首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Gondwana Research》2015,28(4):1560-1573
We used Os isotopic systematics to assess the geochemical relationship between the lithospheric mantle beneath the Balkans (Mediterranean), ophiolitic peridotites and lavas derived from the lithospheric mantle. In our holistic approach we studied samples of Tertiary post-collisional ultrapotassic lavas sourced within the lithospheric mantle, placer Pt alloys from Vardar ophiolites, peridotites from nearby Othris ophiolites, as well as four mantle xenoliths representative for the composition of the local mantle lithosphere. Our ultimate aim was to monitor lithospheric mantle evolution under the Balkan part of the Alpine-Himalayan belt. The observations made on Os isotope and highly siderophile element (HSE) distributions were complemented with major and trace element data from whole rocks as well as minerals of representative samples. Our starting hypothesis was that the parts of the lithospheric mantle under the Balkans originated by accretion and transformation of oceanic lithosphere similar to ophiolites that crop out at the surface.Both ophiolitic peridotites and lithospheric mantle of the Balkan sector of Alpine-Himalayan belt indicate a presence of a highly depleted mantle component. In the ophiolites and the mantle xenoliths, this component is fingerprinted by the low clinopyroxene (Cpx) contents, low Al2O3 in major mantle minerals, together with a high Cr content in cogenetic Cr-spinel. Lithospheric mantle-derived ultrapotassic melts have high-Fo olivine and Cr-rich spinel that also indicate an ultra-depleted component in their mantle source. Further resemblance is seen in the Os isotopic variation observed in ophiolites and in the Serbian lithospheric mantle. In both mantle types we observed an unusual increase of Os abundances with increase in radiogenic Os that we interpreted as fluid-induced enrichment of a depleted Proterozoic/Archaean precursor. The enriched component had suprachondritic Os isotopic composition and its ultimate source is attributed to the subducting oceanic slab. On the other hand, a source–melt kinship is established between heterogeneously metasomatised lithospheric mantle and lamproitic lavas through a complex vein + wall rock melting relationship, in which the phlogopite-bearing pyroxenitic metasomes with high 187Re/188Os and extremely radiogenic 187Os/188Os > 0.3 are produced by recycling of a component ultimately derived from the continental crust.We tentatively propose a two-stage process connecting lithospheric mantle with ophiolites and lamproites in a geologically reasonable scenario: i) ancient depleted mantle “rafts” representing fragments of lithospheric mantle “recycled” within the convecting mantle during the early stages of the opening of the Tethys ocean and further refertilized, were enriched by a component with suprachondritic Os isotopic compositions in a supra-subduction oceanic environment, probably during subduction initiation that induced ophiolite emplacement in Jurassic times. Fluid-induced partial melts or fluids derived from oceanic crust enriched these peridotites in radiogenic Os; ii) the second stage represents recycling of the melange material that hosts above mantle blocks, but also a continental crust-derived terrigenous component accreted to the mantle wedge, that will later react with each other, producing heterogeneously distributed metasomes; final activation of these metasomes in Tertiary connects the veined lithospheric mantle and lamproites by vein + wall rock partial melting to generate lamproitic melts. Our data are permissive of the view that the part of the lithospheric mantle under the Balkans was formed in an oceanic environment.  相似文献   

2.
The Re-Os isotopic systematics of two ca. 2.7-Ga komatiite flows from Belingwe, Zimbabwe are examined. Rhenium and Os concentrations in these rocks are similar to concentrations in other Archean, Proterozoic, and Phanerozoic komatiites. Despite the excellent preservation of primary magmatic minerals, the Re-Os systematics of whole-rock samples of the komatiites show open-system behavior. Consistent model ages for several whole-rock samples suggest a disturbance to the system during the Proterozoic. Despite the open-system behavior in the whole rocks, Re-Os systematics for concentrates of primary magmatic olivine and spinel indicate generally closed-system behavior since the magmatic event that produced the rocks. Regression of the data for the mineral concentrates yields an age of 2721 ± 21 Ga, which is consistent with Pb-Pb and Sm-Nd ages that have been previously reported for the komatiites (Chauvel et al., 1993), and an initial 187Os/188Os ratio of 0.11140 ± 84 (γOs = +2.8 ± 0.8).The 2 to 3% enrichment in 187Os/188Os ratio of the mantle source of the komatiites, relative to the chondritic composition of the contemporaneous convecting upper mantle, most likely reflects either the incorporation of substantially older (≥ 4.2 Ga), Re-rich recycled mafic crust into the mantle source of the komatiites or the contribution of suprachondritic Os to the source from the putative 187Os-enriched outer core. The former interpretation would indicate the Hadean formation and recycling of mafic crust. The latter interpretation would require early formation of a substantial inner core followed by upwelling of a mantle plume from the core-mantle boundary, at least as far back as the Late Archean. Either interpretation requires large-scale mantle convection during the first half of Earth history.  相似文献   

3.
The Re — Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155±43 Ma. Subsequent episodes of volcanism produced basalts at 88.1±3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts.Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (Nd+9±1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (Os) ranged from 0 to +22, and model-initial values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re — Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions.  相似文献   

