首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work reports the application of thermodynamic models, including equations of state, to binary (salt-free) CH4-H2O fluid inclusions. A general method is presented to calculate the compositions of CH4-H2O inclusions using the phase volume fractions and dissolution temperatures of CH4 hydrate. To calculate the homogenization pressures and isolines of the CH4-H2O inclusions, an improved activity-fugacity model is developed to predict the vapor-liquid phase equilibrium. The phase equilibrium model can predict methane solubility in the liquid phase and water content in the vapor phase from 273 to 623 K and from 1 to 1000 bar (up to 2000 bar for the liquid phase), within or close to experimental uncertainties. Compared to reliable experimental phase equilibrium data, the average deviation of the water content in the vapor phase and methane solubility in the liquid phase is 4.29% and 3.63%, respectively. In the near-critical region, the predicted composition deviations increase to over 10%. The vapor-liquid phase equilibrium model together with the updated volumetric model of homogenous (single-phase) CH4-H2O fluid mixtures (Mao S., Duan Z., Hu J. and Zhang D. (2010) A model for single-phase PVTx properties of CO2-CH4-C2H6-N2-H2O-NaCl fluid mixtures from 273 to 1273 K and from 1 to 5000 bar. Chem. Geol.275, 148-160), is applied to calculate the isolines, homogenization pressures, homogenization volumes, and isochores at specified homogenization temperatures and compositions. Online calculation is on the website: http://www.geochem-model.org/.  相似文献   

2.
The solubility and stability of synthetic grossular were determined at 800 °C and 10 kbar in NaCl-H2O solutions over a large range of salinity. The measurements were made by evaluating the weight losses of grossular, corundum, and wollastonite crystals equilibrated with fluid for up to one week in Pt capsules and a piston-cylinder apparatus. Grossular dissolves congruently over the entire salinity range and displays a large solubility increase of 0.0053 to 0.132 molal Ca3Al2Si3O12 with increasing NaCl mole fraction (XNaCl) from 0 to 0.4. There is thus a solubility enhancement 25 times the pure H2O value over the investigated range, indicating strong solute interaction with NaCl. The Ca3Al2Si3O12 mole fraction versus NaCl mole fraction curve has a broad plateau between XNaCl = 0.2 and 0.4, indicating that the solute products are hydrous; the enhancement effect of NaCl interaction is eventually overtaken by the destabilizing effect of lowering H2O activity. In this respect, the solubility behavior of grossular in NaCl solutions is similar to that of corundum and wollastonite. There is a substantial field of stability of grossular at 800 °C and 10 kbar in the system CaSiO3-Al2O3-H2O-NaCl. At high Al2O3/CaSiO3 bulk compositions the grossular + fluid field is limited by the appearance of corundum. Zoisite appears metastably with corundum in initially pure H2O, but disappears once grossular is nucleated. At XNaCl = 0.3, however, zoisite is stable with corundum and fluid; this is the only departure from the quaternary system encountered in this study. Corundum solubility is very high in solutions containing both NaCl and CaSiO3: Al2O3 molality increases from 0.0013 in initially pure H2O to near 0.15 at XNaCl = 0.4 in CaSiO3-saturated solutions, a >100-fold enhancement. In contrast, addition of Al2O3 to wollastonite-saturated NaCl solutions increases CaSiO3 molality by only 12%. This suggests that at high pH (quench pH is 11-12), the stability of solute Ca chloride and Na-Al ± Si complexes account for high Al2O3 solubility, and that Ca-Al ± Si complexes are minor. The high solubility and basic dissolution reaction of grossular suggest that Al may be a very mobile component in calcareous rocks in the deep crust and upper mantle when migrating saline solutions are present.  相似文献   

