首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The oxygen and hydrogen isotopic composition of Eocene and Miocene freshwater cherts in the western United States records regional climatic variation in the Cenozoic. Here, we present isotopic measurements of 47 freshwater cherts of Eocene and Miocene age from the Great Basin of the western United States at two different sites and interpret them in light of regional climatic and tectonic history. The large range of δ18O of terrestrial cherts measured in this study, from 11.2‰ to 31.2‰ (SMOW: Standard Mean Ocean), is shown to be primarily the result of variations in δ18O of surface water. The following trends and patterns are recognized within this range of δ18O values. First, in Cenozoic rocks of northern Nevada, chert δ18O records the same shift observed in authigenic calcite between the Eocene and Miocene that has been attributed to regional surface uplift. The consistent covariation of proxies suggests that chert reliably records and retains a signal of ancient meteoric water isotopic composition, even though our analyses show that chert formed from warmer waters (40°C) than coexisting calcite (20°C). Second, there is a strong positive correlation between δ18O and δD in Eocene age chert from Elko, Nevada and Salina, Utah that suggests large changes in lake water isotopic composition due to evaporation. Evaporative effects on lake water isotopic composition, rather than surface temperature, exert the primary control on the isotopic composition of chert, accounting for 10‰ of the 16‰ range in δ18O measured in Eocene cherts. From authigenic mineral data, we calculate a range in isotopic composition of Eocene precipitation in the north-central Great Basin of −10 to −14‰ for δ18O and −70 to −100‰ for δD, which is in agreement with previous estimates for Eocene basins of the western United States. Due to its resistance to alteration and record of variations in both δ18O and δD of water, chert has the potential to corroborate and constrain the cause of variations in isotope stratigraphies.  相似文献   

2.
An 18 million year record of the Ca isotopic composition (δ44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. δ44/42Ca in this record averages +0.37 ± 0.05 (1σ SD) and ranges from +0.21‰ to +0.52‰. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25‰ lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their δ44/42Ca (i.e., by 0.06 ± 0.06‰ (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in δ44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (δ44/42Caw) and for isotope fractionation associated with the production of carbonate sediments (Δsed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of ±0.05‰ in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in δ44/42Caw of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in Δsed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in δ44/42Caw and Δsed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.  相似文献   

3.
Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43°N, long. 122°W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing.Sulfur isotope analyses of climactic rhyodacitic whole rocks yield δ34S values of 2.8-14.8‰ with corresponding matrix glass values of 2.4-13.2‰. δ34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in δ34S from −0.4‰ to 5.8‰ and from −0.1‰ to 3.5‰, respectively. Initial δ34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0‰. Hydrogen isotope (δD) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values οf −103 to −53‰ and 0.23-1.74 wt%, respectively. Values of δD and wt% H2O of obsidian decrease towards the top of the fall deposit. Samples with depleted δD, and mantle δ18O values, have elevated δ34S values consistent with open-system degassing. These results imply that more mantle-derived sulfur is degassed to the Earth’s atmosphere/hydrosphere through convergent margin volcanism than previously attributed. Magmatic degassing can modify initial isotopic compositions of sulfur by >14‰ (to δ34S values of 14‰ or more here) and hydrogen isotopic compositions by 90‰ (to δD values of −127‰ in this case).  相似文献   