4.
The Rhön area as part of the Central European Volcanic Province (CEVP) hosts an unusual suite of Tertiary 24-Ma old hornblende-bearing alkaline basalts that provide insights into melting and fractionation processes within the lithospheric mantle. These chemically primitive to slightly evolved and isotopically (Sr, Nd, Pb) depleted basalts have slightly lower Hf isotopic compositions than respective other CEVP basalts and Os isotope compositions more radiogenic than commonly observed for continental intraplate alkaline basalts. These highly radiogenic initial 187Os/188Os ratios (0.268–0.892) together with their respective Sr–Nd–Pb isotopic compositions are unlikely to result from crustal contamination alone, although a lack of Os data for lower crustal rocks from the area and limited data for CEVP basalts or mantle xenoliths preclude a detailed evaluation. Similarly, melting of the same metasomatized subcontinental lithospheric mantle as inferred for other CEVP basalts alone is also unlikely, based on only moderately radiogenic Os isotope compositions obtained for upper mantle xenoliths from elsewhere in the province. Another explanation for the combined Nd, Sr and Os isotope data is that the lavas gained their highly radiogenic Os isotope composition through a mantle “hybridization”, metasomatism process. This model involves a mafic lithospheric component, such as an intrusion of a sublithospheric primary alkaline melt or a melt derived from subducted oceanic material, sometime in the past into the lithospheric mantle where it metasomatized the ambient mantle. Later at 24 Ma, thermal perturbations during rifting forced the isotopically evolved parts of the mantle together with the peridotitic ambient mantle to melt. This yielded a package of melts with highly correlated Re/Os ratios and radiogenic Os isotope compositions. Subsequent movement through the crust may have further altered the Os isotope composition although this effect is probably minor for the majority of the samples based on radiogenic Nd and unradiogenic Sr isotope composition of the lavas. If the radiogenic Os isotope composition can be explained by a mantle-hybridization and metasomatism model, the isotopic compositions of the hornblende basalts can be satisfied by ca. 5–25% addition of the mafic lithospheric component to an asthenospheric alkaline magma. Although a lack of isotope data for all required endmembers make this model somewhat speculative, the results show that the Re–Os isotope system in continental basalts is able to distinguish between crustal contamination and derivation of continental alkaline lavas from isotopically evolved peridotitic lithosphere that was contaminated by mafic material in the past and later remelted during rifting. The Hf isotopic compositions are slightly less radiogenic than in other alkaline basalts from the province and indicate the derivation of the lavas from low Lu–Hf parts of the lithospheric mantle. The new Os and Hf isotope data constrain a new light of the nature of such metasomatizing agents, at least for these particular rocks, which represent within the particular volcanic complex the first product of the volcanism.  相似文献   

5.
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition.Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of −2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated.Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts.Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os-187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.  相似文献   

6.
Initial 187Os/188Os isotopic compositions for geochronologically and geologically well -constrained 3.8-Ga spinel peridotites from the Itsaq Gneiss Complex of southern West Greenland and chromite separates from 3.46-Ga komatiites from the Pilbara region of Western Australia have been determined to investigate the osmium isotopic evolution of the early terrestrial mantle. The measured compositions of 187Os/188Os(0) = 0.10262 ± 2, from an olivine separate, and 0.10329 ± 3, for a spinel separate from ∼3.8-Ga peridotite G93/42, are the lowest yet reported from any terrestrial sample. The corrections for in situ decay over 3.8 Ga for these low Re/Os phases are minimal and change the isotopic compositions by only 0.5 and 2.2% for the spinel and the olivine, respectively, resulting in 187Os/188Os(3.8 Ga) = 0.1021 ± 0.0002 and 0.1009 ± 0.0002, respectively. These data extend direct measurement of Os isotopic compositions to much earlier periods of Earth history than previously documented and provide the best constraints on the Os isotopic composition of the early Archean terrestrial mantle. Analyses of Pilbara chromites yield 3.46-Ga mantle compositions of 0.1042 ± 0.0002 and 0.1051 ± 0.0002.These new data, combined with published initial Os isotopic compositions from late Archean and early Proterozoic samples, are compatible with the mantle, or at least portions of it, evolving from a solar system initially defined by meteorites to a modern composition of 187Os/188Os(0) = 0.1296 ± 0.0008 as previously suggested from peridotite xenolith data ( Meisel et al., 2001); the associated 187Re/188Os(0) = 0.435 ± 0.005. Thus, chondritic 187Os/188Os compositions were a feature of the upper mantle for at least 3.8 billion years, requiring chondritic Re/Os ratios to have been a characteristic of the very early terrestrial mantle. In contrast, nonchondritic initial compositions of some Archean komatiites demonstrate that Os isotopic heterogeneity is an ancient feature of plume materials, reflecting the development of variable Re/Os mantle sources early in Earth history.The lower average 187Os/188Os = 0.1247 for abyssal peridotites (Snow and Reisberg, 1995) indicate that not all regions of the modern mantle have evolved with the same Re/Os ratio. The relative sizes of the various reservoirs are unknown, although mass balance considerations can provide some general constraints. For example, if the unradiogenic 187Os/188Os modern abyssal peridotite compositions reflect the prevalent upper mantle composition, then the complementary high Re/Os basaltic reservoir must represent 20 to 40% by mass of the upper mantle (taken here as 50% of the entire mantle), depending on the mean storage age. The difficulties associated with efficient long-term storage of such large volumes of subducted basalt suggest that the majority of the upper mantle is not significantly Re-depleted. Rather, abyssal peridotites sample anomalous mantle regions.The existence of 3.8-Ga mantle peridotites with chondritic 187Os/188Os compositions and with Os concentrations similar to the mean abundances measured in modern peridotites places an upper limit on the timing of a late accretionary veneer. These observations require that any highly siderophile element -rich component must have been added to the Earth and transported into and grossly homogenized within the mantle by 3.8 Ga. Either large-scale mixing of impact materials occurred on very short (0-100 myr) timescales or (the interpretation preferred here) the late veneer of highly siderophile elements is unrelated to the lunar terminal cataclysm estimated to have occurred at ∼3.8 to 3.9 Ga.  相似文献   

