首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
Whole-rock, major and trace element analyses and microprobe mineral analyses were conducted on serpentinized peridotites recovered from the walls of a MAR (Mid-Atlantic Ridge) 43° N fracture zone. These peridotites are extensively serpentinized; serpentine usually makes up 30–100 vol. percent of the bulk rocks. The relict minerals observed consist mainly of olivine and orthopyroxene with subordinate amounts of clinopyroxene and brown spinel. The range in olivine composition is very limited (Fo91–92). Orthopyroxene forms large, anhedral crystals with clinopyroxene exsolution lamellae and shows undulose extinction with bent cleavages and lamellae. Broad beam microprobe analyses indicate that the composition range of orthopyroxene is also limited (En89.1–87.6Fs8.2-8.0Wo2.7–4.4; Al2O3=1.82–2.64 wt%; Cr2O3=0.63–0.88 wt%). Clinopyroxene tends to fringe large orthopyroxene crystals or fills the interstices between them. The Mg/Fe ratios of clinopyroxene are practically constant; however, the Ca/(Ca + Mg + Fe) ratios range from 0.48 to 0.45. The Cr/(Cr+Al) and Mg/(Mg+ Fe2+) ratios of brown spinel range from 0.57 to 0.36 and 0.69 to 0.56, respectively. The geothermometers utilizing coexisting spinel lherzolite mineral assemblages suggest that the MAR 43° N peridotites attained equilibrium at temperatures from 1100° to 1250° C.Peridotites recovered from the ocean floor are generally considered to have been subjected to partial melting processes and are regarded as residues left after primary magma was removed. Major element chemistry of the MAR 43° N peridotites are compared with those of the ocean-floor ultramafic tectonites reported previously and used together with those published data to demonstrate that the major element abundances of the oceanfloor peridotites define an average trend which is compatible with removal of primary magma from these peridotites at moderate pressures (10–15 kb). Then, the most primitive abyssal tholeiite glasses could be produced by ca. 10% olivine fractionation of such primary magma. Extensive fractionation of olivine and/or orthopyroxene from picritic liquids which are in equilibrium with the lherzolitic or harzburgitic mantle sources at higher pressures (>20 kb) could not yield the majority of the most primitive abyssal tholeiite glasses.  相似文献   

2.
Partitioning of Mg and Fe2+ between olivine and mafic melts has been determined experimentally for eight different synthetic compositions in the temperature range between 1335 and 1425°C at 0.1 MPa pressure and at fo2 ∼1 log unit below the quartz-fayalite-magnetite buffer. The partition coefficient [KD = (Fe2+/Mg)ol/(Fe2+/Mg)melt] increases from 0.25 to 0.34 with increasing depolymerization of melt (NBO/T of melt from 0.25-1.2), and then decreases with further depolymerization of melt (NBO/T from 1.2-2.8). These variations are similar to those observed in natural basalt-peridotite systems. In particular, the variation in NBO/T ranges for basaltic-picritic melts (0.4-1.5) is nearly identical to that obtained in the present experiments. Because the present experiments were carried out at constant pressure (0.1 MPa) and in a relatively small temperature range (90°C), the observed variations of Mg and Fe2+ partitioning between olivine and melt must depend primarily on the composition or structure of melt. Such variations of KD may depend on the relative proportions of four-, five-, and six-coordinated Mg2+ and Fe2+ in melt as a function of degree of NBO/T.  相似文献   

3.
The Tari-Misaka ultramafic complex, which is emplaced into the Paleozoic sediments and thermally metamorphosed by two younger granitic masses, is divided into four zones on the basis of the mineral assemblage. They are, in order of increasing metamorphic grade: Zone I antigorite-olivine-orthopyroxene-clinopyroxene. Zone II olivine-talc. Zone III olivine-anthophyllite. Zone IV olivine-orthopyroxene. Strongly serpentinized clinopyroxene-bearing harzburgite in Zone I is similar to ordinary Alpine-type harzburgite. In Zonne II, two kinds of olivine are recognized. One is Mg-rich olivine (Fo93 to Fo97) with opaque inclusions and is probably a recrystallization product of serpentine with talc. The other is Fe-rich olivine (Fo88 to Fo93) free of opaque inclusions and is probably a relic of the primary peridotite. Olivine in Zone III and Zone IV is also relatively Mg-rich (Fo91 to Fo95). Chromitite in Zone IV commonly has an assemblage, olivine+cordierite+Mg-Al spinel (Mg/Mg+Fe2+, more than 0.9). Enstatite is rare and coexists with less magnesian Mg-Al spinel (Mg/Mg+Fe2+, less than 0.9). Petrological and mineralogical characters of the ultramafic rocks can be well explained by thermal metamorphism of strongly serpentinized peridotite by granitic intrusion. Metamorphic zones are consistent with the experimental results in the system MgO-SiO2-H2O. The assemblage olivine+cordierite indicates that the metamorphism occurred at relatively low pressures (<3kb).  相似文献   