4.
We investigated the Sea-Rain-Lake relation during the Last Glacial-Holocene in the East Mediterranean region by comparing the δ18O and δ13C records of authigenic aragonite deposited in Lake Lisan, the Dead Sea, Mediterranean foraminifera, and speleothems. The Lisan Formation data display long- and short-term variations of δ18O, representing steady-state conditions of the lake (e.g., 5.6‰ ± 0.5‰ and 4.5‰ ± 1‰ in the Upper and Lower Members of the Lisan Formation, respectively), and short-term excursions reflecting large floods and droughts. The long-term (steady-state) δ18O values of the Lisan aragonites show similarity to the corresponding time-equivalent records of the Eastern Mediterranean foraminifera and Judea Mountain speleothems: The Last Glacial deposits are in all of them 2‰-3‰ heavier than the Holocene ones. We interpret this similarity as reflecting the significance of the source effect on the long-term behavior of isotopic reservoirs: Speleothem δ18O is strongly influenced by the marine reservoir that contributes its vapor to rain formation; the lake δ18O is dominated by the composition of the inflowing water. Short-term variations in the isotopic composition of rainfall are dominated by the amount effect and the temperature and those of the Lake’s upper water mass by the lake’s water balance.δ13C values are more variable than δ18O in the same Lisan sequences (e.g., δ13C in the Lower Member is 1.0‰ ± 1.7‰, whereas δ18O is 4.6‰ ± 0.7‰) and are 1‰ to 1.5‰ higher in the Upper Member than in the Lower and Middle Members of the Lisan Formation. These variations reflect significant increase in primary productivity of the lake and algal bloom activity. It appears that the hypersaline-saline lakes were not as “dead” as the Dead Sea is and that algal activity had an important impact upon the geochemistry of Lake Lisan.The δ18O data combined with independent geochemical and limnologic information (e.g., level fluctuations) indicate that Lisan time was characterized by high precipitation-high lake stands-high atmospheric humidity, whereas the Holocene Dead Sea shows the opposite behavior. This paleoclimatic reconstruction is consistent with independent evidence for significantly wetter conditions in the East Mediterranean region during the Last Glacial period.  相似文献   

5.
Intra-tooth δ18O variations within the carbonate (δ18Oc) and phosphate (δ18Op) components of tooth apatite were measured for Miocene and Pliocene hypsodont mammals from Afghanistan, Greece and Chad in order to evaluate the resistance of enamel to diagenetic alteration. Application of water-apatite interaction models suggest that the different kinetic behaviours of the phosphate-water and carbonate-water systems can be used to detect subtle oxygen isotope disequilibria in fossil enamel when intra-individual variations are considered. Selective alteration of the oxygen isotope composition from the carbonate component of Afghan and Greek enamels suggests inorganic isotopic exchange processes. Microbially-induced isotopic exchange for phosphate is demonstrated for the first time in enamel samples from Chad, in association with extensive recrystallization. In Chad, δ18Op values were derived from partial isotopic exchange with fossil groundwater during early diagenesis. Mass balance calculations using average carbonate content in enamel as a proxy for recrystallization, and the lowest δ18Op value of dentine as a proxy for the isotopic composition of the diagenetic fluid, indicate that diagenesis can alter δ18Op by as much as 3‰ in some enamel samples. This diagenetic alteration is also responsible for a decrease in intra-individual variations of up to 1‰ in affected specimens. The effects of diagenesis on δ18Op values of fossil enamel are not systematic, however, and can only be estimated if sequential δ18Op and δ18Oc analyses are performed on fossil enamel and dentine. Reconstruction of large temporal- or spatial-scale paleoclimates based on δ18Op analyses from mammalian teeth cannot be considered valid if enamel has been affected by bacterial activity or if the data cannot be corrected for diagenetic effects.  相似文献   

6.
In the present work, the first results are reported for both Li and B isotope ratios in rainwater samples collected over a long time period (i.e. monthly rainfall events over 1 a) at a national scale (from coastal and inland locations). In addition, the stable isotopes of the water molecule (δD and δ18O) are also reported here for the same locations so that the Li and B isotope data can be discussed in the same context. The range of Li and B isotopic variations in these rainwaters were measured to enable the determination of the origin of these elements in rainwaters and the characterization of both the seasonal and spatio-temporal effects for δ7Li and δ11B signatures in rainwaters. Lithium and B concentrations are low in rainwater samples, ranging from 0.004 to 0.292 μmol/L and from 0.029 to 6.184 μmol/L, respectively. δ7Li and δ11B values in rainwaters also show a great range of variation between +3.2‰ and +95.6‰ and between −3.3‰ and +40.6‰ over a period of 1 a, respectively, clearly different from the signature of seawater. Seasonal effects (i.e. rainfall amount and month) are not the main factors controlling element concentrations and isotopic variations. δ7Li and δ11B values in rainwaters are clearly different from one site to another, indicating the variable contribution of sea salts in the rainwater depending on the sampling site (coastal vs. inland: also called the distance-from-the-coast-effect). This is well illustrated when wind direction data (origin of air masses) is included. It was found that seawater is not the main supplier of dissolved atmospheric Li and B, and non-sea-salt sources (i.e. crustal, anthropogenic, biogenic) should also be taken into account when Li and B isotopes are considered in hydrogeochemistry as an input to surface waters and groundwater bodies as recharge. In parallel, the isotopic variations of the water molecule, vector of the dissolved B and Li, are also investigated and reported as a contour map for δ18O values based on compiled data including more than 400 δ18O values from throughout France. This δ18O map could be used as a reference for future studies dealing with δ18O recharge signature in relation to the characterization of surface waters and/or groundwater bodies.  相似文献   