7.
The effects of melt percolation on highly siderophile element (HSE) concentrations and Re-Os isotopic systematics of subcontinental lithospheric mantle are examined for a suite of spinel peridotite xenoliths from the 4 Ma Kozákov volcano, Bohemian Massif, Czech Republic. The xenoliths have previously been estimated to originate from depths ranging from ∼32 to 70 km and represent a layered upper mantle profile. Prior petrographic and lithophile trace element data for the xenoliths indicate that they were variably modified via metasomatism resulting from the percolation of basaltic melt derived from the asthenosphere. Chemical and isotopic data suggest that lower sections of the upper mantle profile interacted with melt characterized by a primitive, S-undersaturated composition at high melt/rock ratios. The middle and upper layers of the profile were modified by more evolved melt at moderate to low melt/rock ratios. This profile permits an unusual opportunity to examine the effects of variable melt percolation on HSE abundances and Os isotopes.Most HSE concentrations in the studied rocks are significantly depleted compared to estimates for the primitive upper mantle. The depletions, which are most pronounced for Os, Ir and Ru in the lower sections of the mantle profile, are coupled with strong HSE fractionations (e.g., OsN/IrN ratios ranging from 0.3 to 2.4). Platinum appears to have been removed from some rocks, and enriched in others. This enrichment is coupled with lithophile element evidence for the degree of percolating melt fractionation (i.e., Ce/Tb ratio).Osmium isotopic compositions vary considerably from subchondritic to approximately chondritic (γOs at 5 Ma from -6.9 to +2.1). The absence of correlations between 187Os/188Os and indicators of fertility, as is common in many lithospheric mantle suites, may suggest significant perturbation of the Os isotopic compositions of some of these rocks, but more likely reflect the normal range of isotopic compositions found in the modern convecting mantle. Osmium isotopic compositions correspondingly yield model Re-depletion (TRD) ages that range from essentially modern to ∼1.3 Ga.Our data provide evidence for large-scale incompatible behavior of HSE during melt percolation as a result of sulfide dissolution, consistent with observations of prior studies. The degree of incompatibility evidently depended on melt/rock ratios and the degree of S-saturation of the percolating melt. The high Pt contents of some of these rocks suggest that the Pt present in this pervasively metasomatized mantle was controlled by a phase unique to the other HSE. Further, high Os concentrations in several samples suggest deposition of Os in a minority of the samples by melt percolation. In these rocks, the mobilized Os was characterized by similar to the 187Os/188Os ratios in the ambient rocks. There is no evidence for either the addition of Os with a strongly depleted isotopic composition, or Os with suprachondritic isotopic composition, as is commonly observed under such circumstances.  相似文献   

8.
This study focuses on the origin of the Os isotope heterogeneities and the behaviour of Os and Re during melt percolation and partial melting processes in the mantle sequence of the Troodos Ophiolite Complex. The sequence has been divided into an eastern (Unit 1) and a western part (Unit 2) (Batanova and Sobolev, 2000). Unit 1 consists mainly of spinel-lherzolites and a minor amount of dunites, which are surrounded by cpx-bearing harzburgites. Unit 2 consists of harzburgites, dunites, and contains chromitite deposits.Unit 1 (187Os/188Os: 0.1169 to 0.1366) and Unit 2 (187Os/188Os 0.1235 to 0.1546) peridotites both show large ranges in their Os isotopic composition. Most of the 187Os/188Os ratios of Unit 1 lherzolites and harzburgites are chondritic to subchondritic, and this can be explained by Re depletion during ancient partial melting and melt percolation events. The old Os isotope model ages (>800 Ma) of some peridotites in a young ophiolitic mantle show that ancient Os isotopic heterogeneities can survive in the Earth upper mantle. Most harzburgites and dunites of Unit 2 have suprachondritic 187Os/188Os ratios. This is the result of the addition of radiogenic Os during a younger major melt percolation event, which probably occurred during the formation of the Troodos crust 90 Ma ago.Osmium concentrations tend to decrease from spinel-lherzolites (4.35 ± 0.2 ng/g) to harzburgites (Unit 1: 4.06 ± 1.12 ng/g; Unit 2: 3.46 ± 1.38 ng/g) and dunites (Unit 1: 2.71 ± 0.84 ng/g; Unit 2: 1.85 ± 1.20 ng/g). Therefore, this element does not behave compatibly during melt percolation as it is observed during partial melting, but becomes dissolved and mobilized by the percolating melt. The Os contents and Re/Os ratios in the mantle peridotites can be explained if they represent mixing products of old depleted mantle with cpx- and opx-veins, which are crystallization products of the percolating melt. This mixing occurred during the melting of a continuously fluxed mantle in a supra-subduction zone environment.This study shows that Unit 1 and Unit 2 of the Troodos mantle section have a complex and different evolution. However, the Os isotopic characteristics are consistent with a model where the harzburgites and dunites of both units belong to the same melting regime producing the Troodos oceanic crust.  相似文献   