3.
The concentration and distribution of Pt and Au in a fluid-melt system has been investigated by reacting the metals with S-free, single-phase aqueous brines (20, 50, 70 wt% eq. NaCl) ± peraluminous melt at a confining pressure of 1.5 kbar and temperatures of 600 to 800 °C, trapping the fluid in synthetic fluid inclusions (quartz-hosted) and vesicles (silicate melt-hosted), and quantifying the metal content of the trapped fluid and glass by laser ablation ICP-MS. HCl concentration was buffered using the assemblage albite-andalusite-quartz and fO2 was buffered using the assemblage Ni-NiO. Over the range of experimental conditions, measured concentrations of Pt and Au in the brines (, ) are on on the order of 1-103 ppm. Concentrations of Pt and Au in the melt (, ) are ∼35-100 ppb and ∼400-1200 ppb, respectively. Nernst partition coefficients (, ) are on the order of 102-103 and vary as a function of (non-Henry’s Law behavior). Trapped fluids show a significant range of metal concentrations within populations of inclusions from single experiments (∼ 1 log unit variability for Au; ∼2-3 log unit variability for Pt). Variability in metal concentration within single inclusion groups is attributed to premature brine entrapment (prior to metal-fluid-melt equilibrium being reached); this allows us to make only minimum estimates of metal solubility using metal concentrations from primary inclusions. The data show two trends: (i) maximum and average values of and in inclusions decrease ∼2 orders of magnitude as fluid salinity () increases from ∼4 to 40 molal (20 to 70 wt % eq. NaCl) at a constant temperature; (ii) maximum and average values of increase approximately 1 order of magnitude for every 100°C increase temperature at a fixed . The observed behavior may be described by the general expression:
  相似文献   

4.
At T > 100°C development of thermodynamic models suffers from missing experimental data, particularly for solubilities of sulfate minerals in mixed solutions. Solubilities in Na+-K+-Ca2+-Cl-SO42−/H2O subsystems were investigated at 150, 200°C and at selected compositions at 100°C. The apparatus used to examine solid-liquid phase equilibria under hydrothermal conditions has been described.In the system NaCl-CaSO4-H2O the missing anhydrite (CaSO4) solubilities at high NaCl concentrations up to halite saturation have been determined. In the system Na2SO4-CaSO4-H2O the observed glauberite (Na2SO4 · CaSO4) solubility is higher than that predicted by the high temperature model of Greenberg and Møller (1989), especially at 200°C. At high salt concentrations, solubilities of both anhydrite and glauberite increase with increasing temperature. Stability fields of the minerals syngenite (K2SO4 · CaSO4 · H2O) and goergeyite (K2SO4 · 5 CaSO4 · H2O) were determined, and a new phase was found at 200°C in the K2SO4-CaSO4-H2O system. Chemical and single crystal structure analysis give the formula K2SO4 · CaSO4. The structure is isostructural with palmierite (K2SO4 · PbSO4). The glaserite (“3 K2SO4 · Na2SO4”) appears as solid solution in the system Na2SO4-K2SO4-H2O. Its solubility and stoichiometry was determined as a function of solution composition.  相似文献   

