首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrolysis with and without tetramethylammonium hydroxide (TMAH), vacuum pyrolysis, and solid state 15N nuclear magnetic resonance (NMR) were used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites. Conventional pyrolysis reveals a set of poorly functionalized aromatic compounds, ranging from one to four rings and with random methyl substitutions. These compounds are in agreement with spectroscopic and pyrolytic results previously reported. For the first time, TMAH thermochemolysis was used to study extraterrestrial material. The detection of aromatics bearing methyl esters and methoxy groups reveals the occurrence of ester and ether bridges between aromatic units in the macromolecular network.No nitrogen-containing compounds were detected with TMAH thermochemolysis, although they are a common feature in terrestrial samples. Along with vacuum pyrolysis results, thermochemolysis shows that nitrogen is probably sequestered in condensed structures like heterocyclic aromatic rings, unlike oxygen, which is mainly located within linkages between aromatic units. This is confirmed by solid state 15N NMR performed on IOM from Orgueil, showing that nitrogen is present in pyrrole, indole, and carbazole moieties.These data show that amino acids are neither derived from the hydrolysis of IOM nor from a common precursor. In order to reconcile the literature isotopic data and the present molecular results, it is proposed that aldehydes and ketones (1) originated during irradiation of ice in space and (2) were then mobilized during the planetesimal hydrothermalism, yielding the formation of amino acids. If correct, prebiotic molecules are the products of the subsurface chemistry of planetesimals and are thus undetectable through astronomical probes.  相似文献   

2.
The highly aromatic structure of the macromolecular organic matter (OM) of the Murchison and Orgueil meteorites was recently shown to contain free organic radicals which are concentrated in micro-regions in contrast with terrestrial samples which always show an homogeneous distribution of radicals. An additional signature is revealed, in the present study, by the evolution of the radical concentration with temperature. Whereas in terrestrial samples, this concentration is independent of temperature (Curie magnetism), a significant increase is observed above 150 K in the two meteorites. Based on the electronic structure of organic radicals, calculated by Extended Hückel and Density Functional methods, this behavior was assigned to the occurrence of diradicaloid moieties hosted by aromatic structures of 10 to 15 rings and having a quinoidal structure. They represent 40 and 25% of the total radicals in Orgueil and Murchison, respectively. The search for the cosmochemical interpretation of this unique observation should open a new field of experimental investigations.  相似文献   

3.
To study the detailed structural and isotopic heterogeneity of the insoluble organic matter (IOM) of the Murchison meteorite, we performed two types of pyrolytic experiments: gradual pyrolysis and stepwise pyrolysis. The pyrolysates from the IOM contained 5 specific organic groups: aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-bearing compounds, nitrogen-bearing compounds, and oxygen-bearing compounds. The release temperatures and the compositions of these pyrolysates demonstrated that the IOM is composed of a thermally unstable part and a thermally stable part. The thermally unstable part mainly served as the linkage and substituent portion that bound the thermally stable part, which was dispersed throughout the IOM. The linkage and substituent portion consisted of aliphatic hydrocarbons from C4 to C8, aromatic hydrocarbons with up to 6 rings, sulfo and thiol groups (the main reservoirs of sulfur in the IOM), and carboxyl and hydroxyl groups (the main reservoirs of oxygen). However, the thermally stable part was composed of polycyclic aromatic hydrocarbons (PAHs) containing nitrogen heterocycles in the IOM. Isotopic data showed that the aliphatic and aromatic hydrocarbons in the linkage and substituent portion were rich in D and 13C, while the thermally stable part was deficient in D and 13C. The structural and isotopic features suggested that the IOM was formed by mixing sulfur- and oxygen-bearing compounds rich in D and 13C (e.g., polar compounds in the interstellar medium (ISM)) and nitrogen-bearing PAHs deficient in D and 13C (e.g., polymerized compounds in the ISM).  相似文献   