9.
Sulfide inclusions in diamonds from the 90-Ma Jagersfontein kimberlite, intruded into the southern margin of the Kaapvaal Craton, were analyzed for their Re–Os isotope systematics to constrain the ages and petrogenesis of their host diamonds. The latter have δ13C ranging between −3.5 and −9.8‰ and nitrogen aggregation states (from pure Type IaA up to 51% total N as B centers) corresponding to time/temperature history deep within the subcontinental lithospheric mantle. Most sulfides are Ni-poor ([Ni + Co]/Fe = 0.05–0.25 for 15 of 17 inclusions), have elevated Cu/[Fe + Ni + Co] ratios (0.02–0.36) and elemental Re–Os ratios between 0.5 and 46 (12 of 14 inclusions) typical of eclogitic to more pyroxenitic mantle sources. Re–Os isotope systematics indicate two generations of diamonds: (1) those on a 1.7 Ga age array with initial 187Os/188Os (187Os/188Osi) of 0.46 ± 0.07 and (2) those on a 1.1 Ga array with 187Os/188Osi of 0.30 ± 0.11. The radiogenic initial Os isotopic composition for both generations of diamond suggests that components with high time-integrated Re–Os are involved, potentially by remobilization of ancient subducted oceanic crust and hybridization of peridotite. A single sulfide with higher Os and Ni content but significantly lower 187Os/188Os hosted in a diamond with less aggregated N may represent part of a late generation of peridotitic diamonds. The paucity of peridotitic sulfide inclusions in diamonds from Jagersfontein and other kimberlites from the Kaapvaal craton contrasts with an overall high relative abundance of diamonds with peridotitic silicate inclusions. This may relate to extreme depletion and sulfur exhaustion during formation of the Kaapvaal cratonic root, with the consequence that in peridotites, sulfide-included diamonds could only form during later re-introduction of sulfur.  相似文献   

10.
Processing of the oceanic lithosphere in subduction zones gives rise to arc magmatism, and strong compositional links exist between trench input and arc output. Here we address the question whether these compositional links are sufficiently strong to allow for ‘tracing’ the composition of the sedimentary and igneous oceanic crust through the chemistry of arcs. The tracing approach hinges critically on whether key characteristics of the subducted slab are transmitted to arcs. Results from forward and inverse modeling, verified by observations from modern arc settings, demonstrate that elements Sr, Pb, Nd and Hf that are associated with radiogenic isotopes may preserve chemical characteristics of the subducted slab in arc magmas. The data indicate that the much thicker igneous subducted crust dominates the recycled flux to arcs. The flux from the highly enriched, but thin sediment layer is buffered, and may be even concealed, by the concomitant contributions from igneous crust, and/or subarc mantle, despite the much better visibility of sediment components in trace element and isotope space. Arc Pb and Pb isotopes are the most promising tracers that may capture the isotopic diversity of subducted MORB-type and OIB-type crust with sufficient temporal and spatial resolution. While arc Sr is also strongly controlled by the flux from the subducted crust, arc data may allow for distinguishing among radiogenic Sr recycled from altered oceanic crust or from subducted sediment in moderately radiogenic arcs (87Sr/86Sr < ~ 0.7045). Co-mingling of Nd and Hf from igneous subducted crust with mantle contributions mostly hinders the isotopic identification of subducted crust through arc chemistry. However, Nd and Hf may provide complementary information about the efficiency of recycling, and recycling via subduction erosion.The tracing approach appears feasible in Cenozoic arcs where much of the original subduction context is preserved. First results from the Izu Bonin and Central American arcs show that plate tectonic events like oceanic plate formation and destruction, subduction of hotspot tracks and the closure of oceanic gateways are recorded in the chemistry of arcs. A comparative evaluation of Cenozoic global arcs may hence significantly complement the information from the modern oceanic basins, help to obtain a more complete image of the oceanic crustal composition and implicate the geochemical processes by which it formed. Possibly, the tracing approach may also be useful in ancient, inactive arcs to obtain information on the composition of oceanic crust subducted in the geological past.  相似文献   