4.
We employed the thin source technique to investigate tracer diffusion of Mg, Ca, Sr, and Ba in glasses and supercooled melts of albite (NaAlSi3O8) and jadeite (NaAlSi2O6) compositions. The experiments were conducted at 1 bar and at temperatures between 645 and 1025°C. Typical run durations ranged between 30 min and 35 days. The analysis of the diffusion profiles was performed with the electron microprobe. Diffusivities of Ca, Sr, and Ba were found to be independent of either duration t of the experiment or tracer concentration M, initially introduced into the sample. Mg exhibits a diffusivity depending on run time and concentration and tracer diffusivity is derived by extrapolation to M/√t = 0. Temperature dependence of the diffusivity D can be represented by an Arrhenius equation D = Do exp(−Ea/RT), yielding the following least-squares fit parameters (with D in m2/s and Ea in kJ/mol): DMg = 1.8 · 10−5 exp(−234 ± 20/RT), DCa = 3.5 · 10−6 exp(−159 ± 6/RT), DSr = 3.6 · 10−6 exp(−160 ± 6/RT), and DBa = 6.0 · 10−6 exp(−188 ± 12/RT) for albite; and DMg = 8.3 · 10−6 exp(−207 ± 18/RT), DCa = 3.8 · 10−6 exp(−153 ± 4/RT), DSr = 2.3 · 10−6 exp(−150 ± 4/RT), and DBa = 3.7 · 10−5 exp(−198 ± 4/RT) for jadeite composition. Ca and Sr diffusivities agree within error in both compositions and exhibit the fastest diffusivities, whereas Mg reveals the lowest diffusivity. The relationship between activation energy and radius shows a minimum at Ca and Sr for albite and jadeite compositions extending the relationship already observed elsewhere for alkalies. With increasing substitution of Si by (Na + Al), diffusivities increase, whereas activation energies decrease. Furthermore, a simple model modified from that of Anderson and Stuart (Anderson O. L. and Stuart D. A., “Calculation of activation energy of ionic conductivity in silica glasses by classical methods,” J. Am. Ceram. Soc.37, 573-580, 1954) is discussed for calculating the activation energies.  相似文献   

5.
Serpentinites (massive and schistose) and listvenite occur as tectonic sheets and lenses within a calcareous metasedimentary mélange of the Tulu Dimtu, western Ethiopia. The massive serpentinite contains high-magnesian metamorphic olivine (forsterite [fo] ~96 mol%) and rare relict primary mantle olivine (Fo90–93). Both massive and schistose serpentinites contain zoned chromian spinel; the cores with the ferritchromite rims preserve a pristine Cr/(Cr+Al) atomic ratio (Cr# = 0.79–0.87), suggesting a highly depleted residual mantle peridotite, likely formed in a suprasubduction zone setting. Listvenite associated with serpentinites of smaller ultramafic lenses also contain relict chromian spinel having identical Cr# to those observed in serpentinites. However, the relict chromian spinel in listvenite has significantly higher Mg/(Mg+Fe2+) atomic ratios. This suggests that a nearly complete metasomatic replacement of ultramafic rocks by magnesite, talc, and quartz to prevent Mg–Fe2+ redistribution between relict chromian spinel and the host, that is, listvenite formation, took place prior to re-equilibration between chromian spinel and the surrounding mafic minerals in serpentinites. Considering together with the regional geological context, low-temperature CO2-rich hydrothermal fluids would have infiltrated into ultramafic rocks from host calcareous sedimentary rocks at a shallow level of accretionary prism before a continental collision to form the East African Orogen (EAO).  相似文献   