7.
Large, correlated, mass-dependent enrichments in the heavier isotopes of O, Cr, Fe, and Ni are observed in type-I (metal/metal oxide) cosmic spherules collected from the deep sea. Limited intraparticle variability of oxygen isotope abundances, typically <5‰ in δ18O, indicates good mixing of the melts and supports the application of the Rayleigh equation for the calculation of fractional evaporative losses during atmospheric entry. Fractional losses for oxygen evaporation from wüstite, assuming a starting isotopic composition equal to that of air (δ18O = 23.5‰; δ17O = 11.8‰), are in the range 55%-77%, and are systematically smaller than evaporative losses calculated for Fe (69%-85%), Cr (81%-95%), and especially Ni (45%-99%). However, as δ18O values increase, fractional losses for oxygen approach those of Fe, Cr, and Ni indicating a shift in the evaporating species from metallic to oxidized forms as the spherules are progressively oxidized during entry heating. The observed unequal fractional losses of O and Fe can be reconciled by allowing for a kinetic isotope mass-dependent fractionation of atmospheric oxygen during the oxidation process and/or that some metallic Fe may have undergone Rayleigh evaporation before oxidation began.In situ measurements of oxygen isotopic abundances were also performed in 14 type-S (silicate) cosmic spherules, 13 from the Antarctic ice and one from the deep sea. Additional bulk Fe and Cr isotopic abundances were determined for two type-S deep-sea spherules. The isotopic fractionation of Cr isotopes suggest appreciable evaporative loss of Cr, perhaps as a sulfide. The oxygen isotopic compositions for the type-S spherules range from δ18O = −2‰ to + 27‰. The intraspherule isotopic variations are typically small, ∼5% relative, except for the less-heated porphyritic spherules which have preserved large isotopic heterogeneities in at least one case. A plot of δ17O vs. δ18O values for these spherules defines a broad parallelogram bounded at higher values of δ17O by the terrestrial fractionation line, and at lower values of δ17O by a line parallel to it and anchored near the isotopic composition of δ18O = −2.5‰ and δ17O = −5‰. Lack of independent evidence for substantial evaporative losses suggests that much of this variation reflects the starting isotopic composition of the precursor materials, which likely resembled CO, CM, or CI chondrites. However, the enrichments in heavy isotopes indicate that some mixing with atmospheric oxygen was probably involved during atmospheric entry for some of the spherules. Isotopic fractionation due to evaporation of incoming grain is not required to explain most of the oxygen isotopic data for type-S spherules. However spherules with barred olivine textures that are thought to have experienced a more intense heating than the porphyritic ones might have undergone some distillation. Two cosmic spherules, one classified as a radial pyroxene type and the other showing a glassy texture, show unfractionated oxygen isotopic abundances. They are probably chondrule fragments that survived atmospheric entry unmelted.Possible reasons type-I spherules show larger degrees of isotopic fractionation than type-S spherules include: a) the short duration of the heating pulse associated with the high volatile content of the type-S spherule precursors compared to type-I spherules; b) higher evaporation temperatures for at least a refractory portion of the silicates compared to that of iron metal or oxide; c) lower duration of heating of type-S spherules compared to type-I spherules as a consequence of their lower densities.  相似文献   