11.
Osmium isotopic compositions, and Re and Os concentrations have been examined in one komatiite unit and two komatiitic basalt units at Dundonald Beach, part of the 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re may have been lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after emplacement. Second, the Re-Os isotope systematics of whole rock samples with 187Re/188Os ratios >1 were reset at ∼2.5 Ga, possibly due to a regional metamorphic event. Third, there is evidence for relatively recent gain and loss of Re in some rocks.Despite the open-system behavior, some aspects of the Re-Os systematics of these rocks can be deciphered. The bulk distribution coefficient for Os (DOssolid/liquid) for the Dundonald rocks is ∼3 ± 1 and is well within the estimated D values obtained for komatiites from the nearby Alexo area and stratigraphically-equivalent komatiites from Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magmas parental to the Kidd-Munro komatiitic rocks. Whole-rock samples and chromite separates with low 187Re/188Os ratios (<1) yield a precise chondritic average initial 187Os/188Os ratio of 0.1083 ± 0.0006 (γOs = 0.0 ± 0.6) for their well-constrained ∼2715 Ma crystallization age. The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township, suggesting that the mantle source region for the Kidd-Munro volcanic assemblage had evolved with a long-term chondritic Re/Os before eruption. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for ca. 89 Ma komatiites from the Gorgona Island, arc-related rocks and present-day ocean island basalts. This suggests that the Kidd-Munro komatiites sampled a late-Archean mantle source region that was significantly more homogeneous with respect to Re/Os relative to most modern mantle-derived rocks.  相似文献   

12.
古老大陆岩石圈地幔再循环与蛇绿岩中铬铁矿床成因   总被引:2,自引:0,他引:2  
不同地区、不同时代蛇绿岩中不同类型铬铁矿岩的Re-Os同位素研究表明,在铬铁矿石或围岩中均存在极度亏损的具有大陆岩石圈地幔属性的物质。新疆达拉布特古生代蛇绿岩带中萨尔托海富Al铬铁矿岩的Os同位素组成为0.1109~0.1256,对应的模式年龄为3.5~0.6Ga;西藏班公湖—怒江中生代蛇绿岩带中东巧富Cr铬铁矿石及围岩Os同位素组成介于0.1175~0.1261,对应的模式年龄为1.5~0.1Ga;雅鲁藏布江中生代蛇绿岩带中罗布莎富Cr铬铁矿岩的Os同位素变化范围为0.1038~0.1266,对应的模式年龄为3.37~0.28Ga,而该带中不含矿的泽当二辉橄榄岩的Os同位素组成为0.1256~0.1261,没有古老大陆岩石圈地幔属性的物质存在,与新特提斯洋地幔Os组成较为接近。推测在蛇绿岩形成过程中,古老大陆岩石圈地幔参与循环有利于形成铬铁矿床,明确提出"熔体与古老大陆岩石圈地幔反应成矿"的假说,指出蛇绿岩带中存在的古老微陆块可能是找矿的指示标志。  相似文献   

13.
The Xinjie mafic-ultramafic layered intrusion in the Emeishan large igneous province (ELIP) hosts Cu-Ni-platinum group element (PGE) sulfide ore layers within the lower part and Fe-Ti-V oxide-bearing horizons within the middle part. The major magmatic Cu-Ni-PGE sulfide ores and spatially associated cumulate rocks are examined for their PGE contents and Re-Os isotopic systematics. The samples yielded a Re-Os isochron with an age of 262 ± 27 Ma and an initial 187Os/188Os of 0.12460 ± 0.00011 (γOs(t) = −0.5 ± 0.1). The age is in good agreement with the previously reported U-Pb zircon age, indicating that the Re-Os system remained closed for most samples since the intrusion emplacement. They have near-chondritic γOs(t) values ranging from −0.7 to −0.2, similar to those of the Lijiang picrites and Song Da komatiites. Exceptionally, two samples from the roof zone and one from upper sequence exhibit radiogenic γOs(t) values (+0.6 to +8.6), showing minor contamination by the overlying Emeishan basalts.The PGE-rich ores contain relatively high PGE and small amounts of sulfides (generally less than 2%) and the abundance of Cu and PGE correlate well with S, implying that the distribution of these elements is controlled by the segregation and accumulation of a sulfide liquid. Some ore samples are poor in S (mostly <800 ppm), which may due to late-stage S loss caused by the dissolution of FeS from pre-existing sulfides through their interaction with sulfide-unsaturated flowing magma. The combined study shows that the Xinjie intrusion may be derived from ferropicritic magmas. The sharp reversals in Mg#, Cr/FeOT and Cr/TiO2 ratios immediately below Units 2-4, together with high Cu/Zr ratios decreasing from each PGE ore layer within these cyclic units, are consistent with multiple magma replenishment episodes. The sulfides in the cumulate rocks show little evidence of PGE depletion with height and thus appear to have segregated from successive inputs of fertile magma. This suggests that the Xinjie intrusion crystallized from in an open magma system, e.g., a magma conduit. The compositions of the disseminated sulfides in most samples can be modeled by applying an R factor (silicate-sulfide mass ratio) of between 1000 and 8000, indicating the segregation of only small amounts of sulfide liquid in the parental ferropicritic magmas. Thus, continuous mixing between primitive ferropicritic magma and differentiated resident magma could lead to crystallization of chromite, Cr-bearing magnetite and subsequently abundant Fe-Ti oxides, thereby the segregation of PGE-rich Cu-sulfide.When considered in the light of previous studies on plume-derived komatiites and picrites worldwide, the close-to-chondritic Os isotopic composition for most Xinjie samples, Lijiang picrites and Song Da komatiites suggest that the ferropicritic magma in the ELIP were generated from a plume. This comprised recycled Neoproterozic oceanic lithosphere, including depleted peridotite mantle embedded with geochemically enriched domains. The ascending magmas thereafter interacted with minor (possibly <10%) subducted/altered oceanic crust. This comparison suggests that the komatiitic melts in the ELIP originated from a greater-than normal degree of melting of incompatible trace element depleted, refractory mantle components in the plume source.  相似文献   