6.
Diffusion couple experiments were carried out with San Carlos olivine (Fo90) and NiFe alloys (Ni100, Ni97Fe3, Ni90Fe10) or other olivine compositions (Fo100, Fo25) in order to determine the dependence on temperature, oxygen fugacity, composition and crystallographic orientation of Ni diffusion coefficient (DNi) in olivine. Experiments at 1 atmosphere total pressure cover a temperature range of 900-1445°C with run durations from 48 to 2155 h at different oxygen fugacities. In an Arrhenius plot the best fit for all data for Fo90 yields an activation energy (ED) of 220 ± 14 kJ/mol and an fO2 dependence of (1/4.25)·Δ log fO2 = Δ log DNi. The relationship between diffusion coefficients along different crystallographic axes at 1200°C is given by D[001] ≈ 6·D[100] ≈ 6·D[010]. DNi depends strongly on the major element (i.e. Fe/Mg) composition of olivine and decreases by about 1 order of magnitude as the olivine composition changes from Fo35 to Fo90. Thus, experimental investigations in Fe-free systems cannot be applied to natural samples. For calculation of residence times or cooling rates the present Ni data yield shorter timescales compared to those obtained using diffusion data published until now.In addition to Ni diffusion coefficients, Fe-Mg, Mn and Ca diffusion data were obtained from some of the same diffusion couples (Fo90-Fo100). It is found that the activation energies, ED[Ni] ≅ ED[Fe-Mg] ≅ ED[Mn] ≤ ED[Ca]. All diffusion coefficients are strongly dependent on the major element composition of olivine.  相似文献   

7.
Experiments have been carried out to determine the temperature, oxygen fugacity (fO2) and compositional dependence of the tracer diffusion coefficient (D) of calcium in olivine. These data constrain the diffusion coefficient over the temperature range 900 to 1500°C for the three principal crystallographic axes. Well constrained linear relationships between the reciprocal of the absolute temperature and log(D) exist at any given oxygen fugacity. There is a strong dependence of the diffusion coefficient on oxygen fugacity with D ∝ fO2(1/3). This makes a knowledge of the T-fO2 path followed by geological samples a prerequisite for modelling Ca diffusion in olivine. The best fitting preexponential factor (Do) and activation energy (E) to the Arrhenius equation log (D) = log [Do exp(−E/RT)] + 0.31Δ log fO2 for Ca diffusion in olivine at a given oxygen fugacity (fO2*) are given by:diffusion along [100]: log [Do (m2/s)] = −10.78 ± 0.43; E = 193 ± 11 kJ/moldiffusion along [010]: log [Do (m2/s)] = −10.46 ± 0.37; E = 201 ± 10 kJ/moldiffusion along [001]: log [Do (m2/s)] = −10.02 ± 0.29; E = 207 ± 8 kJ/molwhere Δ log fO2 = log[fO2*] − log[10−12] with fO2* in units of bars. There is no measurable compositional dependence of the diffusion coefficient between Fo83 and Fo92. Diffusion in Fo100 has a much higher activation energy than in Fe-bearing olivine and has a weaker fO2 dependence.  相似文献   

8.
The interdiffusion coefficient of Mg–Fe in olivine (D Mg–Fe) was obtained at 1,400–1,600 °C at the atmospheric pressure with the oxygen fugacity of 10?3.5–10?2 Pa using a diffusion couple technique. The D Mg–Fe shows the anisotropy (largest along the [001] direction and smallest along the [100] direction), and its activation energy (280–320 kJ/mol) is ~80–120 kJ/mol higher than that estimated at lower temperatures. The D Mg–Fe at temperatures of >1,400 °C can be explained by the cation-vacancy chemistry determined both by the Fe3+/Fe2+ equilibrium and by the intrinsic point defect formation with the formation enthalpy of 220–270 kJ/mol depending on the thermodynamical model for the Fe3+/Fe2+ equilibrium in olivine. The formation enthalpy of 220–270 kJ/mol for the point defect (cation vacancy) in olivine is consistent with that estimated from the Mg self-diffusion in Fe-free forsterite. The increase in the activation energy of D Mg–Fe at >1,400 °C is thus interpreted as the result of the transition of diffusion mechanism from the transition metal extrinsic domain to the intrinsic domain at the atmospheric pressure.  相似文献   