4.
Ruthenium tetroxide oxidation was used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites and especially to characterize the aliphatic linkages. Already applied to various terrestrial samples, ruthenium tetroxide is a selective oxidant which destroys aromatic units, converting them into CO2, and yields aliphatic and aromatic acids. In our experiment on chondritic IOM, it produces mainly short aliphatic diacids and polycarboxylic aromatic acids. Some short hydroxyacids are also detected.Aliphatic diacids are interpreted as aliphatic bridges between aromatic units in the chemical structure, and polycarboxylic aromatic acids are the result of the fusion of polyaromatic units. The product distribution shows that aliphatic links are short with numerous substitutions. No indigenous monocarboxylic acid was detected, showing that free aliphatic chains must be very short (less than three carbon atoms). The hydroxyacids are related to the occurrence of ester and ether functional groups within the aliphatic bridges between the aromatic units. This technique thus allows us to characterize in detail the aliphatic linkages of the IOMs, and the derived conclusions are in agreement with spectroscopic, pyrolytic, and degradative results previously reported.Compared to terrestrial samples, the aliphatic part of chondritic IOM is shorter and highly substituted. Aromatic units are smaller and more cross-linked than in coals, as already proposed from NMR data. Orgueil and Murchison IOM exhibit some tiny differences, especially in the length of aliphatic chains.  相似文献   

5.
Hydrogen which is highly enriched in deuterium is present in organic matter in a variety of meteorites including non-carbonaceous chondrites. The concentrations of this hydrogen are quite large. For example Renazzo contains 140 μmoles/g of the 10,000‰ δD hydrogen. The DH ratios of hydrogen in the organic matter vary from 8 × 10?5 to 170 × 10?5 (δD ranges from ? 500‰ to 10,000‰) as compared to 16 × 10?5 for terrestrial hydrogen and 2 × 10?5 for cosmic hydrogen. The majority of the unequilibrated primitive meteorites contain hydrogen whose DH ratios are greater than 30 × 10?5. If the DH ratios in these compounds were due to enrichment relative to cosmic hydrogen by isotope exchange reactions, it would require that these reactions take place below 150 K. In addition the organic compounds having DH ratios above 50 × 10?5 would require temperatures of formation of < 120 K. These types of deuterium enrichments must take place by ion-molecule reactions in interstellar clouds where both ionization and low temperatures exist. Astronomically observed DH ratios in organic compounds in interstellar clouds are typically 180 × 10?5 and range between about 40 × 10?5 and 5000 × 10?5. The DH values we have determined are the lower limits for the organic compounds derived from interstellar molecules because all processes subsequent to their formation, including terrestrial contamination, decrease their DH ratios.In contrast, the DH ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites we have analyzed with an average value of 14 × 10?5; very similar to the terrestrial value. These phyllosilicates values suggest equilibration of H2O with H2 in the solar nebula at temperatures of about 200 K and higher.The 13C12C ratios of organic matter, irrespective its DH ratio, lie well within those observed for the earth. If organic matter originated in the interstellar medium, our data would indicate that the 13C12C ratio of interstellar carbon five billion years ago was similar to the present terrestrial value.Our findings suggest that other interstellar material, representing various inputs from various stars, in addition to the organic matter is preserved and is present in the meteorites which contain the high DH ratios. We feel that some elements existing in trace quantities which possess isotopic anomalies in the meteorites may very well be such materials.  相似文献   

6.
Small (1.0-9.2%) L-enantiomer excesses were found in six alpha-methyl-alpha-amino alkanoic acids from the Murchison (2.8-9.2%) and Murray (1.0-6.0%) carbonaceous chondrites by gas chromatography-mass spectroscopy of their N-trifluoroacetyl or N-pentafluoropropyl isopropyl esters. These amino acids [2-amino-2,3-dimethylpentanoic acid (both diastereomers), isovaline, alpha-methyl norvaline, alpha-methyl valine, and alpha-methyl norleucine] are either unknown or rare in the terrestrial biosphere. Enantiomeric excesses were either not observed in the four alpha-H-alpha-amino alkanoic acids analyzed (alpha-amino-n-butyric acid, norvaline, alanine, and valine) or were attributed to terrestrial contamination. The substantial excess of L-alanine reported by others was not found in the alanine in fractionated extracts of either meteorite. The enantiomeric excesses reported for the alpha-methyl amino acids may be the result of partial photoresolution of racemic mixtures caused by ultraviolet circularly polarized light in the presolar cloud. The alpha-methyl-alpha-amino alkanoic acids could have been significant in the origin of terrestrial homochirality given their resistance to racemization and the possibility for amplification of their enantiomeric excesses suggested by the strong tendency of their polymers to form chiral secondary structure.  相似文献   