8.
Hydrogen and oxygen isotopic compositions of cherts (δD for hydroxyl hydrogen in the chert, δ18O for the total oxygen) have been determined for a suite of samples from the central and western United States. When plotted on a δD-δ18O diagram, Phanerozoic cherts define domains parallel to the meteoric water line which are different for different periods of geologic time. The elongation parallel to the meteoric water line suggests that meteoric waters were involved in the formation of many cherts.The existence of different chert δ-values for different geologic times indicates that once the granular microcrystalline quartz of cherts crystallizes its isotopic composition is preserved with time. An explanation for the change with time of the isotopic composition of cherts involving large changes with time in the isotopic composition of ocean water is unlikely since δ18O of the ocean would have had to decrease by about 3‰between Carboniferous and Triassic time and then increase about 5%.` from Triassic to Cretaceous time. Such isotopic changes cannot be accounted for by extensive glaciation, sedimentation of hydrous minerals, or input of water from the mantle into the oceans.The variation with time of the chert δ-values can be satisfactorily explained in terms of past climatic temperature fluctuations if the chert-water isotope fractionation with temperature is approximated by 1000 lnα = 3.09 × 106T?2 – 3.29. Crystallization temperatures so inferred suggest that the average climatic temperatures for the central and western U.S. decreased from about 34 to 20°C through the Paleozoic, increased to 35–40°C in the Triassic, and then decreased through the Mesozoic to Tertiary values of about 17°C. A few data for the Precambrian suggest the possibility that Earth surface temperatures may have reached about 52°C at 1.3 b.y. and about 70°C at 3 b.y.  相似文献   

9.
We measured Ca stable isotope ratios (δ44/40Ca) in an ancient (2 My), hyperarid soil where the primary source of mobile Ca is atmospheric deposition. Most of the Ca in the upper meter of this soil (3.5 kmol m−2) is present as sulfates (2.5 kmol m−2), and to a lesser extent carbonates (0.4 kmol m−2). In aqueous extracts of variably hydrated calcium sulfate minerals, δ44/40CaE values (vs. bulk Earth) increase with depth (1.4 m) from a minimum of −1.91‰ to a maximum of +0.59‰. The trend in carbonate-δ44/40Ca in the top six horizons resembles that of sulfate-δ44/40Ca, but with values 0.1-0.6‰ higher. The range of observed Ca isotope values in this soil is about half that of δ44/40Ca values observed on Earth. Linear correlation among δ44/40Ca, δ34S and δ18O values indicates either (a) a simultaneous change in atmospheric input values for all three elements over time, or (b) isotopic fractionation of all three elements during downward transport. We present evidence that the latter is the primary cause of the isotopic variation that we observe. Sulfate-δ34S values are positively correlated with sulfate-δ18O values (R2 = 0.78) and negatively correlated with sulfate δ44/40CaE values (R2 = 0.70). If constant fractionation and conservation of mass with downward transport are assumed, these relationships indicate a δ44/40Ca fractionation factor of −0.4‰ in CaSO4. The overall depth trend in Ca isotopes is reproduced by a model of isotopic fractionation during downward Ca transport that considers small and infrequent but regularly recurring rainfall events. Near surface low Ca isotope values are reproduced by a Rayleigh model derived from measured Ca concentrations and the Ca fractionation factor predicted by the relationship with S isotopes. This indicates that the primary mechanism of stable isotope fractionation in CaSO4 is incremental and effectively irreversible removal of an isotopically enriched dissolved phase by downward transport during small rainfall events.  相似文献   

