首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Neodymium (Nd) isotope profiles were analyzed on two Baltic Mn/Fe precipitates (99/2 and TL1) from shallow water (20 m) of the Mecklenburg Bay. The age range of these Mn/Fe precipitates determined by 226Raex/Ba dating reaches from recent growth back to ∼4300 and 1000 yr BP, respectively. Over this time range, the Nd isotope composition varies from εNd (0) = −13.1 to −17.5 in the selected Baltic precipitates indicating substantial changes in the Nd isotope composition of the Baltic Sea. The lowest εNd values were recorded during the time interval of the Little Ice Age (LIA, AD ∼1350 to 1850). These minimum values indicate either an increase of the input of less radiogenic Nd from Scandinavian Archean-Proterozoic sources (εNd about −22) to the Baltic Sea or a decrease of the input of more radiogenic Nd from continental European sources (εNd about −12) and/or North Sea water (εNd about −10). Variations of both, erosive continental input and North Sea inflow may indicate a direct response of the Nd isotope signal in the Baltic Sea to climate changes during the LIA and be related to cyclic shifts in the atmospheric circulation triggered by the North Atlantic Oscillation (NAO). Another aspect that possibly influenced the input of trace elements and Nd isotopes into the Baltic Sea is the population development in the circum Baltic area during the LIA. The lowest εNd values also correspond to the medieval demographic crises that led to a significant decrease of agricultural activity and farmland. The reduction of soil erosion and enhanced regrowth of natural vegetation may have changed the amount and proportions of dissolved and suspended particulate matter transported into the Baltic Sea by rivers which in turn may have resulted in a change of the Nd isotope composition of Baltic Sea water.  相似文献   

2.
Isotopic analyses of Nd and Sr on individual microtektites and a bulk microtektite sample from Barbados show them to have a very well defined isotopic composition. These data plot on an εSrεNd diagram precisely within the narrow field determined by North American tektites (εSr ≈ 111; εNd ≈ ?6.2). They yield an Nd model age of 0.6 AE. These results show that the microtektites from the Oceanic beds of late Eocene age are derived from the same target as the North American tektites and should be associated with the same event. Samples of the deep sea sediments in which the Barbados microtektites occur are found to have isotopic signatures which appear to reflect ambient sea water and detrital sediments. They cannot be the source of Sr or Nd in the tektites. Following the arguments of Shaw and Wasserburg (1982) we conclude that the target area which produced the North American tektite field was composed of sediments (Eocambrian or younger) derived from very late Precambrian crust. Glass beads from Lake Wanapitei Crater are isotopically different from all other tektites (εSr ≈ 960; εNd ≈ ?31.4) and cannot be related to the North American tektites.  相似文献   

3.
《Gondwana Research》2013,23(3-4):1102-1109
Conodonts collected from sections near the small towns of Thong Pha Phum and Mae Sariang in the westernmost part of Thailand are used to reconstruct the neodymium (Nd) isotopic composition of seawater during the Late Devonian. The study provides the first Devonian seawater signatures recognized within the Australian shelf of northeastern Gondwana and the adjacent Paleotethys Ocean. At Thong Pha Phum site, the seawater was characterized by very low εNd values (from − 13.1 to − 18.2) and very high Sm/Nd ratios (between 0.36 and 0.66). In contrast, the seawater at the Mae Sariang site was characterized by much more radiogenic signatures (εNd values from − 8.7 to − 11.1) and uniform, low Sm/Nd ratios (between 0.20 and 0.23). Extremely low εNd values recognized at Thong Pha Phum attest to a passive margin continental setting and a paleogeographic position very close to a continental area where Paleoproterozoic and Neoarchean rocks were eroded. Thus, the isotopic data provide strong evidence that during Late Devonian time the Sibumasu terrane was situated in the proximity to the Archean cratons of Western Australia, presumably adjacent to the Carnarvon intracratonic basin. Moreover, Sibumasu may not have been situated in an outboard position on the shelf, as previously suggested, but could have been directly attached to the Australian continental crust. By contrast, low and uniform Sm/Nd ratios of seawater at Mae Sariang resemble those of the Variscan and the present-day oceanic seawaters. Therefore, a pelagic setting within the Paleotethys Ocean is postulated for the Mae Sariang succession. This conclusion is also constrained by minor temporal changes in εNd values and suggests that the Paleozoic of Mae Sariang is not part of the Sibumasu terrane but belongs to the Inthanon Zone.  相似文献   

