首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samarium-neodymium isotopic analysis of the martian meteorite Dar al Gani 476 yields a crystallization age of 474 ± 11 Ma and an initial εNd143 value of +36.6 ± 0.8. Although the Rb-Sr isotopic system has been disturbed by terrestrial weathering, and therefore yields no age information, an initial 87Sr/86Sr ratio of 0.701249 ± 33 has been estimated using the Rb-Sr isotopic composition of the maskelynite mineral fraction and the Sm-Nd age. The Sr and Nd isotopic systematics of Dar al Gani 476, like those of the basaltic shergottite QUE94201, are consistent with derivation from a source region that was strongly depleted in incompatible elements early in the history of the solar system. Nevertheless, Dar al Gani 476 is derived from a source region that has a slightly greater incompatible enrichment than the QUE94201 source region. This is not consistent with the fact that the parental magma of Dar al Gani 476 is significantly more mafic than the parental magma of QUE94201, and underscores a decoupling between the major element and trace element-isotopic systematics observed in the martian meteorite suite.Combining the εNd142Nd143 isotopic systematics of the martian meteorites yields a model age for planetary differentiation of 4.513+0.033−0.027 Ga. Using this age, the parent/daughter ratios of martian mantle sources are calculated assuming a two-stage evolutionary history. The calculated sources have very large ranges of parent/daughter ratios (87Rb/86Sr = 0.037-0.374; 147Sm/144Nd = 0.182-0.285; 176Lu/177Hf = 0.028-0.048). These ranges exceed the ranges estimated for terrestrial basalt source regions, but are very similar to those estimated for the sources of lunar mare basalts. In fact, the range of parent/daughter ratios calculated for the martian meteorite sources can be produced by mixing between end-members with compositions similar to lunar mare basalt sources. Two of the sources have compositions that are similar to olivine and pyroxene-rich mafic cumulates with variable proportions of a Rb-enriched phase, such as amphibole, whereas the third source has the composition of liquid trapped in the cumulate pile (i.e. similar to KREEP) after ∼99% crystallization. Correlation between the proportion of trapped liquid in the meteorite source regions and estimates of fO2, suggest that the KREEP-like component may be hydrous. The success of these models in reproducing the martian meteorite source compositions suggests that the variations in trace element and isotopic compositions observed in the martian meteorites primarily reflect melting of the crystallization products of an ancient magma ocean, and that assimilation of evolved crust by mantle derived magmas is not required. Furthermore, the decoupling of major element and trace element-isotopic systematics in the martian meteorite suite may reflect the fact that trace element and isotopic systematics are inherited from the magma source regions, whereas the major element abundances are limited by eutectic melting processes at the time of magma formation. Differences in major element abundances of parental magma, therefore, result primarily from fractional crystallization after leaving their source regions.  相似文献   