7.
Abundance, bulk chemical composition and sources of the organic matter in the surface horizon of the permanently water-covered part of an intermittently water-covered marsh were investigated. Lipids, insoluble non-hydrolysable macromolecular organic matter and black carbon fractions were isolated and examined via Rock-Eval pyrolysis, elemental analysis, Fourier transform infrared spectroscopy, isotopic (δ13C, δ15N) methods and high resolution transmission electron microscopy. Integration of bulk Rock-Eval data, elemental and isotopic composition, together with spectroscopic features, suggested immature Type III organic matter derived mainly from C3 vascular plants. The distribution of n-alkanes from the non-aromatic lipid fraction exhibited the importance of emergent macrophytes and terrestrial plants, as well as a moderate input of submerged/floating macrophytes to the source biomass. Mathematical deconvolution of a Rock-Eval pyrogram revealed highly heterogeneous organic matter composed of a mixture of thermally labile biopolymers (36%) at various stages of decomposition, as well as humic substances and highly refractory organic matter (64%) in the whole sample. Markedly lower heterogeneity and aliphaticity, together with a higher proportion of humic substances and highly refractory organic matter (ca. 84%) were observed in the macromolecular fraction. An abundant contribution of black carbon to the macromolecular fraction was indicated by mathematical deconvolution of the Rock-Eval pyrogram and was clearly shown by the isolation of this fraction and chemical oxidation. The black carbon fraction appeared to account for ca. half of the macromolecular fraction, the carbon in these two fractions representing 30% and 14% of the initial carbon, respectively. The electron microscopy observations directly evidenced the presence of black carbon, which was comprised of both amorphous poorly organized particles and highly ordered onion-shaped particles.  相似文献   

8.
Use of EPR for analyzing insoluble organic matter of rocks   总被引:1,自引:0,他引:1  
  相似文献   

9.
We have conducted the first systematic analyses of molecular distribution and δD values of individual compounds in pyrolysates of insoluble organic matter (IOM) from different carbonaceous chondrite groups, using flash pyrolysis coupled to gas chromatography-mass spectrometry and compound-specific D/H analysis. IOM samples from six meteorites of different classifications, Elephant Moraine (EET) 92042 (CR2), Orgueil (CI1), Allan Hills (ALH) 83100 (CM1/2), Murchison (CM2), ALH 85013 (CM2), and Tagish Lake (C2) were isolated and studied. Except for the pyrolysate of Tagish Lake IOM, pyrolysates of all five meteorite IOM samples were dominated by an extensive series of aromatic (C1 to C7 alkyl-substituted benzenes, C0 to C2 alkyl-substituted naphthalenes), with aliphatic (straight chain and branched C10 to C15 alkanes) hydrocarbons and several S- and O- containing compounds (C1 to C2 alkylthiophenes, benzothiophene, benzaldehyde) being also present. The strong similarity in the pyrolysates of different carbonaceous chondrites suggests certain common characteristics in the formation mechanisms of IOM from different meteorites. The Tagish Lake IOM sample is unique in that its pyrolysate lacks most of the alkyl-substituted aromatic hydrocarbons detected in other meteorite IOM samples, suggesting distinctively different formation processes. Both bulk δD values of meteorite IOMs and weighted-average δD values of individual compounds in pyrolysates show a decreasing trend: CR2 > CI1 > CM2 > C2 (Tagish Lake), with the EET 92042 (CR2) IOM having the highest δD values (∼2000‰ higher than other samples). We attribute the high D contents in the IOM to primitive interstellar organic sources.  相似文献   