4.
A study of lateritic soils and samples of ground and river waters was carried out in the Nsimi-Zoetele, a tropical watershed in the southern Cameroon. The Nd isotopic compositions and concentrations of Nd and Sm were determined. It was found that the Nd isotopic composition of the river waters was much more radiogenic than the parent rocks, and that the Nd in the waters is not homogeneous but is carried by different dissolved and complexed components that are not isotopically homogenized. The soil profile shows a regular increase in εNd going from the parent rock (εNd = −36) to εNd = −18 near the top of the profile. The Nd transported in the river is thus not representative of the parent rock but reflects the results of differential weathering of constituent minerals and the redeposition of REE in phosphates and a significant contribution of radiogenic Nd from dust. The concentration of Nd in the river water is far above that found in temperate climate rivers and thus this type of tropical river may play a dominant role in the marine Nd and REE budget. It is suggested that the correlation of REE with DOC is related to DOC fixing some dissolved REE but that the REE in solution is governed by other mechanisms. No major shifts were found in Sm/Nd; however, a regular progression from the parent rock through the lateritic profile was found. The upper laterite profile shows large, almost uniform depletions in all REE below Tb and enrichment above. Complementary behavior was found in the lower part of the section. The concentration of Nd relative to the immobile elements Zr and Ti in the laterite is depleted by a factor of ∼10. Th, Nd and Sm are enriched in the lowest zone sampled and must reflect redeposition of REE from the upper part of the weathering section and is associated with phosphate formation. It is concluded that the soil evolution involves both differential dissolution of primary phases from the parent rock, significant to major input of REE from atmospheric dust from other regions, and the formation of diagenetic phases, particularly phosphates.  相似文献   

5.
Three vertical profiles of seawater concentration and isotopic composition of Nd were determined for the western to central North Pacific Ocean.In the subarctic oceanic region, at depths greater than 500 m, one vertical profile of Nd isotopic composition was indistinguishable from most previously reported profiles from here. The data indicate a rather homogeneous Nd isotopic composition in the subarctic oceanic region at middle to deep depths (>500 m). Two stations in the subtropical oceanic region exhibited similar Nd isotopic composition profiles to those previously reported. The maxima εNd values at depths of 800-1000 m (εNd = −3.4 to −2.7), which correspond to the North Pacific Intermediate Water (NPIW), are found at both subtropical stations. This implies a ubiquitous distribution of NPIW showing a radiogenic εNd value in the North Pacific. The subsurface minimum at a depth of ∼200 m, which indicates the penetration of the North Pacific Tropical Water (NPTW) with an unradiogenic Nd isotopic signal, was observed at one station in the western Pacific. This station had much lower εNd than the central station at depths around 5000 m, suggesting the greater prominence of Antarctic Bottom Water (AABW) in the western subtropical Pacific than in the central to eastern subtropical Pacific.Results of a model calculation assuming boundary exchange indicate that the Hawaiian Islands play an important role in supplying radiogenic Nd to the central Pacific, similar to some continental margins.We show that Nd isotopic composition is a versatile tracer for ocean circulation and the geochemical cycle of Nd in the North Pacific. Further studies on the distribution of Nd isotopic composition in the Pacific Ocean, including the Southern Pacific, will better elucidate the circulation and geochemical cycle of Nd in the Pacific.  相似文献   