5.
Graphical analysis of free-energy relationships involving binary quadruple points and their associated univariant equilibria in the system CO2-H2O suggests the presence of at least 2 previously unrecognized quadruple points and a degenerate binary invariant point involving an azeotrope between CO2-rich gas and liquid. Thermodynamic data extracted from the equilibrium involving clathrate (hydrate), gas, and ice (H = G+I) are employed along with published data to calculate the P-T range of the 3-ice equilibrium curve, S+I = H, where S is solid CO2. This equilibrium curve intersects the H = G+I curve approximately where the latter curve intersects the S+H = G curve, thus confirming the existence of one of the inferred quadruple points involving the phases S, G, H, and I. Recognition of some binary equilibria probably have been hampered by extremely low mutual solubilities of CO2 and H2O in the fluids phases which, for example, render the S+H = G virtually indistinguishable from the CO2-sublimation curve.To make the published portion of the L(liquid CO2)-G-H equilibrium “connect” with the other new quadruple point involving S, L, G, and H, it is necessary to change the sense of the equilibrium from L = G+H at higher pressures to L+H = G at lower pressures by positing a L = G azeotrope at very low concentrations of H2O. At the low-pressure origin of the azeotrope, which is only a few bars above the CO2-triple point, the azeotrope curve intersects the 3-phase curve tangentially, creating a degenerate invariant point at which the 3-phase equilibrium changes from L+H = G at lower pressures to L = G+H at higher pressures. The azeotrope curve is offset at slightly lower temperature from the L = G+H curve until the 3-phase equilibrium terminates at the quadruple point involving G, L, H, and W (water). With further increase in pressure the azeotrope curve tracks the L = G+W equilibrium and apparently terminates at a critical end point in close proximity to critical endpoints for the CO2-saturation curve and the L = G+W curve.Thermodynamic data for clathrate extracted from the slope of the H = G+I curve are consistent with a solid-state phase transformation in CO2-clathrate between 235 and 255 K. Published work shows that the type-I clathrate phase, whose atomic structure is a framework of water molecules with CO2 molecules situated in large “guest” sites within the framework, is variable in composition with ∼1 guest site vacancy per unit cell at the high-temperature limit of its stability; the number of water molecules, however, remains constant. The formula (CO2)8-y·46H2O, where y is the number of vacancies per unit cell, is in keeping with the atomic structure, whereas the traditional formula, CO2·nH2O, where n (hydration number) = 5.75, is misleading.Ambient P-T conditions in the Antarctic and Greenland ice sheets are compatible with sequestering large amounts of carbon as liquid CO2 and/or clathrate.  相似文献   

6.
Correlations presented by Spycher et al. (2003) to compute the mutual solubilities of CO2 and H2O are extended to include the effect of chloride salts in the aqueous phase. This is accomplished by including, in the original formulation, activity coefficients for aqueous CO2 derived from several literature sources, primarily for NaCl solutions. Best results are obtained when combining the solubility correlations of Spycher et al. (2003) with the activity coefficient formulation of Rumpf et al. (1994) and Duan and Sun (2003), which can be extended to chloride solutions other than NaCl. This approach allows computing mutual solubilities in a noniterative manner with an accuracy typically within experimental uncertainty for solutions up to 6 molal NaCl and 4 molal CaCl2.  相似文献   

7.
Solubilities of corundum (Al2O3) and wollastonite (CaSiO3) were measured in H2O-NaCl solutions at 800 °C and 10 kbar and NaCl concentrations up to halite saturation by weight-loss methods. Additional data on quartz solubility at a single NaCl concentration were obtained as a supplement to previous work. Single crystals of synthetic corundum, natural wollastonite or natural quartz were equilibrated with H2O and NaCl at pressure (P) and temperature (T) in a piston-cylinder apparatus with NaCl pressure medium and graphite heater sleeves. The three minerals show fundamentally different dissolution behavior. Corundum solubility undergoes large enhancement with NaCl concentration, rising rapidly from Al2O3 molality (mAl2O3) of 0.0013(1) (1σ error) in pure H2O and then leveling off to a maximum of ∼0.015 at halite saturation (XNaCl ≈ 0.58, where X is mole fraction). Solubility enhancement relative to that in pure H2O, , passes through a maximum at XNaCl ≈ 0.15 and then declines towards halite saturation. Quenched fluids have neutral pH at 25 °C. Wollastonite has low solubility in pure H2O at this P and T(mCaSiO3=0.0167(6)). It undergoes great enhancement, with a maximum solubility relative to that in H2O at XNaCl ≈ 0.33, and solubility >0.5 molal at halite saturation. Solute silica is 2.5 times higher than at quartz saturation in the system H2O-NaCl-SiO2, and quenched fluids are very basic (pH 11). Quartz shows monotonically decreasing solubility from mSiO2=1.248 in pure H2O to 0.202 at halite saturation. Quenched fluids are pH neutral. A simple ideal-mixing model for quartz-saturated solutions that requires as input only the solubility and speciation of silica in pure H2O reproduces the data and indicates that hydrogen bonding of molecular H2O to dissolved silica species is thermodynamically negligible. The maxima in for corundum and wollastonite indicate that the solute products include hydrates and Na+ and/or Cl species produced by molar ratios of reactant H2O to NaCl of 6:1 and 2:1, respectively. Our results imply that quite simple mechanisms may exist in the dissolution of common rock-forming minerals in saline fluids at high P and T and allow assessment of the interaction of simple, congruently soluble rock-forming minerals with brines associated with deep-crustal metamorphism.  相似文献   