2.
The Miocene to Quaternary lavas of northwestern Syria range from basanite, alkali basalts, and tholeiites to basaltic andesites, hawaiites, and mugearites. Crustal assimilation and fractional crystallization processes (AFC) modified the composition of the mantle derived magmas. Crustal assimilation is indicated by decreasing Nb/U (52.8–17.9) and increasing Pb/Nd (0.09–0.21) and by variable isotopic compositions of the lavas (87Sr/86Sr: 0.7036–0.7048, 143Nd/144Nd: 0.51294–0.51269, 206Pb/204Pb: 18.98–18.60) throughout the differentiation. Modeling of the AFC processes indicates that the magmas have assimilated up to 25% of continental upper crust. The stratigraphy of the lavas reveals decreasing degrees and increasing depths of melting with time and the strongly fractionated heavy rare earth elements indicate melt generation in the garnet stability field. Modeling of melt formation based on trace element contents suggests that 8–10% melting of the asthenospheric mantle source produced the tholeiites, whereas basanite and alkali basalts are formed by 2–4% melting of a similar source.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
Subduction related basalts display wide ranges in large ion lithophile element ratios (e.g., Rb/Ba and Rb/ Sr) which are unlikely to result from mixing, but suggest a role for small degree partial melting of a relatively Rb-poor mantle wedge source. However, these variations do not correlate with other trace element criteria, such as the depletions of high field strength elements (HFSE) and light rare earth elements (LREE) relative to the LILE, which characterise subduction related magmatism. Integration of radiogenic isotope and trace element data demonstrates that the elemental enrichment cannot be simply related to two component mixtures inferred from isotopic variations. Thus a minimum of three components is required to describe the geochemistry of subduction zone basalts. Two are subduction related: high Sr/Nd material is derived from the dehydration of subducted basaltic ocean crust, and a low Sr/Nd component is thought to be from subducted terrigenous sediment. The third component is in the mantle wedge, it is usually similar to the source of MORB, particularly in its isotopic composition. However, in some cases, notably continental areas, more enriched mantle wedge material with relatively high 87Sr/86Sr, low 143Nd/144Nd and elevated incompatible trace element contents may be involved Mixing of these three components is capable of producing both the entire range of Sr, Nd and Pb isotope signatures observed in destructive margin basalts, and their distinctive trace element compositions. The isotope differences between Atlantic and Pacific island arc basalts are attributed to the isotope compositions of sediments in the two oceans.  相似文献   

4.
The Mt. Erciyes stratovolcano was built up in an intraplate tectonic environment as a consequence of Eurasian and Afro-Arabian continental collision. However, the volcanic products generally exhibit a calc-alkaline character; minor amounts of tholeiitic basalts are also present. Tholeiitic basalts show high Fe2O3, MgO, CaO, low K2O, and depleted Ba, Nb, and especially Rb (2.3-5.97 ppm) contents, low 87Sr/86Sr (0.703344-0.703964), and high 143Nd/144Nd (0.512920-0.512780) isotopic ratios. These compositional features show that they were derived from a depleted asthenospheric mantle source, possibly a MORB-like source component. In contrast, calc-alkaline basaltic rocks exhibit relatively high large-ion-lithophile and high-field-strength elements, high 87Sr/86Sr (0.704591-0.70507) and low 143Nd/144Nd (0.51272-0.512394) isotopic ratios.

The bulk-rock chemistry of the tholeiitic basalts reflects the chemical composition of the extracted source component. Furthermore, trace-element concentrations may be calculated from an accepted mantle source component (starting composition) for different degrees of partial melting. These calculations also provide a sensitive approach to the origin of tholeiitic basalts. Modeled trace-element compositions of tholeiitic basalts are calculated from a primitive mantle composition. Calculated trace-element compositions imply that tholeiitic basalts are derived by minor fractional melting (1-1.5 %), in the absence of assimilation or deep-crustal melting. The calc-alkaline basalts were subsequently produced from initially tholeiitic basalts by the way of an AFC (assimilation-fractional crystallization) process, with a crustal assimilation of 10-15 %.

The geochemical data, partial melting, and AFC modeling all indicate that basaltic products have a complex evolutionary history involving partial melting from a MORB-like mantle source. The assimilation and fractional crystallization processes are considered as providing an example for the chemical evolution of basaltic products, from tholeiitic to calc-alkaline, in an intraplate environment.  相似文献   