6.
Nine depth-profiles of dissolved Nd concentrations and isotopic ratios (εNd) were obtained in the Levantine Basin, the Ionian, the Aegean, the Alboran Seas and the Strait of Gibraltar. Thirteen core-top sediments and Nile River particle samples were also analyzed (leached with 1 N HCl, acetic acid or hydroxylamine hydrochloride). The seawater εNd values become more radiogenic during the eastward circulation in the Mediterranean Sea. The relationship between salinity and the seawater εNd shows that the Nd isotopic signature is more conservative than salinity in the Mediterranean Sea. The water mass with the highest εNd (−4.8) is found at about 200 m in the easternmost Levantine basin. The average εNd value for deep waters is −7.0 in the eastern basin, 2.5 ε-units higher than in the western basin. By examining the sensitivity of seawater εNd to Nd inputs from the Nile, we conclude that the most significant radiogenic Nd source is partially dissolved Nile River particles. The Nd flux from the Nile River water has a minor influence on the Mediterranean seawater εNd. Except for the easternmost Levantine Basin, the leachate εNd values are consistent with the seawater values. In the easternmost Levantine Basin, the leachate εNd values obtained with HCl leaching are systematically higher than the seawater values. The relationship between leachate and residual εNd values indicates that the HCl leaching partially dissolves lithogenic Nd, so the dissolution of Nile River particles is the cause of the observed shift. Some εNd values obtained with hydroxylamine hydrochloride leaching are higher than those obtained with HCl leaching. Although the reason for this shift is not clear, 87Sr/86Sr successfully detects the presence of a nonmarine component in the leachate. Our results suggest that leaching performance may vary with the mineralogy of marine sediments, at least in the case of the Mediterranean Sea.  相似文献   

7.
Analyses of the Nd isotope composition of conodonts from the Anti-Atlas (Morocco), the Montagne Noire (France) and the Rhenohercynian domain (Germany) provide insight into the temporal and lateral variations in seawater geochemistry in the western part of the Variscan Sea during the Late Devonian. Most of the isotopic excursions accurately record changes in sea level. The εNd values decreased during regression phases when erosion accelerated supply of unradiogenic Nd from old continental sources. A rise in sea level generated a positive shift in εNd values due to input of more radiogenic oceanic water into the seawater reservoir of the shelf areas. The method has great potential for sea-level research, paleoceanography and correlation because sea-level changes can be precisely recognized even in successions with uniform, monotonous lithologies. However, it has a significant limitation being valid only in epeiric seas and shelf areas. We have used the Nd isotope record to reconstruct the eustatic sea-level changes in late Frasnian–early Famennian time. The onset of the organic-rich Kellwasser units coincides with negative trends in εNd values. This accords with oxygen deficiency at the sea bottom being initiated by short-term regressive events, which in turn would be consistent with cooling periods of glacial origin, as previous authors have suggested.  相似文献   

8.
Sr and Nd isotopes were applied to 5 soil profiles from the Muravera area, in south-eastern Sardinia.All the soils, which have developed during the Quaternary on the Lower Paleozoic metamorphic basement except for one on Eocene carbonates, are located far from major sources of pollution. Therefore, they are suitable for testing pedogenic processes and geochemical evolution to benefit for environmental studies.The Sr isotopic ratios range largely (δ87Sr = 1.7–65.9‰), even in each soil profile. In particular, the observed increase of δ87Sr with depth in the most of the metamorphic rock-based soils can be accounted for by the downward decrease of Sr contributions from organic matter and Saharan dust, both displaying lower isotopic ratios than the soil bedrocks. The carbonate rock-based soil exhibits δ87Sr higher (1.7–18.1‰) than the bedrock, indicating a significant contribution of radiogenic Sr from the siliciclastic fraction of the soil, and probably from dust input. The Nd isotopic ratios are slightly variable through the profiles (ɛNd from −7.8 to −14.5), confirming little mobility of Nd and Sm during the pedogenesis. Among the minerals present in the soils, phosphates, albite, and calcite are those important in providing low radiogenic Sr and Nd to organic matter of the soils.Lastly, this isotopic study has in particular allowed for evaluating the potential proportion of contribution of Saharan dust to south-eastern Sardinia, thus corroborating the findings of other studies related to soils from the central-western Mediterranean.  相似文献   