14.
Black shales and thin-bedded cherts in the basal Cambrian are widespread worldwide and they carry important information on the formation of sedimentary basins and on the tectonic history. We studied the geochemical signatures of the early Cambrian black shales and bedded cherts from the Northern Tarim Basin, China, with the objectives of understanding the depositional setting of these rocks and inferring the tectonic history in the region. Twenty two black shales, ten cherts, and two nodular phosphorites were collected from two outcrops at Xiaoerbulake and Sugaitebulake in the Northern Tarim Basin, spanning vertical sections of 8.8 and 7.5 m, respectively. A suite of techniques, including field investigations, X-ray diffraction, electron microscopy, trace element, rare earth element (REE), and isotope geochemistry, were employed to characterize the geochemical signatures of these rocks. Field evidence indicates that the black shales and bedded cherts are over- and underlain by dolomites, suggesting a shallow marine depositional environment. Mineralogical and trace element data suggest that the Tarim black shales and cherts were deposited in a suboxic continental shelf environment, and hydrothermal activity may have extracted certain trace elements from mafic continental crust and concentrated them in the sedimentary basin. REE characteristics for the cherts are very similar to those that are known to be deposited in pelagic ocean floor settings, suggesting that the hydrothermal fluids may be derived from the infant southern Tianshan Ocean in the north of the Tarim Basin. Os isotope signatures at the time of deposition (187Os/188Osi = 1.1–2.7) are typical of crustal signatures, and the radiogenic Os isotope signatures rule out the mantle as a possible source of Os and other metals. A positive correlation between 187Os/188Os and εNd is consistent with upper crust-derived basin sediments that contain a variable contribution of hydrothermal fluids possibly derived from ancient mafic continental crust. These trace element, REE, and isotope systematics collectively suggest that incorporation of hydrothermal fluids derived from ancient, mafic continental crust combined with deposition in relatively reducing conditions may have controlled the chemical and isotopic compositions of these rocks. We infer that the hydrothermal fluid was carried to the continental shelf by upwelling during the initial stages of formation of the southern Tianshan Ocean, where the fluid interacted with thinned, mafic crustal basement lithologies and was subsequently incorporated into the black shales and bedded cherts in the Northern Tarim Basin. This study provides important geochemical evidence for the creation of the Tianshan Ocean, which is a result of break-up of the Rodinia Supercontinent during the early Cambrian.  相似文献   

15.
Podiform chromite deposits occur in the mantle sequences of many ophiolites that were formed in supra-subduction zone (SSZ) settings. We have measured the Re-Os isotopic compositions of the major chromite deposits and associated mantle peridotites of the Dongqiao Ophiolite in the Bangong-Nujiang suture, Tibet, to investigate the petrogenesis of these rocks and their genetic relationships.The 187Os/188Os ratios of the chromite separates define a narrow range from 0.12318 to 0.12354, less variable than those of the associated peridotites. Previously-reported 187Os/188Os ratios of the Os-rich alloys enclosed in the chromitites define two clusters: 0.12645 ± 0.00004 (2 s; n = 145) and 0.12003 to 0.12194. The ultra-depleted dunites have much lower 187Os/188Os (0.11754, 0.11815), and the harzburgites show a wider range from 0.12107 to 0.12612. The average isotopic composition of the chromitites (187Os/188Os: 0.12337 ± 0.00001) is low compared with the carbonaceous chondrite value (187Os/188Os: 0.1260 ± 0.0013) and lower than the average value measured for podiform chromitites worldwide (0.12809 ± 0.00085). In contrast, the basalts have higher 187Os/188Os, ranging from 0.20414 to 0.38067, while the plagioclase-bearing harzburgite and cumulates show intermediate values of 187Os/188Os (0.12979 ~ 0.14206). Correspondingly, the basalts have the highest 187Re/188Os ratios, up to 45.4 ± 3.2, and the chromites have the lowest 187Re/188Os ratios, down to 0.00113 ± 0.00008. We suggest that melts/fluids, derived from the subducting slab, triggered partial melting in the overlying mantle wedge and added significant amounts of radiogenic Os to the peridotites. Mass-balance calculations indicate that a melt/mantle ratio of approximately 15:1 (melt: 187Re/188Os: 45.4, 187Os/188Os: 0.34484; mantle peridotite: 187Re/188Os: 0.0029, 187Os/188Os: 0.11754) is necessary to increase the Os isotopic composition of the chromitite deposits to its observed average value. This value implies a surprisingly low average melt/mantle ratio during the formation of the chromitite deposits. The percolating melts probably were of variable isotopic composition. However, in the chromitite pods the Os from many melts was pooled and homogenized, which is why the chromitite deposits show such a small variation in their Os isotopic composition. The results of this study suggest that the 187Os/188Os ratios of chromitites may not be representative of the DMM, but only reflect an upper limit. Importantly, the Os-isotope compositions of chromitites strongly suggest that such deposits can be formed by melt/mantle mixing processes.  相似文献   