10.
The isotopic composition of U in nature is generally assumed to be invariant. Here, we report variations of the 238U/235U isotope ratio in natural samples (basalts, granites, seawater, corals, black shales, suboxic sediments, ferromanganese crusts/nodules and BIFs) of ∼1.3‰, exceeding by far the analytical precision of our method (≈0.06‰, 2SD). U isotopes were analyzed with MC-ICP-MS using a mixed 236U-233U isotopic tracer (double spike) to correct for isotope fractionation during sample purification and instrumental mass bias. The largest isotope variations found in our survey are between oxidized and reduced depositional environments, with seawater and suboxic sediments falling in between. Light U isotope compositions (relative to SRM-950a) were observed for manganese crusts from the Atlantic and Pacific oceans, which display δ238U of −0.54‰ to −0.62‰ and for three of four analyzed Banded Iron Formations, which have δ238U of −0.89‰, −0.72‰ and −0.70‰, respectively. High δ238U values are observed for black shales from the Black Sea (unit-I and unit-II) and three Kupferschiefer samples (Germany), which display δ238U of −0.06‰ to +0.43‰. Also, suboxic sediments have slightly elevated δ238U (−0.41‰ to −0.16‰) compared to seawater, which has δ238U of −0.41 ± 0.03‰. Granites define a range of δ238U between −0.20‰ and −0.46‰, but all analyzed basalts are identical within uncertainties and slightly lighter than seawater (δ238U = −0.29‰).Our findings imply that U isotope fractionation occurs in both oxic (manganese crusts) and suboxic to euxinic environments with opposite directions. In the first case, we hypothesize that this fractionation results from adsorption of U to ferromanganese oxides, as is the case for Mo and possibly Tl isotopes. In the second case, reduction of soluble UVI to insoluble UIV probably results in fractionation toward heavy U isotope compositions relative to seawater. These findings imply that variable ocean redox conditions through geological time should result in variations of the seawater U isotope compositions, which may be recorded in sediments or fossils. Thus, U isotopes might be a promising novel geochemical tracer for paleo-redox conditions and the redox evolution on Earth. The discovery that 238U/235U varies in nature also has implications for the precision and accuracy of U-Pb dating. The total observed range in U isotope compositions would produce variations in 207Pb/206Pb ages of young U-bearing minerals of up to 3 Ma, and up to 2 Ma for minerals that are 3 billion years old.  相似文献   

11.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   

12.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

13.
A complex history of diagenetic interactions between a siliceous sediment, seawater and fresh water is revealed by intraformational chert breccias. Chert breccias were formed in the Campanian Mishash Formation in Israel, by “practically contemporaneous” fracturing of lithified cherty layers followed by silicification and lithification of the matrix. Pairs of fragments and matrix were compared with respect to their chemical (Ca, Sr, Na, K, Mg, Li, B, SO4, Ba) and isotopic (δ18O, δD, δ11B) composition. δ11B was analyzed by ion-probe and includes a profile across a fragment-matrix contact. The epicontinental cherts of the Mishash Fm. are enriched by a factor of 10 to 50 in all elements other than O and Si in comparison with Deep-Sea cherts. All results are compatible with the proposition that the lithification of the matrix occurred in contact with fresh-water, as opposed to seawater in which the fragments, as well as most of the Mishash sediments were formed. The strongest evidence for this difference is in the higher concentration of B in the fragments (27-70 ppm vs. 11-21ppm in the matrix) and higher δ18O (29 to 35‰ vs. 21 to 33‰). δD is a less efficient discriminator, though compatible with fresher water diagenesis of the matrix: −115‰ to −76‰ for hydrogen in the chert of the fragments, compared to −141 to −85‰ for the matrix. δ11B in the matrix shows some of the lowest values recorded in sediments (δ11B = −33‰), but varies strongly, suggesting that the source of boron in the matrix is a mixture of a freshwater and a marine component. Both seawater and the freshwater that has equilibrated with the cherts underwent varying degrees of evaporation. Ca, Sr and SO4 are carried by apatite, trapped as detritus in the matrix. The concentration of lithium in the matrix is high (11-16 ppm), whereas in the adjacent fragments it is mostly only within 1-2 ppm. Li probably enters the matrix from the interstitial solution, during the opal → quartz transformation. The second, prolonged, transformation takes place in a (freshwater) flow-through, open system. This allows a much larger mass of Li to be scavenged by the transforming silica despite its low concentration in freshwater.  相似文献   

14.
The long-lived (about 20 yr) bryozoan Adeonellopsis sp. from Doubtful Sound, New Zealand, precipitates aragonite in isotopic equilibrium with seawater, exerting no metabolic or kinetic effects. Oxygen isotope ratios (δ18O) in 61 subsamples (along three branches of a single unaltered colony) range from −0.09 to +0.68‰ PDB (mean = +0.36‰ PDB). Carbon isotope ratios (δ13C) range from +0.84 to +2.18‰ PDB (mean = +1.69‰ PDB). Typical of cool-water carbonates, δ18O-derived water temperatures range from 14.2 to 17.5 °C. Adeonellopsis has a minimum temperature growth threshold of 14 °C, recording only a partial record of environmental variation. By correlating seawater temperatures derived from δ18O with the Southern Oscillation Index, however, we were able to detect major events such as the 1983 El Niño. Interannual climatic variation can be recorded in skeletal carbonate isotopes. The range of within-colony isotopic variability found in this study (0.77‰ in δ18O and 1.34 in δ13C) means that among-colony variation must be treated cautiously. Temperate bryozoan isotopes have been tested in less than 2% of described extant species — this highly variable phylum is not yet fully understood.  相似文献   