8.
Aqueous fluids in sedimentary basins often contain dissolved methane, particularly in petroleum environments. PVTX (Pressure-Volume-Temperature-Composition) reconstructions performed using fluid inclusion data are largely based on the assumption that inclusions do not change from the time of trapping until the present. Many authors, however, consider that fluid inclusions can re-equilibrate, particularly in fragile minerals like calcite. In order to understand this re-equilibration phenomenon in the metamorphic domain, previous experiments have been performed under high PT conditions, but few have been performed at low to medium PT conditions such as those associated with sedimentary burial diagenesis, and no previous studies have examined CH4-bearing aqueous inclusions in calcite.An experimental study of the preservation/modification of CH4-rich synthetic fluid inclusions in calcite during isothermal decompression was conducted. An autoclave was used for accurate PTX control allowing equilibrium between liquid and vapour in the CH4-H2O system. PTX conditions were maintained at four stages of decreasing pressure, with each stage held for 7 days to simulate an isothermal pressure drop. In order of decreasing pressure, the pressure-temperature conditions monitored were 276 ± 10 bar at 180 ± 7 °C, 176 ± 10 bar at 180 ± 7 °C, 76 ± 10 bar at 180 ± 7 °C and 10 ± 3 bar at 180 ± 15 °C. At the end of the experiment, the calcite was recovered and analyzed by microthermometry and Raman microspectroscopy for PTX reconstruction. A careful procedure was adopted to limit re-equilibration of inclusions during analytical procedures. Four types of inclusion shapes and four types of strain patterns were differentiated. Classification of the petrographic strain patterns was carried out. These strain patterns were associated with inclusion stretching and/or leakage regarding CH4, Th and Ph compared to experimental conditions. Factors controlling the preservation or acquisition of strain patterns included the initial shape and size of the inclusion, and the pressure differential (ΔP) between the confining pressure (Pcf) and the internal pressure (Pi) within the inclusion. Most fluid inclusions seemed to be trapped during the first 7 days of the experiment, although few (4%) of these preserved the initial PT conditions of 276 ± 10 bar, whereas 8% preserved the second and third run of PT conditions. Overall, the majority of inclusions (88%) did not reflect accurately the PTX trapping conditions. A petrographic guide to the inclusions is presented here that allows strain identification for PVT reconstructions. Re-equilibration patterns and evidence for preferential methane leakage from aqueous inclusions in calcite are important findings revealed by this study, and may be useful for the reconstruction of post-trapping events in investigations of natural samples, and in other experiments using synthetic inclusions in calcite.  相似文献   