10.
The hydroxy acid suites extracted from the Murchison (MN), GRA 95229 (GRA) and LAP 02342 (LAP) meteorites have been investigated for their molecular, chiral and isotopic composition. Substantial amounts of the compounds have been detected in all three meteorites, with a total abundance that is lower than that of the amino acids in the same stones. Overall, their molecular distributions mirror closely that of the corresponding amino acids and most evidently so for the LAP meteorite. A surprising l-lactic acid enantiomeric excess was found present in all three stones, which cannot be easily accounted by terrestrial contamination; all other compounds of the three hydroxy acid suites were found racemic. The branched-chain five carbon and the diastereomer six-carbon hydroxy acids were also studied vis-a-vis the corresponding amino acids and calculated ab initio thermodynamic data, with the comparison allowing the suggestion that meteoritic hydroxyacid at these chain lengths formed under thermodynamic control and, possibly, at a later stage than the corresponding amino acids. 13C and D isotopic enrichments were detected for many of the meteoritic hydroxy acids and found to vary between molecular species with trends that also appear to correlate to those of amino acids; the highest δD value (+3450‰) was displayed by GRA 2-OH-2-methylbutyric acid. The data suggest that, while the amino- and hydroxy acids likely relate to common presolar precursor, their final distribution in meteorites was determined to large extent by the overall composition of the environments that saw their formation, with ammonia being the determining factor in their final abundance ratios.  相似文献   

11.
The insoluble organic material in the Orgueil (Cl) chondrite was analyzed by combined high vacuum pyrolysis-gas chromatography-mass spectrometry. Stepwise pyrolyses at 150, 300, 450 and 600°C of Orgueil meteorite powder which had been exhaustively extracted with solvents yielded a series of alkenes and alkanes to C8, an extensive series of alkylbenzene isomers, thiophene, alkylthiophenes, and benzothiophene, together with the nitrogen- and oxygen-containing breakdown products, acetonitrile, acrylonitrile, benzonitrile, acetone and phenol. The Orgueil polymer fragmentation products are very similar both qualitatively and quantitatively to pyrolysis products of solvent-extracted Pueblito de Allende (C3) chondrite described in the literature.Changes in the relative abundances of polymer degradation products between 150 and 600°C imply the preferential loss of aliphatic and certain heteroatomic portions of the polymer at lower temperatures to leave highly condensed aromatic and heteroaromatic portions of the polymer which begin to fragment only at 450–600°C. The Orgueil polymer-like matter thus appears to be a complex mixture of polymerized materials having different thermal stabilities. Similarities between vacuum pyrolyzates of the Orgueil polymer and terrestrial kerogen suggest the possibility that meteorite organic matter may have been subjected on the meteorite parent bodies to diagenetic processes similar to those by which terrestrial kerogen is formed.  相似文献   

12.
Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group’s IOM. The fraction of aromatic carbon increases as CR2 < CI1 < CM2 < Tagish Lake. The increases in aromatic carbon are offset by reductions in aliphatic (sp3) carbon moieties, e.g., “CHx,” and “CHx(O,N).” Oxidized sp2 bonded carbon, e.g., carboxyls and ketones grouped as “CO,” are largely conservative across these meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 < CI1 < CM2 < Tagish Lake. A pair of independent NMR experiments reveals that, on average, the aromatic moieties in the IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected.  相似文献   

13.
Electron spin resonance (ESR) is evaluated as a method to study the thermal degradation of sedimentary organic matter which consists mainly of kerogen. Whole rock and separated kerogen samples were pyrolysed stepwise (ambient to 700°C at 50°C increments), extracted and analysed for elemental composition and ESR spectra at each step. Whole rock samples give rise to complex spectra which include those of paramagnetic metals and are therefore unsuitable in most cases for this purpose.The ESR parameters g value, ΔH and Ng differ for different types of immature organic matter. An increase in Ng,shift of g value to 2.0026–2.0028 and reduction in h are the main trends during pyrolysis and in natural heating of sedimentary organic matter.The peak generations of liquid and gaseous hydrocarbons coincide with maxima of free radical density. ESR spectroscopy in combination with complementary geochemical characterization of the sedimentary organic matter can serve to indicate maturity with respect to peak oil-gas generation.  相似文献   