9.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

10.
A natural quartz sample free of mineral and fluid inclusions was irradiated with a 200 MeV proton beam to produce spallogenic 21Ne, 3He and 4He. Temperature-dependent diffusivities of these three nuclides were then determined simultaneously by high precision stepped-heating and noble gas mass spectrometry. The outward mobility of proton-induced nuclides reflects diffusion through the quartz lattice. In the studied range of 70 to 400°C the helium diffusion coefficients exceed those of neon by 5-7 orders of magnitude. The implied diffusion parameters Ea = 153.7 ± 1.5 (kJ/mol) and ln(Do/a2) = 15.9 ± 0.3 (ln(s−1)) and Ea = 84.5 ± 1.2 (kJ/mol) and ln(Do/a2) = 11.1 ± 0.3 (ln(s−1)) for proton-induced 21Ne and 3He, respectively, indicate that cosmogenic neon will be quantitatively retained in inclusion-free quartz at typical Earth surface temperatures whereas cosmogenic helium will not. However, the neon diffusion parameters also indicate that diffusive loss needs to be considered for small (<1 mm) quartz grains that have experienced elevated temperatures. Since natural quartz often contains fluid inclusions which may enhance noble gas retentivity, these parameters likely represent an end-member case of purely solid-state diffusion. The ∼70 kJ/mol higher activation energy for neon diffusion compared to helium diffusion likely represents an energy barrier related to its ∼13% greater diameter and provides a fundamental constraint with which to test theories of solid state diffusion. The diffusion parameters for proton-induced 4He are indistinguishable from those for 3He, providing no evidence for the commonly expected inverse square root of the mass diffusion relationship between isotopes. We also find preliminary indication that increased exposure to radiation may enhance neon and helium retentivity in quartz at low temperatures.  相似文献   

11.
Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155°–230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10–3–1.91×10–3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.  相似文献   

12.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

13.
Three groups of ultramafix xenoliths were collected from alkali basalt in the island of Hierro, Canary Islands: (1) Cr-diopside series (spinel harzbugite, lherzolite, dunite); (2) Al-augite series xenoliths (spinel wherlite, olivine clinopyroxenite, dunite, olivine websterite); (3) gabbroic xenoliths. The main textures are granoblastic, porphyroclastic and granular, but poikilitic textures, and symplectitic intergrowths of clinopyroxene (cpx) + spinel (sp)±orthopyroxene (opx)±olivine (ol) (in rare cases cpx+opx), occur locally. Textural relations and large inter- and intra-sample mineral chemical variations testify to a complex history of evolution of the mantle source region, involving repeated heating, partial melting, and enrichment associated with infiltration by basaltic melts. The oldest assemblage in the ultramafic xenoliths (porphyroclasts of ol+opx±sp±cpx) represents depleted abyssal mantle formed within the stability field of spinel lherzolite. The neoblast assemblage [ol+cpx+ sp±opx±plagioclase (plag)±ilmenite (il)±phlogopite (phlog)] reflect enrichment in CaO+Al2O3+Na2O+ FeO±TiO2±K2O±H2O through crystal/liquid separation processes and metasomatism. The Al-augite-series xenoliths represent parts of the mantle where magma infiltration was much more extensive than in the source region of the Cr-diopside series rocks. Geothermometry indicates temperature fluctuations between about 900–1000 and 1200°C. Between each heating event the mantle appears to have readjusted to regional geothermal gradient passing 950°C at about 12 kbar. The gabbroic xenoliths represent low-pressure cumulates.  相似文献   