9.
The Ordovician Ponón Trehué Formation is the only early Palaeozoic sedimentary sequence known to record a primary contact with the Grenvillian-age basement of the Argentinean Cuyania terrane, in its southwards extension named the San Rafael block. Petrographic and geochemical data indicate contributions from a dominantly upper continental crustal component and a subordinated depleted component. Nd isotopes indicate εNd of ? 4.6, ?Sm/Nd ? 0.36 and TDM 1.47 Ga in average. Pb-isotope ratios display average values for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb of 19.15, 15.69 and 38.94 respectively. U–Pb detrital zircon ages from the Ponón Trehué Formation cluster around values of 1.2 Ga, indicating a main derivation from a local basement source (Cerro La Ventana Formation). The Upper Ordovician Pavón Formation records a younger episode of clastic sedimentation within the San Rafael block, and it shows a more complex detrital zircon age population (peaks at 1.1 and 1.4 Ga as well as Palaeoproterozoic and Neoproterozoic detrital grains). Detailed comparison between the two Ordovician clastic units indicates a shift with time in provenance from localized basement to more regional sources. Middle to early Upper Ordovician age is inferred for accretion of the Cuyania terrane to the proto-Andean margin of Gondwana.  相似文献   

10.
There is a broad correlation between the εNd values for rivers (including both the water and the particulate material it carries) and the age of the source terrain. This paper presents Nd isotope distribution data for soil, soil water, groundwater, and stream water samples gathered in a small catchment in northern Sweden. The results show that the release of Nd and Sm from boreal forests into streams and, eventually, into the oceans is more complicated than previously realized. The weathering of till causes changes in both the Nd isotopic composition and Sm/Nd ratios. Both the Sm/Nd ratio and εNd were higher in strongly weathered soils horizons than in less weathered till, since minerals with high Sm/Nd ratios were, on average, more resistant to weathering than those with low Sm/Nd ratios. In contrast to the situation for the main minerals and the major elements, the weathering of rare earth elements (REE) was not restricted to the E-horizon: the measured REE concentrations continued to increase with depth in the C-horizon. In addition, REE released by weathering in the upper parts of the soil profile were partly secondarily retained at deeper levels. Therefore, the dissolved Nd released by weathering in the upper soil horizons was trapped and did not enter the groundwater directly. Rather, the Nd in the groundwater largely originated from weathering within the groundwater zone. However, this was not the only source of Nd in the stream water. The Nd isotope composition and Sm/Nd ratio were determined by the mixing between of Nd and Sm in the groundwater and REE-carrying organic material washed out of the soil profile. The groundwater close to the stream reaches the upper soil horizons during high discharge events such as snowmelts, and organic matter carrying Nd and Sm is washed out of the soils and thus released into the stream. Therefore, the Nd exported from catchment is derived from both the weathering within the groundwater zone, and the organic matter washed out from the soil. If longer timescales with more advanced weathering stages in the groundwater zone are considered, it cannot be ruled out that there will be a shift towards more radiogenic values in the exported Nd. Recorded shifts in the Nd isotopic composition in the ocean may thus not only reflect changed source regions, but also the weathering history of the same source region.  相似文献   

11.
The Pb, Sr and Nd isotopic compositions of biomonitors (lichen, moss, bark) and soil litter from different regions in the Rhine valley, as well as of <0.45 μm particles separated out of ice of the Rhône and Oberaar glaciers and lichens from the Swiss Central Alps, have been determined in order to deduce the natural baseline of the atmospheric isotopic compositions of these regions, which are suggested to be close to the isotopic compositions of the corresponding basement rocks or soils at the same sites. 206Pb/207Pb and 87Sr/86Sr isotope ratios are positively correlated. Most polluted samples from traffic-rich urban environments have the least radiogenic Pb and Sr isotopic compositions with 206Pb/207Pb and 87Sr/86Sr ratios of 1.11 and 0.7094, respectively. These ratios are very different from those of the atmospheric baseline for the Vosges mountains and the Rhine valley (206Pb/207Pb: 1.158–1.167; 87Sr/86Sr: 0.719–0.725; εNd: −7.5 to −10.1). However, this study indicates that the baseline of the atmospheric natural Pb and Sr isotopic compositions is affected by anthropogenic (traffic, industrial and urban) emissions even in remote areas. Lichen samples from below the Rhône and Oberaar glaciers reflect the baseline composition close to the Grimsel pass in the Central Swiss Alps (87Sr/86Sr: 0.714 − 0.716; εNd: −3.6 to −8.1). The 143Nd/144Nd isotope ratios are highly variable (8ε units) and it is suggested that the variation of the 143Nd/144Nd is controlled by wet deposition and aerosols originating from the regional natural and industrial urban environments and from more distant regions like the Sahara in North Africa. The least anthropogenetically affected samples collected in remote areas have isotopic compositions closest to those of the corresponding granitoid basement rocks.  相似文献   