5.
We report on the petrography and geochemistry of the newly discovered olivine-phyric shergottite Larkman Nunatak (LAR) 06319. The meteorite is porphyritic, consisting of megacrysts of olivine (?2.5 mm in length, Fo77-52) and prismatic zoned pyroxene crystals with Wo3En71 in the cores to Wo8-30En23-45 at the rims. The groundmass is composed of finer grained olivine (<0.25 mm, Fo62-46), Fe-rich augite and pigeonite, maskelynite and minor quantities of chromite, ulvöspinel, magnetite, ilmenite, phosphates, sulfides and glass. Oxygen fugacity estimates, derived from the olivine-pyroxene-spinel geo-barometer, indicate that LAR 06319 formed under more oxidizing conditions (QFM -1.7) than for depleted shergottites. The whole-rock composition of LAR 06319 is also enriched in incompatible trace elements relative to depleted shergottites, with a trace-element pattern that is nearly identical to that of olivine-phyric shergottite NWA 1068. The oxygen isotope composition of LAR 06319 (Δ17O = 0.29 ±0.03) confirms its martian origin.Olivine megacrysts in LAR 06319 are phenocrystic, with the most Mg-rich megacryst olivine being close to equilibrium with the bulk rock. A notable feature of LAR 06319 is that its olivine megacryst grains contain abundant melt inclusions hosted within the forsterite cores. These early-trapped melt inclusions have similar trace element abundances and patterns to that of the whole-rock, providing powerful evidence for closed-system magmatic behavior for LAR 06319. Calculation of the parental melt trace element composition indicates a whole-rock composition for LAR 06319 that was controlled by pigeonite and augite during the earliest stages of crystallization and by apatite in the latest stages. Crystal size distribution and spatial distribution pattern analyses of olivine indicate at least two different crystal populations. This is most simply interpreted as crystallization of megacryst olivine in magma conduits, followed by eruption and subsequent crystallization of groundmass olivine.LAR 06319 shows close affinity in mineral and whole-rock chemistry to olivine-phyric shergottite, NWA 1068 and the basaltic shergottite NWA 4468. The remarkable features of these meteorites are that they have relatively similar quantities of mafic minerals compared with olivine-phyric shergottites (e.g., Y-980459, Dho 019), but flat and elevated rare earth element patterns more consistent with the LREE-enriched basaltic shergottites (e.g., Shergotty, Los Angeles). This relationship can be interpreted as arising from partial melting of an enriched mantle source and subsequent crystal-liquid fractionation to form the enriched olivine-phyric and basaltic shergottites, or by assimilation of incompatible-element enriched martian crust. The similarity in the composition of early-trapped melt inclusions and the whole-rock for LAR 06319 indicates that any crustal assimilation must have occurred prior to crystallization of megacryst olivine, restricting such processes to the deeper portions of the crust. Thus, we favor LAR06319 forming from partial melting of an “enriched” and oxidized mantle reservoir, with fractional crystallization of the parent melt upon leaving the mantle.  相似文献   

6.
Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P) n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. δ 18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust.  相似文献   

7.
A total of 17 alkali basalts (alkali olivine basalt, limburgite, olivine nephelinite) and quartz tholeiites, and of 10 peridotite xenoliths (or their clinopyroxenes) were analyzed for Nd and Sr isotopes. 143Nd/144Nd ratios and 87Sr/86Sr ratios of all basalts and of the majority of ultramafic xenoliths plot below the mantle array with a large variation in Nd isotopes and a smaller variation in Sr isotopes. The tholeiites were less radiogenic in Nd than the alkali basalts. Volcanics from the Eifel and Massif Central regions contain Nd and Sr, which is more radiogenic than that of the basalts from the Hessian Depression. Nd and Sr isotopic compositions of all rocks from the latter area, with the exception of one tholeiite and one peridotite plot in the same field of isotope ratios as the Ronda ultramafic tectonite (SW Spain), which ranges in composition from garnet to plagioclase peridotite. The alkali basaltic rocks are products of smaller degrees of partial melting of depleted peridotite, which has undergone a larger metasomatic alteration compared with the source rock of tholeiitic magmas. For the peridotite xenoliths such metasomatic alteration is indicated by the correlation of their K contents and isotopic compositions. We assume that the upper mantle locally can acquire isotopic signatures low in radiogenic Nd and Sr from the introduction of delaminated crust. Such granulites low in radiogenic Nd and Sr are products of early REE fractionation and granite (Rb) separation.  相似文献   