14.
A basanitoid flow of Miocene age, exposed near the West Kettle River, 25 km southeast of Kelowna, British Columbia, contains abundant ultramafic and mafic nodules. The subangular nodules are 1–20 cm across and typically show granular textures. A study of 250 nodules indicates that spinel lherzolite (60%) is the dominant type with subordinate olivine websterite (10%), websterite (7%), clinopyroxenite (4%), wehrlite (4%), pyroxene gabbro (4%), dunite (2%), harzburgite (1%) and granitic rocks (8%). Ultramafic nodules are of two types. Most of the wehrlites and clinopyroxenites belong to the black pyroxene (aluminous clinopyroxene) series, whereas the other clinopyroxene-bearing nodules belong to the green pyroxene (chromian diopside) series. Some spinel lherzolite nodules have distinctive pyroxene- and olivine-rich bands. Microprobe analyses of the constituent minerals of more than thirty nodules from the green pyroxene series indicate that grain to grain variations within individual nodules are small even when banding is present. Olivine, orthopyroxene, clinopyroxene and spinel in spinel lherzolite have average compositions of Fo90, En90, Wo47Fs5En48, Cr/(Cr+ Al+Fe3)=0.1 and Mg/(Mg+Fe2+)=0.8. Equilibration temperatures, which were calculated using the two pyroxene geothermometer of Wells (1977), range between 920–980° C. Based on published phase stability experiments, pressures of equilibration are between 10–18 kbar. In summary, the upper mantle beneath southern British Columbia is dominated by spinel lherzolite but contains some banding on a scale of cm to meters. The temperature in the upper mantle is 950° C at a depth of 30–60 km.On leave from the Geological Institute, University of Tokyo, Japan  相似文献   

15.
We present new experimental data on Mg tracer diffusion in oriented single crystals of forsterite (Fo100) and San Carlos olivine (Fo92) between 1000–1300° C. The activation energies of diffusion are found to be 400 (±60) kJ/mol (96 kcal/mol) and 275 (±25) kJ/mol (65 kcal/ mol) in forsterite and San Carlos olivine, respectively, along [001] at a fO2 of 10–12 bars. There is no change in activation energy of Mg tracer diffusion within this temperature range. Mg tracer diffusion in a nominally pure forsterite is found to be anisotropic (Dc > Da > D b) and a function of fO2. This fO2 dependence is different from that in olivine containing Fe as a major element, which suggests that the diffusion mechanism of Mg in forsterite is different from that in Fe-bearing olivine at least over some range of fO2. The diffusion mechanism in nominally pure forsterites may involve impurities present below the limits of detection or alternately, Si or Fe3+ interstitial defects, Fe being present as impurity (ppm level) in forsterite. Pressure dependence of Mg tracer diffusivity in forsterite measured to 10 GPa in a multianvil apparatus yields an activation volume of approximately 1–3.5 cm3/ mol. It is found that presence of small amounts of hydrogen bearing species in the atmosphere during diffusion anneal (fH2 0.2 bars, fH20 0.24 bars) do not affect Mg tracer diffusion in forsterite within the resolution of our measurement at a total pressure of 1 bar. The observed diffusion process is shown to be extrinsic; hence extrapolation of the diffusion data to lower temperatures should not be plagued by uncertainties related to change of diffusion mechanism from intrinsic to extrinsic.  相似文献   

16.
Data from experimentally-induced diffusion profiles at approximately 40 Kbar, 1,300–1,500° C in spessartine-almandine couples and a pyrope-almandine couple at 40 Kbar, 1,440° C, described in Part I, were used to derive tracer diffusion coefficients (D *) of Fe, Mn and Mg in garnet. The experimental data were fitted by numerical simulations that model multicomponent, compositionally-dependent difussion, including the effects of nonideal thermodynamic mixing. The simulations use the formalism of irreversible thermodynamics and an eigenvector technique of solution. We were able to fit the asymmetrical spessartine-almandine profiles using constant D * and either the Darken/Hartley-Crank or Manning-Lasaga models relating D * and interdiffusion coefficients, and both models yielded D Mg * consistent with the direct measurement of D Mg * in by Cygan and Lasaga (1985) at lower temperatures (750–900° C). The results (equations 4.1–4.3 and Table 1) indicate that D Fe * D Mg * <D Mn * and Q FeQ Mg>Q Mn, where Q is the activation energy. In contrast, the asymmetry of pyrope-almandine profiles is too great to fit with either tracer model assuming constant D * and indicates that D Mg * is similar to its value in spessartine-almandine couples but D Fe * is an order of magnitude less. The fit also suggests that D Ca * < D Fe * Mg * in pyrope-almandine couples. Synthesis of data from the two types of diffusion couples suggests that D Mg * is insensitive to compositional changes, whereas D Fe * is affected by Mn/Mg and Fe/Mg ratios and probably by other factors. These compositional effects on tracer coefficients are compatible with those documented by Morioka (1983) for cation diffusion in olivine.  相似文献   