15.
This work considers petrogenesis of the largest Holocene basaltic fissure eruptions of Iceland, which are also the largest in the world: Laki (1783-84 AD, 15 km3), Eldgjá (934 AD, 18 km3), Veidivötn (900, 1480 AD, multiple eruptions, >2 km3), Núpahraun (ca. 4000 BP, >1 km3) and Thjórsárhraun (ca 8000 BP, >20 km3). We present oxygen isotope laser fluorination analyses of 55 individual and bulk olivine crystals, coexisting individual and bulk plagioclase phenocrysts, and their host basaltic glasses with average precision of better than 0.1‰ (1SD). We also report O isotope analyses of cores and rims of 61 olivine crystals by SIMS with average precision on single spots of 0.24‰ (1SD) in 13 samples coupled with electron microprobe data for major and trace elements in these olivines. Within each individual sample, we have found that basaltic glass is relatively homogeneous with respect to oxygen isotopes, plagioclase phenocrysts exhibit crystal to crystal variability, while individual olivines span from the values in equilibrium with the low-δ18O matrix glass to those being three permil higher in δ18O than the equilibrium. Olivine cores with maximum value of 5.2‰ are found in many of these basalts and suggest that the initial magma was equilibrated with normal-δ18O mantle. No olivines or their intracrystalline domains are found with bulk or spot value higher than those found in MORB olivines. The δ18O variability of 0.3-3‰ exists for olivine grains from different lavas, and variable core-to-rim oxygen isotopic zoning is present in selected olivine grains. Many olivines in the same sample are not zoned, while a few grains are zoned with respect to oxygen isotopes and exhibit small core-to-core variations in Fe-Mg, Ni, Mn, Ca. Grains that are zoned in both Mg# and δ18O exhibit positive correlation of these two parameters. Electron microprobe analysis shows that most olivines equilibrated with the transporting melt, and thin Fe-richer rim is present around many grains, regardless of the degree of olivine-melt oxygen isotope disequilibrium.The preservation of isotopic and compositional zoning in selected grains, and subtle to severe Δ18O (melt-olivine) and Δ18O (plagioclase-olivine) disequilibria suggests rather short crystal residence times of years to centuries. Synglacially-altered upper crustal, tufaceous hyaloclastites of Pleistocene age serve as a viable source for low-δ18O values in Holocene basalts through assimilation, mechanical and thermal erosion, and devolatilization of stoped blocks. Cumulates formed in response to cooling during assimilation, and xenocrysts derived from hyaloclastites, contribute to the diverse δ18O crystalline cargo. The magma plumbing systems under each fissure are likely to include a network of interconnected dikes and sills with high magma flow rates that contribute to the efficacy of magmatic erosion of large quantities (10-60% mass) of hyaloclastites required by isotopic mass balance.Olivine diversity and the pervasive lack of phenocryst-melt oxygen isotopic equilibrium suggest that a common approach of analyzing bulk olivine for oxygen isotopes, as a proxy for the basaltic melt or to infer mantle δ18O value, needs to proceed with caution. The best approach is to analyze olivine crystals individually and demonstrate their equilibrium with matrix.  相似文献   

