document vertical and lateral homogeneity of '18O(melt). Worldwide, five other large-volume rhyolites, Lava Creek, Lower Bandelier, Fish Canyon, Cerro Galan, and Toba, exhibit equal '18O(melt) values of earlier and later erupted portions in each of the these climactic caldera-forming eruptions. We interpret the large-scale '18O homogeneity of BT and other large magma chambers as evidence of their longevity (>105 years) and convection. However, remaining isotopic zoning in some quartz phenocrysts, trace element gradients in feldspars, and quartz and zircon crystal size distributions are more consistent with far shorter timescales (102-104 years). We propose a sidewall-crystallization model that promotes convective homogenization, roofward accumulation of more evolved and stagnant, volatile-rich liquid, and develops compositional and temperature gradients in pre-climactic magma chamber. Crystal + melt + gas bubbles mush near chamber walls of variable '18O gets periodically remobilized in response to chamber refill by new hotter magmas. One such episode of chamber refill by high-Ti, Sr, Ba, Zr, and volatile-richer magma happened 103-104 years prior to the 0.76-Ma caldera collapse that caused magma mixing at the base, mush thawing near the roof and walls, and downward settling of phenocrysts into this hybrid melt.  相似文献   

13.
The Johnstown meteorite is a brecciated orthopyroxenite (diogenite) containing coarsegrained centimeter-sized clasts of cumulate origin that have undergone subsolidus recrystallization. The brecciated portion is dominated by subangular fragments of orthopyroxene (Wo2–3En72–74Fs23–25) in a variably comminuted matrix of the same material. Minor and accessory phases include plagioclase (An82–90Ab10–18Or0–1), diopside (Wo44–45En46–47Fs9–10), olivine (Fo71–72), tridymite, troilite, metallic Ni-Fe (~3% Ni), and chromite (Cm71–80Hc1–8Sp11–19Mt2–4Uv1–3).The clastic component is parental to the brecciated matrix which contains no foreign lithic or mineralogic components. Siderophile trace element studies, however, reveal the presence of meteoritic (chondritic) contamination in the brecciated portion using unbrecciated clasts for indigenous values. Rare earth element abundances show a wide range of values for the light REE in different samples, although all samples exhibit a strong negative Eu anomaly, indicative of earlier plagioclase fractionation. Two pairs of adjacent brecciated and unbrecciated samples from different portions of the meteorite show, respectively, the most enriched and the most depleted light REE patterns. The variability in La content is over a factor of 100. However, in each case the REE pattern for the brecciated portion is very similar to that of the unbrecciated portion. These differences are attributed to sampling of variable amounts of residual, REE-enriched, trapped liquid. The most representative REE pattern for the bulk meteorite has an intermediate composition and was obtained from the largest sample. The data presented here indicate that Johnstown is a monomict breccia, in contrast to several other diogenites which may be considered to be polymict on the basis of their mineral compositions and/or clast populations.  相似文献   

14.
The oxygen fugacity of the Dar al Gani 476 martian basalt is determined to be quartz-fayalite-magnetite (QFM) −2.3 ± 0.4 through analysis of olivine, low-Ca pyroxene, and Cr-spinel and is in good agreement with revised results from Fe-Ti oxides that yield QFM −2.5 ± 0.7. This estimate falls within the range of oxygen fugacity for the other martian basalts, QFM −3 to QFM −1. Oxygen fugacity in martian basalts correlates with 87Sr/86Sr, 143Nd/144Nd, and La/Yb ratios, indicating that the mantle source of the basalts is reduced and that assimilation of crust-like material controls the oxygen fugacity. This allows constraints to be placed on the oxidation state of the martian mantle and on the nature of assimilated crustal material. The assimilated material may be the product of early and extensive hydrothermal alteration of the martian crust, or it may be amphibole- or phlogopite-bearing basaltic rock within the crust. In either case, water may play a significant role in the oxidation of basaltic magmas on Mars, although it may be secondary to assimilation of ferric iron-rich material.  相似文献   