17.
The partitioning of Fe and Mg between coexisting garnet and olivine has been studied at 30 kb pressure and temperatures of 900 ° to 1,400 °C. The results of both synthesis and reversal experiments demonstrate that K D (= (Fe/Mg)gt/(Fe/Mg)OI) is strongly dependent on Fe/Mg ratio and on the calcium content of the garnet. For example, at 1,000 °C/30 kb, K D varies from about 1.2 in very iron-rich compositions to 1.9 at the magnesium end of the series. Increasing the mole fraction of calcium in the garnet from 0 to 0.3 at 1,000 ° C increases K D in magnesian compositions from 1.9 to about 2.5.The observed temperature and composition dependence of K D has been formulated into an equation suitable for geothermometry by considering the solid solution properties of the olivine and garnet phases. It was found that, within experimental error, the simplest kind of nonideal solution model (Regular Solution) fits the experimental data adequately. The use of more complex models did not markedly improve the fit to the data, so the model with the least number of variables was adopted.Multiple linear regression of the experimental data (72 points) yielded, for the exchange reaction: 3Fe2SiO4+2Mg3Al2Si3O12 olivine garnet 2Fe2Al2Si3O12+3Mg2SiO4 garnet olivine H ° (30kb) of –10,750 cal and S ° of –4.26 cal deg–1 mol–1. Absolute magnitudes of interaction parameters (W ij ) derived from the regression are subject to considerable uncertainty. The partition coefficient is, however, strongly dependent on the following differences between solution parameters and these differences are fairly well constrained: W FeMg ol -W FeMg gt 800 cal W CaMg gt -W CaFe gt 2,670 cal.The geothermometer is most sensitive in the temperature and composition regions where K D is substantially greater than 1. Thus, for example, peridotitic compositions at temperatures less than about 1,300 ° C should yield calculated temperatures within 60 °C of the true value. Iron rich compositions (at any temperature) and magnesian compositions at temperatures well above 1,300 °C could not be expected to yield accurate calculated temperatures.For a fixed K D the influence of pressure is to raise the calculated temperature by between 3 and 6 °C per kbar.  相似文献   

18.
Seventeen upper-mantle ultramafic xenoliths from the Lower Quaternary Tal Khodr Imtan cinder cone in southern Syria have revealed a dominant protogranular texture of nine spinel lherzolites, two spinel harzburgites, four spinel dunites, one spinel olivine websterite, and one spinel clinopyroxenite. The lherzolites, harzburgites, and dunites contain Cr-diopside and brown-red picotite, with a basanitic host rock; the websterite and clinopyroxenite contain Ti-Al-augite and Cr-hercynite. A lherzolite to dunite depletion trend is shown in the abundance of intermediate- and lightrare-earth elements (IREE and LREE) and from analytical data of dunitic olivine, with Ca, Al, Fe, Cr, and Si being the most depleted elements. The depletion probably resulted from successive partial melting. The scoriaceous basanite shows enrichments in REE and trace elements from a plume; the basanitic coating (around ultramafic xenoliths) increases in Mg/Mg+Fe+2 and concentrations of Al2O3, TiO2, and Na2O by contamination from peridotitic olivine, and also from eclogite-gabbro and nephelinite near the bottom of the rifted crust.

Differences in the REE and trace-element concentrations among the peridotite xenoliths, the basanite host rock, and websterite indicate at least three different depths for their parent sources. The ultramafic inclusions in the basanitic host rock, as well as xenoliths in a carbonatite dike, suggest a deeper source for the carbonatite magma. At least part of the enrichment of the plume probably was accomplished by the subducted Tethys oceanic crust, suboceanic litho-sphere, and eclogite-gabbro. The thick plateau basalt in southern Syria indicates heavy and deep fracturing, and the extrusions of successive magmas from the upper mantle created a stretching and thinning in the continental crust. The proximity of this plateau basalt area to the Dead Sea-Jordan River Valley Rift, together with the source of the ultramafic xenoliths, points to a possible close relationship between the Red Sea Rift and the fracturing (offshoot rifting) in southern Syria.  相似文献   