16.
Here we present Sr, C, and O isotope curves for Ordovician marine calcite based on analyses of 206 calcitic brachiopods from 10 localities worldwide. These are the first Ordovician-wide isotope curves that can be placed within the newly emerging global biostratigraphic framework. A total of 182 brachiopods were selected for C and O isotope analysis, and 122 were selected for Sr isotope analysis. Seawater 87Sr/86Sr decreased from 0.7090 to 0.7078 during the Ordovician, with a major, quite rapid fall around the Middle-Late Ordovician transition, most probably caused by a combination of low continental erosion rates and increased submarine hydrothermal exchange rates. Mean δ18O values increase from −10‰ to −3‰ through the Ordovician with an additional short-lived increase of 2 to 3‰ during the latest Ordovician due to glaciation. Although diagenetic alteration may have lowered δ18O in some samples, particularly those from the Lower Ordovician, maximum δ18O values, which are less likely to be altered, increase by more than 3‰ through the Ordovician in both our data and literature data. We consider that this long-term rise in calcite δ18O records the effect of decreasing tropical seawater temperatures across the Middle-Late Ordovician transition superimposed on seawater δ18O that was steadily increasing from ≤−3‰ standard mean ocean water (SMOW). By contrast, δ13C variation seems to have been relatively modest during most of the Ordovician with the exception of the globally documented, but short-lived, latest Ordovician δ13C excursion up to +7‰. Nevertheless, an underlying trend in mean δ13C can be discerned, changing from moderately negative values in the Early Ordovician to moderately positive values by the latest Ordovician. These new isotopic data confirm a major reorganization of ocean chemistry and the surface environment around 465 to 455 Ma. The juxtaposition of the greatest recorded swings in Phanerozoic seawater 87Sr/86Sr and δ18O at the same time as one of the largest marine transgressions in Phanerozoic Earth history suggests a causal link between tectonic and climatic change, and emphasizes an endogenic control on the O isotope budget during the Early Paleozoic. Better isotopic and biostratigraphic constraints are still required if we are to understand the true significance of these changes. We recommend that future work on Ordovician isotope stratigraphy focus on this outstanding Middle-Late Ordovician event.  相似文献   

17.
We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits.The δ13CCO2 of the magmatic gases varies around −3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (−1 to −‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect.The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and −2 to −6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.  相似文献   

18.
We present the results of a regional study of oxygen and Sr-Nd-Pb isotopes of Pleistocene to Recent arc volcanism in the Kamchatka Peninsula and the Kuriles, with emphasis on the largest caldera-forming centers. The δ18O values of phenocrysts, in combination with numerical crystallization modeling (MELTS) and experimental fractionation factors, are used to derive best estimates of primary values for δ18O(magma). Magmatic δ18O values span 3.5‰ and are correlated with whole-rock Sr-Nd-Pb isotopes and major elements. Our data show that Kamchatka is a region of isotopic diversity with high-δ18O basaltic magmas (sampling mantle to lower crustal high-δ18O sources), and low-δ18O silicic volcanism (sampling low-δ18O upper crust). Among one hundred Holocene and Late Pleistocene eruptive units from 23 volcanic centers, one half represents low-δ18O magmas (+4 to 5‰). Most low-δ18O magmas are voluminous silicic ignimbrites related to large >10 km3 caldera-forming eruptions and subsequent intracaldera lavas and domes: Holocene multi-caldera Ksudach volcano, Karymsky and Kurile Lake-Iliinsky calderas, and Late Pleistocene Maly Semyachik, Akademy Nauk, and Uzon calderas. Low-δ18O magmas are not found among the less voluminous products of stratovolcano eruptions and these volcanoes do not show drastic changes in δ18O during their evolution. Additionally, high-δ18O(magma) of +6.0 to 7.5‰ are found among basalts and basaltic andesites of Bezymianny, Shiveluch, Avachinsky, and Koryaksky volcanoes, and dacites and rhyolites of Opala and Khangar volcanoes (7.1-8.0‰). Phenocrysts in volcanic rocks from the adjacent Kurile Islands (ignimbrites and lavas) define normal-δ18O magmas. The widespread and volumetric abundance of low-δ18O magmas in the large landmass of Kamchatka is possibly related to a combination of near-surface volcanic processes, the effects of the last glaciation on high-latitude meteoric waters, and extensive geyser and hydrothermal systems that are matched only by Iceland. Sr and Pb isotopic compositions of normal and low-δ18O, predominantly silicic, volcanic rocks show negative correlation with δ18O, similar to the trend in Iceland. This indicates that low-δ18O volcanic rocks are largely produced by remelting of older, more radiogenic, hydrothermally altered crust that suffered δ18O-depletion during >2 My-long Pleistocene glaciation. The regionally-distributed high-δ18O values for basic volcanism (ca. + 6 to +7.5‰) in Kamchatka cannot be solely explained by high-δ18O slab fluid or melt (± sediment) addition in the mantle, or local subduction of hydrated OIB-type crust of the Hawaii-Emperor chain. Overall, Nd-Pb isotope systematics are MORB-like. Voluminous basic volcanism (in the Central Kamchatka Depression in particular) requires regional, though perhaps patchy, remobilization of thick (30-45 km) Mesozoic-Miocene arc roots, possibly resulting from interaction with hot (ca. 1300°C), wedge-derived normal-δ18O, low-87Sr/86Sr basalts and from dehydration melting of lower crustal metabasalts, variably high in δ18O and 87Sr/86Sr.  相似文献   