9.
Corundum (α-Al2O3) solubility was measured in 0.1-molal CaCl2 solutions from 400 to 600°C between 0.6 and 2.0 kbar. The Al molality at 2 kbar increases from 3.1 × 10−4 at 400°C to 12.7 × 10−4 at 600°C. At 1 kbar, the solubility increases from 1.5 × 10−4m at 400°C to 3.4 × 10−4m at 600°C. These molalities are somewhat less than corundum solubility in pure H2O (Walther, 1997) at 400°C but somewhat greater at 600°C. The distribution of species was computed considering the Al species Al(OH)30 and Al(OH)4, consistent with the solubility of corundum in pure H2O of Walther (1997) and association constants reported in the literature. The calculated solubility was greater than that measured except at 600°C and 2.0 kbar, indicating that neutral-charged species interactions are probably important.A Setchénow model for neutral species resulted in poor fitting of the measured values at 1.0 kbar. This suggests that Al(OH)30 has a greater stability relative to Al(OH)4 than given by the models of Pokrovskii and Helgeson (1995) or Diakonov et al. (1996). The significantly lower Al molalities in CaCl2 relative to those in NaCl solutions at the same concentration confirm the suggestions of Walther (2001) and others that NaAl(OH)40 rather than an Al-Cl complex must be significant in supercritical NaCl solutions to give the observed increase in corundum solubility with increasing NaCl concentrations.  相似文献   

10.
Based on our previous study of the intermolecular potential for pure H2O and the strict evaluation of the competitive potential models for pure CH4 and the ab initio fitting potential surface across CH4-H2O molecules in this study, we carried out more than two thousand molecular dynamics simulations for the PVTx properties of pure CH4 and the CH4-H2O mixtures up to 2573 K and 10 GPa. Comparison of 1941 simulations with experimental PVT data for pure CH4 shows an average deviation of 0.96% and a maximum deviation of 2.82%. The comparison of the results of 519 simulations of the mixtures with the experimental measurements reveals that the PVTx properties of the CH4-H2O mixtures generally agree with the extensive experimental data with an average deviation of 0.83% and 4% in maximum, which is equivalent to the experimental uncertainty. Moreover, the maximum deviation between the experimental data and the simulation results decreases to about 2% as temperature and pressure increase, indicating that the high accuracy of the simulation is well retained in the high temperature and pressure region.After the validation of the simulation method and the intermolecular potential models, we systematically simulated the PVTx properties of this binary system from 673 K and 0.05 GPa to 2573 K and 10 GPa. In order to integrate all the simulation results and the experimental data for the calculation of thermodynamic properties, an equation of state (EOS) is developed for the CH4-H2O system covering 673-2573 K and 0.01-10 GPa. Isochores for compositions <4 mol% CH4 up to 773 K and 600 MPa are also determined in this paper. The program for the EOS can be downloaded from www.geochem-model.org/programs.htm.  相似文献   

11.
Evaluating the feasibility of CO2 geologic sequestration requires the use of pressure-temperature-composition (P-T-X) data for mixtures of CO2 and H2O at moderate pressures and temperatures (typically below 500 bar and below 100°C). For this purpose, published experimental P-T-X data in this temperature and pressure range are reviewed. These data cover the two-phase region where a CO2-rich phase (generally gas) and an H2O-rich liquid coexist and are reported as the mutual solubilities of H2O and CO2 in the two coexisting phases. For the most part, mutual solubilities reported from various sources are in good agreement. In this paper, a noniterative procedure is presented to calculate the composition of the compressed CO2 and liquid H2O phases at equilibrium, based on equating chemical potentials and using the Redlich-Kwong equation of state to express departure from ideal behavior. The procedure is an extension of that used by King et al. (1992), covering a broader range of temperatures and experimental data than those authors, and is readily expandable to a nonideal liquid phase. The calculation method and formulation are kept as simple as possible to avoid degrading the performance of numerical models of water-CO2 flows for which they are intended. The method is implemented in a computer routine, and inverse modeling is used to determine, simultaneously, (1) new Redlich-Kwong parameters for the CO2-H2O mixture, and (2) aqueous solubility constants for gaseous and liquid CO2 as a function of temperature. In doing so, mutual solubilities of H2O from 15 to 100°C and CO2 from 12 to 110°C and up to 600 bar are generally reproduced within a few percent of experimental values. Fugacity coefficients of pure CO2 are reproduced mostly within one percent of published reference data.  相似文献   