19.
We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) meteorites. The accuracy of our new Mg isotope ratio measurement protocol is substantiated by a combination of standard addition experiments, the absence of mass independent effects in terrestrial samples and our obtaining identical values for rock standards using two different separation chemistries and three different mass-spectrometric introduction systems. Carbonaceous, ordinary and enstatite chondrites have irresolvable mean stable Mg isotopic compositions (δ25Mg = −0.14 ± 0.06; δ26Mg = −0.27 ± 0.12‰, 2SD), but our enstatite chondrite samples have lighter δ7Li (by up to ∼3‰) than our mean carbonaceous and ordinary chondrites (3.0 ± 1.5‰, 2SD), possibly as a result of spallation in the early solar system. Measurements of equilibrated, fertile peridotites give mean values of δ7Li = 3.5 ± 0.5‰, δ25Mg = −0.10 ± 0.03‰ and δ26Mg = −0.21 ± 0.07‰. We believe these values provide a useful estimate of the primitive mantle and they are within error of our average of bulk carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic samples, covering a variety of geological histories, show a broad positive correlation between bulk δ7Li and δ26Mg, which vary from −3.7‰ to +14.5‰, and −0.36‰ to + 0.06‰, respectively. Values of δ7Li and δ26Mg lower than our estimate of primitive mantle are strongly linked to kinetic isotope fractionation, occurring during transport of the mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H loss from nominally anhydrous minerals following degassing. Diffusion models suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities of Li and Mg in olivine. The isotopically lightest samples require ∼5-10 years of diffusive ingress, which we interpret as a time since volatile loss in the host magma. Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope ratios, likely as a result of little prior degassing in these explosive events. High δ7Li, coupled with high [Li], in rapidly cooled arc peridotites may indicate that these samples represent fragments of mantle wedge that has been metasomatised by heavy, slab-derived fluids. If such material is typically stirred back into the convecting mantle, it may account for the heavy δ7Li seen in some oceanic basalts.  相似文献   

20.
A revised regular solution-type thermodynamic model for twelve-component silicate liquids in the system SiO2-TiO2-Al2O3-Fe2O3-Cr2O3-FeO-MgO-CaO-Na2O-K2O-P2O5-H2O is calibrated. The model is referenced to previously published standard state thermodynamic properties and is derived from a set of internally consistent thermodynamic models for solid solutions of the igneous rock forming minerals, including: (Mg,Fe2+,Ca)-olivines, (Na,Mg,Fe2+,Ca)M2 (Mg,Fe2+, Ti, Fe3+, Al)M1 (Fe3+, Al,Si)2 TETO6-pyroxenes, (Na,Ca,K)-feldspars, (Mg,Fe2+) (Fe3+, Al, Cr)2O4-(Mg,Fe2+)2 TiO4 spinels and (Fe2+, Mg, Mn2+)TiO3-Fe2O3 rhombohedral oxides. The calibration utilizes over 2,500 experimentally determined compositions of silicate liquids coexisting at known temperatures, pressures and oxygen fugacities with apatite ±feldspar ±leucite ±olivine ±pyroxene ±quartz ±rhombohedral oxides ±spinel ±whitlockite ±water. The model is applicable to natural magmatic compositions (both hydrous and anhydrous), ranging from potash ankaratrites to rhyolites, over the temperature (T) range 900°–1700°C and pressures (P) up to 4 GPa. The model is implemented as a software package (MELTS) which may be used to simulate igneous processes such as (1) equilibrium or fractional crystallization, (2) isothermal, isenthalpic or isochoric assimilation, and (3) degassing of volatiles. Phase equilibria are predicted using the MELTS package by specifying bulk composition of the system and either (1) T and P, (2) enthalpy (H) and P, (3) entropy (S) and P, or (4) T and volume (V). Phase relations in systems open to oxygen are determined by directly specifying the f o 2 or the T-P-f o 2 (or equivalently H-P-f o 2, S-P-f o 2, T-V-f o 2) evolution path. Calculations are performed by constrained minimization of the appropriate thermodynamic potential. Compositions and proportions of solids and liquids in the equilibrium assemblage are computed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号