19.
Sulfur isotope compositions of pumice and adsorbed volatiles on ash from the first historical eruption of Anatahan volcano (Mariana arc) are presented in order to constrain the sources of sulfur erupted during the period 10-21 May, 2003. The isotopic composition of S extracted from erupted pumice has a narrow range, from δ34SV-CDT +2.6‰ to +3.2‰, while the composition of sulfur adsorbed onto ash has a larger range (+2.8‰ to +5.3‰). Fractionation modeling for closed and open system scenarios suggests that degassing of SO2 raised the δ34SV-CDT value of S dissolved in the melt from an initial composition of between +1.6‰ and +2.6‰ for closed-system degassing, or between −0.5‰ and +1.5‰ for open-system degassing, however closed-system degassing is the preferred model. The calculated values for the initial composition of the magma represent a MORB-like (δ34SV-CDT ∼ 0‰) mantle source with limited contamination by subducted seawater sulfate (δ34SV-CDT +21‰). Modeling also suggests that the δ34SV-CDT value of SO2 gas in closed-system equilibrium with the degassed magma was between +0.9‰ and +2.5‰. The δ34SV-CDT value of sulfate adsorbed onto ash in the eruption plume (+2.8‰ to +5.1‰) is consistent with sulfate formation by oxidation of magmatic SO2 in the eruption column. The sulfur isotope composition of sulfate adsorbed to ash changes from lower δ34S values for ash erupted early in the eruption to higher δ34S values for ash erupted later in the eruption. We interpret the temporal/stratigraphic change in sulfate isotopic composition to primarily reflect a change in the isotopic composition of magmatic SO2 released from the progressively degassing magma and is attributed to the expulsion of an accumulated gas phase at the beginning of the eruption. More efficient oxidation of magmatic SO2 gas to sulfate in the early water-rich eruption plume probably contributed to the change in S isotope compositions observed in the ash leachates.  相似文献   

20.
Iron isotope compositions in marine pore fluids and sedimentary solid phases were measured at two sites along the California continental margin, where isotope compositions range from δ56Fe = −3.0‰ to +0.4‰. At one site near Monterey Canyon off central California, organic matter oxidation likely proceeds through a number of diagenetic pathways that include significant dissimilatory iron reduction (DIR) and bacterial sulfate reduction, whereas at our other site in the Santa Barbara basin DIR appears to be comparatively small, and production of sulfides (FeS and pyrite) was extensive. The largest range in Fe isotope compositions is observed for Fe(II)aq in porewaters, which generally have the lowest δ56Fe values (minimum: −3.0‰) near the sediment surface, and increase with burial depth. δ56Fe values for FeS inferred from HCl extractions vary between ∼−0.4‰ and +0.4‰, but pyrite is similar at both stations, where an average δ56Fe value of −0.8 ± 0.2‰ was measured. We interpret variations in dissolved Fe isotope compositions to be best explained by open-system behavior that involves extensive recycling of Feflux. This study is the first to examine Fe isotope variations in modern marine sediments, and the results show that Fe isotopes in the various reactive Fe pools undergo isotopic fractionation during early diagenesis. Importantly, processes dominated by sulfide formation produce high-δ56Fe values for porewaters, whereas the opposite occurs when Fe(III)-oxides are present and DIR is a major pathway of organic carbon respiration. Because shelf pore fluids may carry a negative δ56Fe signature it is possible that the Fe isotope composition of ocean water reflects a significant contribution of shelf-derived iron to the open ocean. Such a signature would be an important means for tracing iron sources to the ocean and water mass circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号