16.
Podiform chromitites are diagnostic but rare features of Phanerozoic ophiolites, and often contain the most pristine textural, chemical and isotopic record of convective upper mantle conditions extant during ophiolite genesis. Ophiolitic podiform chromitites, owing to their high Os concentrations and low Re/Os ratios provide the best evidence for the Os-isotopic evolution of oceanic mantle, but established records of ophiolitic chromites from bona fide Archean ophiolites are still lacking. We report Re–Os isotopic compositions of the world's oldest known ophiolitic podiform chromites from the 2.5 billion year old Dongwanzi–Zunhua ophiolite, North China. This provides the oldest Os isotope composition for the convective upper mantle yet obtained from ophiolitic podiform chromitites, and reveals a chondritic Os isotopic composition of the Archean convective upper mantle.  相似文献   

17.
Here we present Sm-Nd, Re-Os, and Pb isotopic data of carefully screened, least altered samples of boninite-like metabasalts from the Isua Supracrustal Belt (ISB, W Greenland)that characterize their mantle source at the time of their formation. The principal observations of this study are that by 3.7-3.8 Ga melt source regions existed in the upper mantle with complicated enrichment/depletion histories. Sm-Nd isotopic data define a correlation line with a slope corresponding to an age of 3.69 ± 0.18 Gy and an initial εNd value of +2.0 ± 4.7. This Sm-Nd age is consistent with indirect (but more precise) U-Pb geochronological estimates for their formation between 3.69-3.71 Ga. Relying on the maximum formation age of 3.71 Gy defined by the external age constraints, we calculate an average εNd [T = 3.71 Ga] value of +2.2 ± 0.9 (n = 18, 1σ) for these samples, which is indicative of a strongly depleted mantle source. This is consistent with the high Os concentrations, falling in the range between 1.9-3.4 ppb, which is similar to the estimated Os concentration for the primitive upper mantle. Re-Os isotopic data (excluding three outliers) yield an isochron defining an age of 3.76 ± 0.09 Gy (with an initial γOs value of 3.9 ± 1.2), within error consistent with the Sm-Nd age and the indirect U-Pb age estimates. An average initial γOs [T = 3.71 Ga] value of + 4.4 ± 1.2 (n = 8; 2σ) is indicative of enrichment of their source region during, or prior to, its melting. Thus, this study provides the first observation of an early Archean upper mantle domain with a distinctly radiogenic Os isotopic signature. This requires a mixing component characterized by time-integrated suprachondritic Re/Os evolution and a Os concentration high enough to strongly affect the Os budget of the mantle source; modern sediments, recycled basaltic crust, or the outer core do not constitute suitable candidates. At this point, the nature of the mantle or crustal component responsible for the radiogenic Os isotopic signature is not known.Compared with the Sm-Nd and Re-Os isotope systems, the Pb isotope systematics show evidence for substantial perturbation by postformational hydrothermal-metasomatic alteration processes accompanying an early Archean metamorphic event at 3510 ± 65 Ma and indicate that the U-Th-Pb system was partially opened to Pb-loss on a whole rock scale. Single stage mantle evolution models fail to provide a solution to the Pb isotopic data, which requires that a high-μ component was mixed with the depleted mantle component before or during the extrusion of the basalts. Relatively high 207Pb/204Pb ratios (compared to contemporaneous mantle), support the hypothesis that erosion products of the ancient terrestrial protocrust existed for several hundred My before recycling into the mantle before ∼3.7 Ga.Our results are broadly consistent with models favoring a time-integrated Hadean history of mantle depletion and with the existence of an early Hadean protocrust, the complement to the Hadean depleted mantle, which after establishment of subduction-like processes was, at least locally, recycled into the upper mantle before 3.7 Ga. Thus, already in the Hadean, the upper mantle seems to be characterized by geochemical heterogeneity on a range of length scales; one property that is shared with the modern upper mantle. However, a simple two component mixing scenario between depleted mantle and an enriched-, crustal component with a modern analogue can not account for the complicated and contradictory geochemical properties of this particular Hadean upper mantle source.  相似文献   

18.
Picrites from the neovolcanic zones in Iceland display a range in 187Os/188Os from 0.1297 to 0.1381 (γOs = + 2.1 to +8.7) and uniform 186Os/188Os of 0.1198375 ± 32 (2σ). The value for 186Os/188Os is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398 ± 16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in 186Os/188Os and 187Os/188Os from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high 3He/4He, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not.A positive correlation between 187Os/188Os and 3He/4He from 9.6 to 19 Ra in Iceland picrites is best modeled as mixtures of 1 Ga or older ancient recycled crust mixed with primitive mantle or incompletely degassed depleted mantle isolated since 1-1.5 Ga, which preserves the high 3He/4He of the depleted mantle at the time. These mixtures create a hybrid source region that subsequently mixes with the present-day convecting MORB mantle during ascent and melting. This multistage mixing scenario requires convective isolation in the deep mantle for hundreds of million years or more to maintain these compositionally distinct hybrid sources. The 3He/4He of lavas derived from the Iceland plume changed over time, from a maximum of 50 Ra at 60 Ma, to approximately 25-27 Ra at present. The changes are coupled with distinct compositional gaps between the different aged lavas when 3He/4He is plotted versus various geochemical parameters such as 143Nd/144Nd and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.The positive correlation between 187Os/188Os and 3He/4He demonstrates that the Iceland lava He isotopic compositions do not result from simple melt depletion histories and consequent removal of U and Th in their mantle sources. Instead their He isotopic compositions reflect mixtures of heterogeneous materials formed at different times with different U and Th concentrations. This hybridization is likely prevalent in all ocean island lavas derived from deep mantle sources.  相似文献   