15.
The Catalão I carbonatite complex, central Brazil consists of ultramafic silicate rocks with subordinate carbonatite and associated phoscorite, nelsonite, and monazitite. In the Lagoa Seca area, lacustrine sediments discordantly overlie a 15-m thick unit of horizontally layered alkaline rocks that consist of a basal apatitite/nelsonite overlain by monazitite. The unit contains cylindrical to conic pipes filled with breccia, limited at the top by a discordance and at the bottom by phoscorites and carbonatites. X-ray diffraction and microprobe studies show that the pipes are filled dominantly by gorceixite and ilmenite, with subordinate apatite, calcite, pyrochlore, baryte, anatase, vivianite, and quartz and rare perovskite. This assemblage has possible primary phases and common alteration products of late-stage phoscorite-series rocks, such as carbonate nelsonites. The lower and intermediate portions of some pipes are fine grained, with cross- and coarsening-upward bedding. These structures are typical of diluted particulate flows (e.g. surges), which suggests that magma fragmentation occurred inside the chamber. The rocks and structures described here seem to represent an extreme case in which surge-like deposits formed within a conduit or even inside the magma chamber, implying that surge processes may develop at higher-than-atmospheric pressures.  相似文献   

16.
Near-liquidus phase relationships of a spinel lherzolite-bearing olivine melilitite from Tasmania were investigated over a P, T range with varying , , and . At 30 kb under MH-buffered conditions, systematic changes of liquidus phases occur with increasing ( = CO2/CO2 +H2O+olivine melilitite). Olivine is the liquidus phase in the presence of H2O alone and is joined by clinopyroxene at low . Increasing eliminates olivine and clinopyroxene becomes the only liquidus phase. Further addition of CO2 brings garnet+orthopyroxene onto the liquidus together with clinopyroxene, which disappears with even higher CO2. The same systematic changes appear to hold at higher and lower pressures also, only that the phase boundaries are shifted to different . The field with olivine- +clinopyroxene becomes stable to higher with lower pressure and approaches most closely the field with garnet+orthopyroxene+clinopyroxene at about 27 kb, 1160 °C, 0.08 and 0.2 (i.e., 6–7% CO2+ 7–8% H2O). Olivine does not coexist with garnet+orthopyroxene+clinopyroxene under these MH-buffered conditions. Lower oxygen fugacities do not increase the stability of olivine to higher and do not change the phase relationships and liquidus temperatures drastically. Thus, it is inferred that olivine melilitite 2927 originates as a 5% melt (inferred from K2 O and P2O5 content) from a pyrolite source at about 27kb, 1160 dg with about 6–7% CO2 and 7–8% H2O dissolved in the melt. The highly undersaturated character of the melt and the inability to find olivine together with garnet and orthopyroxene on the liquidus (in spite of the close approach of the respective liquidus fields) can be explained by reaction relationships of olivine and clinopyroxene with orthopyroxene, garnet and melt in the presence of CO2.  相似文献   

17.
本文首次用SHRIMP锆石U-Pb测年法获得房山岩体主期侵入岩-花岗闪长岩的年龄为130.7±1.4Ma,证明房山岩体主体岩石形成于早白垩世。综合该岩体两期侵入宕的常量、微量、稀土元素和同位素及构造环境特征,发现房山岩体侵入岩具有许多与埃达克岩(adakite)极其相似的独特的岩石地球化学特征,但又与Defant和Drummond(1990)定义的典型埃达克岩(O型)有明显差别,与中国东部C型埃达克岩更为接近,或也称之为中国东部燕山期高Sr低Y型中酸性火成岩。本文通过房山岩体Sr、Nd、Pb同位素的系统研究,发现在143Nd/144Nd-87Sr/86Sr图解上,两期岩石投影点均落在EM Ⅰ型富集地幔范围之内,暗示其物质来源与富集地幔有关;钾长石Pb同位素特征也说明房山岩体岩浆来源与EM Ⅰ型富集地幔和下地壳关系密切。结合前人的碳、氢、氧同位素研究成果,认为房山岩体物质来源较深,与上地幔和下地壳有关。此外,发现房山岩体两期侵入岩的εNd(t)值(-13.6--14.2)远高于华北地台区古老下地壳的εNd(t)值(-32--44),而与汉诺坝二辉麻粒岩包体的εNd(t)值(-8--18)近似。由于现有的研究已确证汉诺坝二辉麻粒岩包体是由幔源基性岩浆在晚古生代-中生代时底侵到下地壳底部构成的年青下地壳的一部分,故推测房山岩体的物质来源与华北地台古老下地壳关系不大,而可能与年青下地壳关系密切。在此基础上,提出房山岩体两期岩石形成的两阶段模式:第一阶段可能发生于中生代早期,由于软流体 (层)上涌导致富集岩石圈地幔部分熔融生成带有富集地幔印记的玄武岩浆,该岩浆底侵到下地壳底部,冷却成为年青下地壳的一部分;第二阶段发生于中生代晚期,由于当时软流圈呈蘑菇云状大规模上升,热侵蚀面抬升到壳-幔过渡带,导致早中生代新底侵的玄武质下地壳在榴辉岩-麻粒岩相条件下部分熔融生成C型埃达克质岩浆(也即高Sr低Y型中酸性火成岩浆) 并上侵而成为房山岩体。  相似文献   