12.
The fluorite-bearing hydrothermal mineralization in Sardinia mainly occurs within Paleozoic volcanic and metasedimentary rocks. Only 3 occurrences are located in volcanic and siliciclastic Cenozoic rocks. Most Sardinian fluorites exhibit relatively high rare earth and Y (REY) contents, strong positive Y anomalies, slightly negative Ce and generally positive Eu anomalies. These features indicate that the REY were mobilized mainly from non-carbonate rocks. Neither Sr nor Nd isotopes can be used to date radiometrically the Sardinian fluorites. However, the measured Sr-isotope ratios of the fluorites hosted by Paleozoic rocks fit mixing lines in the 1000/Sr versus 87Sr/86Sr plot once recalculated at 280 Ma, suggesting that the age inferred for the correction probably represents that of the formation of the fluorite mineralization. Mixing likely occurred between diluted surficial waters and brines circulating mainly through the Lower Paleozoic metasedimentary basement. The Cenozoic fluorites exhibit chemical and isotopic features similar to those of the Paleozoic fluorites, except the Nuraghe Onigu fluorite displaying a possible contribution of Sr from Cenozoic magmatic rocks. The initial εNd values of the Paleozoic fluorites fit the age proposed for the formation of the deposits. Moreover, the values suggest that radiogenic Nd was provided to the fluids from the Ordovician siliciclastic basement, except for 3 deposits where the potential source rocks of Nd were mainly Ordovician acidic magmatic rocks. The initial εNd values of the Cenozoic fluorites suggest a provenance of Nd essentially from the leaching of Variscan granitoids.  相似文献   

13.
Rare earth elements (REE), while not essential for the physiologic functions of animals, are ingested and incorporated in ppb concentrations in bones and teeth. Nd isotope compositions of modern bones of animals from isotopically distinct habitats demonstrate that the 143Nd/144Nd of the apatite can be used as a fingerprint for bedrock geology or ambient water mass. This potentially allows the provenance and migration of extant vertebrates to be traced, similar to the use of Sr isotopes. Although REE may be enriched by up to 5 orders of magnitude during diagenesis and recrystallization of bone apatite, in vivo143Nd/144Nd may be preserved in the inner cortex of fossil bones or enamel. However, tracking the provenance of ancient or extinct vertebrates is possible only for well-preserved archeological and paleontological skeletal remains with in vivo-like Nd contents at the ppb-level. Intra-bone and -tooth REE analysis can be used to screen for appropriate areas. Large intra-bone Nd concentration gradients of 101-103 are often measured. Nd concentrations in the inner bone cortex increase over timescales of millions of years, while bone rims may be enriched over millenial timescales. Nevertheless, εNd values are often similar within one εNd unit within a single bone. Larger intra-bone differences in specimens may either reflect a partial preservation of in vivo values or changing εNd values of the diagenetic fluid during fossilization. However, most fossil specimens and the outer rims of bones will record taphonomic 143Nd/144Nd incorporated post mortem during diagenesis. Unlike REE patterns, 143Nd/144Nd are not biased by fractionation processes during REE-uptake into the apatite crystal lattice, hence the εNd value is an important tracer for taphonomy and reworking. Bones and teeth from autochthonous fossil assemblages have small variations of ±1 εNd unit only. In contrast, fossil bones and teeth from over 20 different marine and terrestrial fossil sites have a total range of εNd values from -13.0 to 4.9 (n = 80), often matching the composition of the embedding sediment. This implies that the surrounding sediment is the source of Nd in the fossil bones and that the specimens of this study seem not to have been reworked. Differences in εNd values between skeletal remains and embedding sediment may either indicate reworking of fossils and/or a REE-uptake from a diagenetic fluid with non-sediment derived εNd values. The latter often applies to fossil shark teeth, which may preserve paleo-seawater values. Complementary to εNd values, 87Sr/86Sr can help to further constrain the fossil provenance and reworking.  相似文献   