12.
Realistic simulations of fluid flow in geologic systems have severely been hampered by the lack of a consistent formulation for fluid properties for binary salt-water fluids over the temperature-pressure-composition ranges encountered in the Earth’s crust. As the first of two companion studies, a set of correlations describing the phase stability relations in the system H2O-NaCl is developed. Pure water is described by the IAPS-84 equation of state. New correlations comprise the vapor pressure of halite and molten NaCl, the NaCl melting curve, the composition of halite-saturated liquid and vapor, the pressure of vapor + liquid + halite coexistence, the temperature-pressure and temperature-composition relations for the critical curve, and the compositions of liquid and vapor on the vapor + liquid coexistence surface. The correlations yield accurate values for temperatures from 0 to 1000 °C, pressures from 0 to 5000 bar, and compositions from 0 to 1 XNaCl (mole fraction of NaCl). To facilitate their use in fluid flow simulations, the correlations are entirely formulated as functions of temperature, pressure and composition.  相似文献   

13.
The solubility of KFe(CrO4)2·2H2O, a precipitate recently identified in a Cr(VI)-contaminated soil, was studied in dissolution and precipitation experiments. Ten dissolution experiments were conducted at 4–75°C and initial pH values between 0.8 and 1.2 using synthetic KFe(CrO4)2·2H2O. Four precipitation experiments were conducted at 25°C with final pH values between 0.16 and 1.39. The log KSP for the reaction
相似文献   

14.
A thermodynamic model for concentrated brines has been developed which is capable of predicting the solubilities of many of the common evaporite minerals in chloro-sulfate brines at 25°C and 1 atm. The model assumes that the behaviour of the mean stoichiometric ionic activity coefficient in mixtures of aqueous electrolytes can be described by the Scatchard deviation function and Harned's Rule. In solutions consisting of one salt and H2O, the activity coefficient is described by the expression logλ4plusm;=-|z+z? √ 1/c1+a?B √ I) + 2(V+V?/v)Bi?l where a? and B? salt specific parameters obtained from data regression. In a mixture of n electrolytes and H2O, B? for the ith component is given by Bi?i=B i?i+σ αijyj where αij is a (constant) mixing parameter characterizing the interaction of the i and j components and yj is the ionic strength fraction of the jth component. The activity of H2O is obtained from a Gibbs-Duhem integration and does not require any additional parameters or assumptions. In this study, parameters have been obtained for the systems NaCl-KCl-MgCl2-CaCl2-H2O and NaCl-MgSO4-H2O at 25°C and 1 atm. Computed solubility curves and solution compositions predicted for invariant points in these systems agree well with the experimental data. The model is flexible and easily extended to other systems and to higher temperatures.  相似文献   

15.
Phase equilibria in the system H2O-NaCl have been determined to 1000°C and 1500 bars using synthetic fluid inclusions formed by healing fractures in inclusion-free Brazilian quartz in the presence of the two coexisting, immiscible H2O-NaCl fluids at various temperatures and pressures. Petrographic and microthermometric analyses indicate that the inclusions trapped one or the other of the two fluids present, or mixtures of the two. Salinities of the two coexisting phases were obtained from heating and freezing studies on those inclusions which trapped only a single, homogeneous fluid phase.Results of the present study are consistent with previously published data on the H2O-NaCl system at lower temperatures and pressures, and indicate that the two-phase field extends well into the P-T range of most shallow magmatic-hydrothermal activity. As a consequence, chloride brines exsolved from many epizonal plutons during the process of “second-boiling” should immediately separate into a high-salinity liquid phase and a lower salinity vapor phase and produce coexisting halite-bearing and vapor-rich fluid inclusions. This observation is consistent with results of numerous fluid inclusion studies of ore deposits associated with shallow intrusions, particularly the porphyry copper deposits, in which halite-bearing and coexisting vapor-rich inclusions are commonly associated with the earliest stages of magmatic-hydrothermal activity.  相似文献   