14.
Complementary, double- and single-resonance solid-state (1H and 13C) nuclear magnetic resonance (NMR) experiments were performed on a solvent extracted and demineralized sample of Murchison meteorite organic macromolecule. These NMR data provide a consistent picture of a complex organic solid composed of a wide range of organic (aromatic and aliphatic) functional groups, including numerous oxygen-containing functional groups. The fraction of aromatic carbon within the Murchison organic residue (constrained by three independent experiments) lies between 0.61 and 0.66. The close similarity in cross-polarized and single-pulse spectra suggests that both methods detect the same distribution of carbon. With the exception of interstellar diamond (readily detected in slow magic angle spinning single-pulse NMR experiments), there is no evidence in the solid-state NMR data for a significant abundance of large laterally condensed aromatic molecules in the Murchison organic insoluble residue. Given the most optimistic estimation, such carbon would not exceed 10% and more likely is a fraction of this maximum estimate. The fraction of aromatic carbon directly bonded to hydrogen is low (∼30%), indicating that the aromatic molecules in the Murchison organic residue are highly substituted. The bulk hydrogen content, H/C, derived from NMR data, ranges from a low of 0.53 ± 0.06 and a high of 0.63 ± 0.06. The hydrogen content (H/C) determined via elemental analysis is 0.53. The range of oxygen-containing organic functionality in the Murchison is substantial. Depending on whether various oxygen-containing organic functional groups exist as free acids and hydroxyls or are linked as esters and ethers results in a wide range in O/C (0.22 to 0.37). The lowest values are more consistent with elemental analyses, requiring that oxygen-containing functional groups in the Murchison macromolecule are highly linked. The combined 1H and 13C NMR data reveal a high proportion of methine carbon, which requires that carbon chains within the Murchison organic macromolecule are highly branched.  相似文献   

15.
The organic content of a number of sediments from the Carboniferous of northern England have been examined as a function of their depositional environment. Extraction of the sediments yielded the soluble organic matter whilst microscopic examination of polished blocks of shales enabled the detection of particles of organic detritus. A relationship between the amount of extract and the quantity of terrestrial plant material in the sediments has been established. However, the yield of extract (mg/g org. C) is higher in the more marine environment than the nonmarine environment. The proportion of saturated hydrocarbons in the extract appears to be related to the amount of identifiable organic matter (coal macerals) in the sediment. The n-alkane distribution patterns have been compared with these obtained from coal macerals. The suggestion that the pristane to phytane ratios may reflect the source material of the organic matter has been examined.  相似文献   

16.
The major organic component of carbonaceous chondrites is a solvent-insoluble, high molecular weight macromolecular material that constitutes at least 70% of the total organic content in these meteorites. Analytical pyrolysis is often used to thermally decompose macromolecular organic matter in an inert atmosphere into lower molecular weight fragments that are more amenable to conventional organic analytical techniques. Hydropyrolysis refers to pyrolysis assisted by high hydrogen gas pressures and a dispersed catalytically-active molybdenum sulfide phase. Hydropyrolysis of meteorites has not been attempted previously although it is ideally suited to such studies due to its relatively high yields. Hydropyrolysis of the Murchison macromolecular material successfully releases significant amounts of high molecular weight PAH including phenanthrene, carbazole, fluoranthene, pyrene, chrysene, perylene, benzoperylene and coronene units with varying degrees of alklyation. Analysis of both the products and residue from hydropyrolysis reveals that the meteoritic organic network contains both labile (pyrolysable) and refractory (nonpyrolysable) fractions. Comparisons of hydropyrolysis yields of Murchison macromolecular materials with those from terrestrial coals indicate that the refractory component probably consists of a network dominated by at least five- or six-ring PAH units cross-linked together.  相似文献   