14.
The distribution of neodymium isotopes in Arctic Ocean basins   总被引:1,自引:0,他引:1  
Nd concentration and isotope data have been obtained for the Canada, Amundsen, and Makarov Basins of the Arctic Ocean. A pattern of high Nd concentrations (up to 58 pM) at shallow depths is seen throughout the Arctic, and is distinct from that generally seen in other oceans where surface waters are relatively depleted. A range of isotopic variations across the Arctic and within individual depth profiles reflects the different sources of waters. The dominant source of water, and so Nd, is the Atlantic Ocean, with lesser contributions from the Pacific and Arctic Rivers. Radiogenic isotope Nd signatures (up to εNd = −6.5) can be traced in Pacific water flowing into the Canada Basin. Waters from rivers draining older terrains provide very unradiogenic Nd (down to εNd = −14.2) that can be traced in surface waters across much of the Eurasian Basin. A distinct feature of the Arctic is the general influence of the shelves on the Nd concentrations of waters flowing into the basins, either from the Pacific across the Chukchi Sea, or from across the extensive Siberian shelves. Water-shelf interaction results in an increase in Nd concentration without significant changes in salinity in essentially all waters in the Arctic, through processes that are not yet well understood. In estuarine regions other processes modify the Nd signal of freshwater components supplied into the Arctic Basin, and possibly also contribute to sedimentary Nd that may be subsequently involved in sediment-water interactions. Mixing relationships indicate that in estuaries, Nd is removed from major river waters to different degrees. Deep waters in the Arctic are higher in Nd than the inflowing Atlantic waters, apparently through enrichments of waters on the shelves that are involved in ventilating the deep basins. These enrichments generally have not resulted in major shifts in the isotopic compositions of the deep waters in the Makarov Basin (εNd ∼ −10.5), but have created distinctive Nd isotope signatures that were found near the margin of the Canada Basin (with εNd ∼ −9.0). The deep waters of the Amundsen Basin are also distinct from the Atlantic waters (with εNd = −12.3), indicating that there has been limited inflow from the adjacent Makarov Basin through the Lomonosov Ridge.  相似文献   

15.
The chemical composition of surface water in the photic zone of the Precambrian ocean is almost exclusively known from studies of stromatolitic carbonates, while banded iron formations (IFs) have provided information on the composition of deeper waters. Here we discuss the trace element and Nd isotope geochemistry of very shallow-water IF from the Pongola Supergroup, South Africa, to gain a better understanding of solute sources to Mesoarchean shallow coastal seawater. The Pongola Supergroup formed on the stable margin of the Kaapvaal craton ∼2.9 Ga ago and contains banded iron formations (IFs) that represent the oldest documented Superior-type iron formations. The IFs are near-shore, pure chemical sediments, and shale-normalized rare earth and yttrium distributions (REYSN) exhibit positive LaSN, GdSN, and YSN anomalies, which are typical features of marine waters throughout the Archean and Proterozoic. The marine origin of these samples is further supported by super-chondritic Y/Ho ratios (average Y/Ho = 42). Relative to older Isua IFs (3.7 Ga) from Greenland, and younger Kuruman IFs (2.5 Ga) also from South Africa, the Pongola IFs are depleted in heavy rare earth elements (HREE), and appear to record variations in solute fluxes related to sea level rise and fall. Sm-Nd isotopes were used to identify potential sediment and solute sources within pongola shales and IFs. The ?Nd(t) for Pongola shales ranges from −2.7 to −4.2, and ?Nd(t) values for the coeval iron-formation samples (range −1.9 to −4.3) are generally indistinguishable from those of the shales, although two IF samples display ?Nd(t) as low as −8.1 and −10.9. The similarity in Nd isotope signatures between the shale and iron-formation suggests that mantle-derived REY were not a significant Nd source within the Pongola depositional environment, though the presence of positive Eu anomalies in the IF samples indicates that high-T hydrothermal input did contribute to their REY signature. Isotopic mass balance calculations indicate that most (?72%) of the Nd in these seawater precipitates was derived from continental sources. If previous models of Fe-Nd distributions in Archean IFs are applied, then the Pongola IFs suggest that continental fluxes of Fe to Archean seawater were significantly greater than are generally considered.  相似文献   