18.
龙欣雨  唐杰  许文良 《岩石学报》2024,40(3):785-810
花岗岩作为大陆地壳的重要组成部分, 其岩浆作用过程一直是地学领域研究的热点。传统上利用全岩地球化学和同位素数据来示踪花岗岩成因和演化过程的方法已不够准确, 为此, 本文系统总结了近年来报导的花岗岩中单矿物的原位微区成分——这些数据记录了全岩数据无法识别的单矿物颗粒内部和不同矿物颗粒之间元素和同位素组成的变异特征, 明显提高了对花岗质岩浆作用及后期演化过程的认识。首先, 矿物原位微区成分对花岗质岩浆的源区性质和混合过程具有指示意义。花岗岩中岩浆锆石Hf同位素组成的变异可能暗示其源区在深熔作用过程中发生了锆石的不平衡和选择性熔融, 而未必是壳幔混合作用的结果, 这是对"锆石效应"概念新的扩展; 同一花岗岩样品中分选出的磷灰石颗粒可以具有完全不同的稀土元素配分模式、Eu异常、Sr含量和Sr-Nd同位素组成等, 表明它们中的部分颗粒是岩浆形成和上升过程中从围岩捕获的, 是小规模地壳混染作用的产物; 榍石的微区成分分带记录了多种岩浆混合过程, 也反映了熔体成分、氧逸度和温度等因素的变化; 花岗岩与其中发育的包体、捕虏体和相关围岩的锆石Hf-O同位素和磷灰石Sr-Nd同位素组成可以记录上述岩石在形成过程中经历岩浆混合和同化混染等作用。其次, 矿物原位微区成分可以反映花岗质岩浆的分离结晶过程。岩浆成因磷灰石不同的稀土元素配分模式可能指示它们受到了其他矿物分离结晶作用的影响, 如帘石族、榍石、角闪石、斜长石等; 花岗伟晶岩系统中岩浆成因独居石Sm/Nd值在不同岩带中的规律性变化揭示了岩浆分离结晶程度的差异; 榍石的多种微区元素含量和它们之间的协变关系受控于花岗质岩浆的结晶分异过程和氧化还原状态; 岩浆成因绿帘石族矿物的震荡环带表明在绿帘石结晶的晚期阶段花岗质岩浆中的Fe3+含量降低, 且结晶过程中褐帘石和绿帘石并不能形成完全连续的固溶体, 因此晚期结晶的绿帘石环边与褐帘石核具有成分间断; 根据角闪石的电子探针数据可以计算得到花岗质岩浆结晶时的温度、压力和fO2, 并据此推断出岩浆起源的深度。此外, 矿物原位微区成分可以记录花岗质岩石晚期经历的构造热事件和矿化作用过程。经历晚期变质/交代作用改造的花岗岩中的磷灰石具有低的轻稀土元素含量和变化很大的Nd同位素组成, 导致花岗岩具有Nd-Hf位素体系解耦的特点; 晚期变质/交代作用同样会改变磷灰石和榍石的δ18O值, 造成各副矿物之间δ18O值相互解耦的现象; 蚀变独居石的元素和U-Th-Pb同位素体系指示流体交代过程中多种置换反应的发生以及普通Pb混染和Pb丢失的过程; 热液成因绿帘石族矿物的成分环带表明氧化环境下热液流体成分会不断演化, 根据矿物-流体平衡模型, 可以利用绿帘石成分计算出成矿作用发生的温度以及流体的pH值, 研究表明绿帘石向流体中释放的大量Ca2+有效促进了硫化物矿床的成矿作用进程。综上, 单矿物原位微区成分分析技术的不断提高使我们对花岗质岩浆作用及后期演化过程的认识有了很大进步, 在未来的研究中, 如何取长补短, 将这些数据进行良好地运用是本领域的重要方向。  相似文献   