19.
Exposure of the ca. 6 Ma Taitao ophiolite, Chile, located 50 km south of the Chile Triple Junction, allows detailed chemical and isotopic study of rocks that were recently extracted from the depleted mantle source of mid-ocean ridge basalts (DMM). Ultramafic and mafic rocks are examined for isotopic (Os, Sr, Nd, and O), and major and trace element compositions, including the highly siderophile elements (HSE). Taitao peridotites have compositions indicative of variable extents of partial melting and melt extraction. Low δ18O values for most whole rock samples suggest some open-system, high-temperature water–rock interaction, most likely during serpentinization, but relict olivine grains have δ18O values consistent with primary mantle values. Most of the peridotites analyzed for Nd–Sr isotopes have compositions consistent with estimates for the modern DMM, although several samples are characterized by 87Sr/86Sr and 143Nd/144Nd indicative of crustal contamination, most likely via interactions with seawater. The peridotites have initial 187Os/188Os ratios that range widely from 0.1168 to 0.1288 (γOs = −8.0 to +1.1), averaging 0.1239 (γOs = −2.4), which is comparable to the average for modern abyssal peridotites. A negative correlation between the Mg# of relict olivine grains and Os isotopic compositions of whole rock peridotites suggests that the Os isotopic compositions reflect primary mantle Re/Os fractionation produced by variable extents of partial melting at approximately 1.6 Ga. Recent re-melting at or near the spatially associated Chile Ridge further modified these rocks, and Re, and minor Pt and Pd were subsequently added back into some rocks by late-stage melt–rock or fluid–rock interactions.In contrast to the peridotites, approximately half of the mafic rocks examined have whole rock δ18O values within the range of mantle compositions, and their Nd and Sr isotopic compositions are all generally within the range of modern DMM. These rocks have initial 187Os/188Os ratios, calculated for 6 Ma, that range from 0.126 (γOs = −1) to as high as 0.561 (γOs = +342). The Os isotopic systematics of each of these rocks may reflect derivation from mixed lithologies that include the peridotites, but may also include pyroxenites with considerably more radiogenic Os than the peridotites. This observation supports the view that suprachondritic Os present in MORB derives from mixed mantle source lithologies, accounting for some of the worldwide dichotomy in 187Os/188Os between MORB and abyssal peridotites.The collective results of this study suggest that this >500 km3 block of the mantle underwent at least two stages of melting. The first stage occurred at 1.6 Ga, after which the block remained isolated and unmixed within the DMM. A final stage of melting recently occurred at or near the Chile Ridge, resulting in the production of at least some of the mafic rocks. Convective stirring of this mantle domain during a >1 Ga period was remarkably inefficient, at least with regard to Os isotopes.  相似文献   

20.
《地学前缘(英文版)》2019,10(3):1187-1210
Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites, granodiorites, trondhjemites intrusions, however their genesis is still not clearly understood. The sampled Dadnah tonalites that intruded in the mantle section of the Semail ophiolite display arc-type geochemical characteristics, are high siliceous, low-potassic, metaluminous to weakly peraluminous, enriched in LILE, show positive peaks for Ba, Pb, Eu, negative troughs for U, Ti and occur with low δ18OH2O, moderate εSr and negative εNd values. They have crystallized at temperatures that range from ∼550 °C to ∼720 °C and pressure ranging from 4.4 kbar to 6.5 kbar. The isotopic ages from our tonalite samples range between 98.6 Ma and 94.9 Ma, slightly older and overlapping with the age of the metamorphic sole. Our field observations, mineralogical, petrological, geochemical, isotopic and melt inclusion data suggest that the Dadnah tonalites formed by partial melting (∼10%–15% continuous or ∼12% batch partial melting), accumulation of plagioclase, fractional crystallization (∼55%–57%), and interaction with their host harzburgites. These tonalites were the end result of partial melting and subsequent contamination and mixing of ∼4% oceanic sediments with ∼96% oceanic lithosphere from the subducted slab. This MORB-type slab melt composed from ∼97% recycled oceanic crust and ∼3% of the overlying mantle.We suggest that a possible protolith for these tonalites was the basaltic lavas from the subducted oceanic slab that melted during the initial stages of the supra-subduction zone (SSZ), which was forming synchronously to the spreading ridge axis. The tonalite melts mildly modified due to low degree of mixing and interaction with the overlying lithospheric mantle. Subsequently, the Dadnah tonalites emplaced at the upper part of the mantle sequence of the Semail ophiolite and are geochemically distinct from the other mantle intrusive felsic granitoids to the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号