17.
The results of spectroscopic and structural studies of phase composition and defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) chondrites indicate that nitrogen atomic environment in meteoritic nanodiamonds (MND) is similar to that observed in synthetic counterparts produced by detonation and by the Chemical Vapor Deposition (CVD)-process. Most of the nitrogen in MND appears to be confined to lattice imperfections, such as crystallite/twin boundaries and other extended defects, while the concentration of nitrogen in the MND lattice is low. It is suggested that the N-rich sub-population of MND grains may have been formed with high growth rates in environments rich in accessible N (i.e., N in atomic form or as weakly bonded compounds). For the first time the silicon-vacancy complex (the “silicon” defect) is observed in MND by photoluminescence spectroscopy.  相似文献   

18.
《Comptes Rendus Geoscience》2007,339(14-15):895-906
Carbonaceous chondrites are characterized by their enrichment in organic matter, mainly represented by insoluble organic matter (IOM), which consists of small aromatic units linked by short-branched aliphatic chains. Furthermore, IOM contains organic radicals heterogeneously distributed along with diradicaloids. These chemical features discriminate IOM from terrestrial counterparts. Isotopic compositions, especially the D/H isotopic ratio, are also distinct. IOM is highly enriched in D (D/H > 350 × 10−6), and the D/H isotopic ratio is heterogeneous. The isotopic composition is the result of interstellar-like processes that could have taken place during the first ages of the protosolar nebula. Chemical structure and isotopic composition clearly show that IOM is synthesized by an abiotic process and is subsequently affected by aqueous alteration or high-temperature metamorphism on the parent body.  相似文献   

19.
The distribution and source of organic matter in reservoir sediments   总被引:2,自引:0,他引:2  
The bottom sediments of two reservoirs, one with significant river sediment input and one without, were analyzed for organic matter content. Lake Texoma sediments average 1.0% organic carbon, of which 0.26% organic carbon is deposited by the river sediments of the Red and Washita River deltas. In Fort Gibson reservoir, where there is minimal river sediment input, the organic carbon averages 1.2% and is deposited with a strong correlation to water depth (+0.9). There is a significant difference between the C/N ratio of Lake Texoma sediments (11.5) and Fort Gibson sediments (9.6). The higher C/N ratio is suggested to be a result of the larger input of terrestrial plant debris (with a high original C/N ratio) by the rivers draining into Lake Texoma and the relatively high resistance of the lignin material in the plant debris to decomposition in the reservoir sediments.  相似文献   

20.
Insoluble organic matter (IOM) has been obtained from two carbonaceous chondrite meteorites and subjected to analysis by laser desorption mass spectrometry (LDMS) using standard operating conditions that were optimized for fullerene detection (3-6 μJ pulses at 337 nm focused to a spot size of approximately 100 μm in diameter). The preparation process yields no free C60 in the IOM, and other experiments suggest that this material does not contain appreciable amounts of fullerenes. Nevertheless, a pronounced high-mass envelope is observed in LDMS, extending from 720 amu to about 4000 amu, with peaks spaced apart every 24 amu (corresponding to the gain or loss of C2 units). We attribute this high-mass envelope to the existence of various fullerene molecules. The present work demonstrates that these fullerene molecules are created by the laser desorption laser ionization process under typical laser conditions used for studying free fullerenes in organic solvent extracts of natural samples (toluene and 1,2,4-trichlorobenzene). The implications of this false positive detection of fullerene molecules on the reports of fullerenes in other meteoritic samples have been investigated by introducing IOM into typical fullerene extraction procedures and examining the LDMS results. We found that IOM is capable of producing false positive signals in these experiments. The effect of ambient laboratory contamination producing fullerene signals is also described. It is found that extensive centrifugation of the meteoritic extracts is able to reduce the observed fullerene envelope, which points to an association of this envelope with IOM particulates that have passed through the filtering steps. We suggest the exercise of extreme caution in interpreting fullerene data from LDMS experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号