19.
Major, trace and organic elements of a laterite profile developed on Neogene basalts in northern Hainan Island, South China were reported in this paper, the aim of which was to investigate element mobilization and re-distribution during extreme weathering. The results indicate that most of the elements have been mobilized and transferred downwards along the profile by aqueous solution. Organic matter (OM) can significantly improve the transport of insoluble elements. Among all the elements, Th is the least mobile. As for the general conservative elements during incipient chemical weathering, such as Fe, Ti, Zr, Hf, Nb and Ta, the removals are up to 20-40% in the upper profile. However, these elements behave as conservatively as Th in the lower profile. In the middle profile, oxic environment occurs, accompanied with significant OM decomposition. The Mn and Ce transferred downward are readily oxidized into insoluble Mn(IV) and Ce(IV) and precipitate in the oxic front. Important OM decomposition decreases the capacity of transfer of insoluble elements in aqueous solution. Consequently, Al significantly precipitates in the oxic front, and REEs, with the exception of Ce, precipitate largely in the OM-depleted layers. Co and U are also concentrated in the oxic front in association with Mn and Ce, respectively. However, Cr shows a negative correlation with Mn because its response to redox condition changes is reversed from that of Mn. Mn oxides/hydroxides, Fe oxides/hydroxides and secondary phosphate minerals other than clay minerals are potential hosts for REEs except for Ce in the profile; REEs with high concentrations in the profile seem closely associated with Mn oxides/hydroxides. Remarkable, highly correlated, Ce and Gd anomalies are observed in the profile. Ce anomalies are caused by Ce precipitation in the oxic environment and successive decomposition of organic matter. Gd anomalies are likely to have resulted from lower stability constants of Gd-OM complexes compared to those of neighboring REEs. The overall elemental behaviors in this profile suggest that organic matter plays a very important role in the mobilization and re-distribution of the elements during extreme weathering.  相似文献   

20.
The South Mountain Batholith (SMB) of southwestern Nova Scotia (Canada) is a Late Devonian (~375 Ma) composite intrusion, which crops over an area of about 7,300 km2. This peraluminous granitoid body consists of rocks ranging from granodiorite through monzogranite and leucomonzogranite to leucogranite that locally host greisen tin-base metal mineralization. K-feldspar displays large compositional variations of trace elements and Pb isotopic ratios, particularly in the highly fractionated rocks. Many variations are consistent with processes of fractional crystallization, but a distinct enrichment of Rb, Li and Cs accompanied by low K/Rb, Ba/Rb, Eu/Eu* and K/Cs ratios point to the role of fluids during the late stages of magmatic evolution. The correlation of Pb isotopic ratios with the enriched elements and their ratios implies that the isotopic variations are an integral part of the evolution of the SMB. Together with well-defined isochronal relationships of Pb systems in the feldspars, the correlation suggests that fractional crystallization accompanied in the late stages by fluid fractionation led to the formation of Li–F-rich leucogranites. Internally derived U-rich fluids fractionated U/Pb ratios, which in turn produced distinct variations of 206Pb/204Pb and 238U/204Pb ratios in K-feldspars. This implies that the Pb isotopic values of K-feldspar, which have traditionally been used for tectonic reconstructions, might have been modified in many granitic rocks. Thus, only early magmatic K-feldspars, which show no discernible effects of fluid fractionation yield the initial Pb isotopic compositions of the parental granitic magmas and their sources. The data also show that the geochemical characteristics of the leucogranites are the results of magmatic evolution rather than a distinctive source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号