16.
Recent isopiestic studies of the Fe2(SO4)3-H2SO4-H2O system at 298.15 K are represented with an extended version of Pitzer’s ion interaction model. The model represents osmotic coefficients for aqueous {(1 − y)Fe2(SO4)3 + yH2SO4} mixtures from 0.45 to 3.0 m at 298.15 K and 0.0435 ? y ? 0.9370. In addition, a slightly less accurate representation of a more extended molality range to 5.47 m extends over the same y values, translating to a maximum ionic strength of 45 m. Recent isopiestic data for the system at 323.15 K are represented with the extended Pitzer model over a limited range in molality and solute fraction. These datasets are also represented with the usual “3-parameter” version of Pitzer’s model so that it may be incorporated in geochemical modeling software, but is a slightly less accurate representation of thermodynamic properties for this system. Comparisons made between our ion interaction model and available solubility data display partial agreement for rhomboclase and significant discrepancy for ferricopiapite. The comparisons highlight uncertainty remaining for solubility predictions in this system as well as the need for additional solubility measurements for Fe3+-bearing sulfate minerals. The resulting Pitzer ion interaction models provide an important step toward an accurate and comprehensive representation of thermodynamic properties in this geochemically important system.  相似文献   

17.
Abiogenic methane may be produced in submarine hydrothermal systems by degassing of basalts or serpentinization of ultramafic outcrops. The latter process presumably releases little primordial helium and is therefore implicated by high CH4/3He ratios in vent fluids from the ultramafic-hosted Rainbow field and in methane plumes near ultramafic outcrops. In two segments of the Mid-Atlantic Ridge, at 5.4°N and 51°N, we have observed depth-separated CH4 and 3He plumes. In both cases, the helium plume was deeper, near the valley floor. It may be that the plumes issue from separate vents, where the helium is discharged near the volcanic axis and the methane is generated by serpentinization on the valley wall. However, at the present time the locations of the vents that produce these plumes are not known. Using a one-pass model, we investigated whether separate venting could arise from heat conduction from a primary, helium-carrying, hydrothermal circulation to a second, shallower fracture loop intersecting ultramafic rock. The model results indicate that the flow rate through the secondary loop would have to be relatively low in order for it to stay warm enough for serpentinization to proceed. In this case, some of the exothermic heat production is lost by conduction, and the temperature increase in the circulating fluid is only a fraction of that expected from a water/rock ratio of 1:1.  相似文献   

18.
A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (υ1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 °C, and pressures up to 37 MPa. The results show that the CH4υ1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell.  相似文献   

19.
20.
The solubility of molybdenum (Mo) was determined at temperatures from 500 °C to 800 °C and 150 to 300 MPa in KCl-H2O and pure H2O solutions in cold-seal experiments. The solutions were trapped as synthetic fluid inclusions in quartz at experimental conditions, and analyzed by laser ablation inductively coupled plasma mass spectrometry (LA ICPMS).Mo solubilities of 1.6 wt% in the case of KCl-bearing aqueous solutions and up to 0.8 wt% in pure H2O were found. Mo solubility is temperature dependent, but not pressure dependent over the investigated range, and correlates positively with salinity (KCl concentration). Molar ratios of ∼1 for Mo/Cl and Mo/K are derived based on our data. In combination with results of synchrotron X-ray absorption spectroscopy of individual fluid inclusions, it is suggested that Mo-oxo-chloride complexes are present at high salinity (>20 wt% KCl) and ion pairs at moderate to low salinity (<11 wt% KCl) in KCl-H2O aqueous solutions. Similarly, in the pure H2O experiments molybdic acid is the dominant species in aqueous solution. The results of these hydrothermal Mo experiments fit with earlier studies conducted at lower temperatures and indicate that high Mo concentrations can be transported in aqueous solutions. Therefore, the Mo concentration in aqueous fluids seems not to be the limiting factor for ore formation, whereas precipitation processes and the availability of sulfur appear to be the main controlling factors in the formation of molybdenite (MoS2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号