16.
New field, petrological, geochemical, and geochronological data (U–Pb and Sm–Nd) for Ordovician rock units in the southeastern Puna, NW Argentina, indicate two lithostratigraphic units at the eastern–northeastern border of salar Centenario: (1) a bimodal volcanosedimentary sequence affected by low- to medium-grade metamorphism, comprising metasediments associated with basic and felsic metavolcanic rocks, dated 485 ± 5 Ma, and (2) a plutonic unit composed of syenogranites to quartz-rich leucogranites with U–Pb zircon ages between 462 ± 7 and 475 ± 5 Ma. Felsic metavolcanic and plutonic rocks are peraluminous and show similar geochemical differentiation trends. They also have similar Sm–Nd isotopic compositions (TDM model ages of 1.54–1.78 Ga; εNd(T) values ranging from −3.2 to −7.5) that suggest a common origin and derivation of the original magmas from older (Meso-Paleoproterozoic?) continental crust. Mafic rocks show εNd(T) ranging from +2.3 to +2.5, indicating a depleted mantle source. The data presented here, combined with those in the literature, suggest Ordovician magmatism mainly recycles preexisting crust with minor additions of juvenile mantle-derived material.  相似文献   

17.
Advances in field observations and experimental petrology on anatectic products have motivated us to investigate the geochemical consequences of accessory mineral dissolution and nonmodal partial melting processes. Incorporation of apatite and monazite dissolution into a muscovite dehydration melting model allows us to examine the coupling of the Rb-Sr and Sm-Nd isotope systems in anatectic melts from a muscovite-bearing metasedimentary source. Modeling results show that (1) the Sm/Nd ratios and Nd isotopic compositions of the melts depend on the amount of apatite and monazite dissolved into the melt, and (2) the relative proportion of micas (muscovite and biotite) and feldspars (plagioclase and K-feldspar) that enter the melt is a key parameter determining the Rb/Sr and 87Sr/86Sr ratios of the melt. Furthermore, these two factors are not, in practice, independent. In general, nonmodal partial melting of a pelitic source results in melts following one of two paths in εNd-87Sr/86Sr ratio space. A higher temperature, fluid-absent path (Path 1) represents those partial melting reactions in which muscovite/biotite dehydration and apatite but not monazite dissolution play a significant role; the melt will have elevated Rb/Sr, 87Sr/86Sr, Sm/Nd, and εNd values. In contrast, a lower temperature, fluid-fluxed path (Path 2) represents those partial melting reactions in which muscovite/biotite dehydration plays an insignificant role and apatite but not monazite stays in the residue; the melt will have lower Rb/Sr, 87Sr/86Sr, Sm/Nd, and εNd values than its source. The master variables controlling both accessory phase dissolution (and hence the Sm-Nd system), and melting reaction (and hence the Rb-Sr systematics) are temperature and water content. The complexity in Sr-Nd isotope systematics in metasediment-derived melts, as suggested in this study, will help us to better understand the petrogenesis for those granitic plutons that have a significant crustal source component.  相似文献   

18.
The neodymium concentration, CNd, and isotopic composition, εNd, in seawater have been determined in the water column at five sites in the Barents Sea-Fram Strait area where most of the water exchange between the Arctic Ocean and the North Atlantic takes place. In the main Arctic Ocean inflow branch across the Barents Sea the concentration and isotopic composition (CNd = 15.5 pmol/kg and εNd = −10.8) are similar to those reported for the northeastern Nordic Seas, which is consistent with this region being a source area for the Arctic inflow. Due to the addition of Nd from Svalbard shelf sediments, the CNd in the surface waters above 150 m, in the Fram Strait inflow branch is higher by a factor of 2 and the εNd is shifted to lower values (−11.8).In the stratified Nansen Basin, where cold low salinity water overlies warmer Atlantic water the CNd and εNd do not vary with the vertical temperature-salinity structure but are essentially constant and similar to those of the Atlantic inflow throughout the entire water column, down to 3700 m depth, which indicates that the Nd is to a large extent of Atlantic origin.Compared to the Atlantic inflow water, the Nd in the major Arctic Ocean outflow, the Fram Strait, show higher CNd in the surface waters above 150 m, and a higher εNd (−9.8) throughout the entire water column down to 1300 m depth. Sources for the more radiogenic Nd isotopic composition in deep water of the Fram Strait outflow most likely involve boundary exchange with sediments on the shelf and slope as the water passes along the Canadian archipelago. River water is a possible source in the surface water but it also seems likely that Pacific water Nd, modified by interactions on the shelf, is an important component in the Fram Strait surface outflow. Changes in the relative proportions of inflow of river water and flow of Pacific water through the Arctic Ocean could thus influence the isotopic composition of Nd in the North Atlantic.  相似文献   

19.
In order to better understand the origin and character of late-Archean mantle beneath the Baltic Shield, we have analyzed mafic-ultramafic rocks from one of the best-preserved, least-metamorphosed regions of Karelia, Russia. Trace-element data for samples from the ultramafic and gabbronorite zones of the large (700 km2) Burakovsky layered intrusion (BLI) are presented. Samples from the ultramafic zone are LREE enriched, indicating that they formed from a LREE-enriched parental magma. Indeed, a calculated parental magma for the ultramafic zone has a (Ce/Yb)n ratio of 2.6, a (Nd/Sm)n ratio of 1.1, and a (Dy/Yb)n ratio of 1.6. The LREE enrichment in the parental magma suggests either that the source region was LREE enriched or that the melt was contaminated by crust en route to the BLI magma chamber. Samples from the gabbronorite zone also are LREE enriched and indicate two distinct parental magmas. Group-I magmas, from the lower part of the gabbronorite zone, have (Ce/Yb)n ratios of 6.9 to 13.9, whereas Group-II magmas, from the upper portion, have (Ce/Yb)n ratios of 15.8 to 27.3. Volcanic rocks in Karelia that are coeval to the Burakovsky layered intrusion, as well as volcanic rocks of a similar age in other parts of the Baltic Shield, also are LREE enriched. Furthermore, the BLI has an initial εNd value of ?2.0, and other layered intrusions in the Baltic Shield of similar age also have negative initial εNd values (e.g., ?1.8 to ?2.2). The consistency of these εNd values for layered intrusions throughout Karelia precludes contamination as a controlling factor in their isotopic compositions. All of these data are most consistent with the development of LREE-enriched mantle beneath the eastern Baltic Shield, prior to the earliest Proterozoic.  相似文献   

20.
According to this paper, the juvenile crust of the Chingiz Range Caledonides (Eastern Kazakhstan) was formed due to suprasubduction magmatism within the Early Paleozoic island arcs developed on the oceanic crust during the Cambrian–Early Ordovician and on the transitional crust during the Middle–Late Ordovician, as well as to the attachment to the arcs of accretionary complexes composed of various oceanic structures. Nd isotopic compositions of the rocks in all island-arc complexes are very similar and primitive (εNd(t) from +4.0 to +7.0) and point to a short crustal prehistory. Further increase in the mass and thickness of the crust of the Chingiz Range Caledonides was mainly due to reworking of island-arc complexes in the basement of the Middle and Late Paleozoic volcanoplutonic belts expressed by the emplacement of abundant granitoids. All Middle and Late Paleozoic granitoids have high positive values of εNd(t) (at least +4), which are slightly different from Nd isotopic compositions of the rocks in the Lower Paleozoic island-arc complexes. Granitoids are characterized by uniform Nd isotopic compositions (<2–3 ε units for granites with a similar age), and thus we can consider the Chingiz Range as the region of the Caledonian isotope province with an isotopically uniform structure of the continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号