8.
The nature of the source of continental flood basalts (CFB) is a highly debated topic. Proposed mantle sources for CFBs, including both high- and low-Ti basalts, include subcontinental lithospheric mantle (SCLM), asthenospheric mantle, and deep, plume-related mantle. Re-Os isotope systematics can offer important constraints on the sources of both ocean island basalts (OIB) and CFB, and may be applied to distinguish different possible melt sources. This paper reports the first Re-Os isotope data for the Late Permian Emeishan large igneous province (LIP) in Southwest China. Twenty one CFB samples including both low- and high-Ti basalts from five representative sites within the Emeishan LIP have been analyzed for Os, Nd, and Pb isotopic compositions. The obtained Os data demonstrate that crustal assimilation affected Os isotopic compositions of some Emeishan basalt samples with low Os concentrations but not all of the samples, and the Emeishan basalts with high Os contents likely experienced the least crustal contamination. The low and high-Ti basalts yield distinct Os signatures in terms of 187Os/188Os and Os content. The low-Ti basalt with the highest Os concentration (400 ppt) has a radiogenic Os isotopic composition (γOs(t), +6.5), similar to that of plume-derived OIB. Because the Os isotopic composition of basalts with relatively high Os concentrations (typically >50 ppt) likely represents that of their mantle source, this result implies a plume-derived origin for the low-Ti basalts. On the other hand, the high-Ti basalts with high Os concentration (over 50 ppt) have unradiogenic Os isotopic signatures (γOs(t) values range from −0.8 to −1.4), suggesting that a subcontinental lithosphere mantle (SCLM) component most likely contributed to the generation of these magmas. Combining Pb and Nd isotopic tracers with the Os data, we demonstrate that the low-Ti basaltic magmas in the Emeishan CFB were mainly sourced from a mantle plume reservoir, whereas the high-Ti basaltic magmas were most likely derived from a SCLM reservoir or were contaminated by a significant amount of lithospheric mantle material during plume-related magma ascent through the SCLM.  相似文献   

9.
Calbuco volcano is a Late Pleistocene-Holocene composite stratovolcano located at 41°20 S, in the southern region of the Southern Volcanic Zone of the Andes (SSVZ; 37°–46° S). In contrast to basalt and basaltic andesite, which are the dominant lava types on the volcanic front from 37° to 42° S, Calbuco lavas are porphyritic andesites which contain a wide variety of crustal xenoliths. They have SiO2 contents in the 55–60% range, and have comparatively low K2O, Rb, Ba, Th and LREF abundances relative to other SSVZ centers. Incompatible element abundance ratios are similar to those of most SSVZ volcanics, but 87Sr/86Sr and 143Nd/144Nd are respectively higher and lower than those of adjacent volcanic centers. Basalts from nearby Osorno stratovolcano, 25 km to the northeast, are similar to other basaltic SSVZ volcanoes. However, basalts from several minor eruptive centers (MEC), located east of Calbuco and Osorno volcano along the Liquiñe-Ofqui fault zone (LOFZ), are enriched in Ba, Nb, Th and LREE, and have higher La/Yb and lower Ba/La, K/La and Rb/La. 87Sr/86Sr and 143Nd/144Nd in MEC basalts are respectively lower and higher than those of Osorno and Calbuco lavas. We suggest that MEC basalts were produced by lower extents of mantle melting than basalts from Osorno and other SSVZ stratovolcanoes, probably as a result of lower water content in the source of MEC basalts. Calbuco andesites formed from basaltic parents similar to Osorno basalts, by moderate pressure crystallization of a hornblende-bearing assemblage accompanied by crustal assimilation. Hornblende stability in the Calbuco andesites was promoted by the assimilation of hydrous metasedimentary crustal rocks, which are also an appropriate endmember for isotopic trends, together with magma storage at mid-crustal depths. The unique characteristics of Calbuco volcano, i.e. the stability of hornblende at andesitic SiO2 contents, low 143Nd/144Nd and high 87Sr/86Sr, and abundant crustal xenoliths, provide evidence for crustal assimilation that is not apparent at more northerly volcanoes in the SSVZ.  相似文献   

10.
Cenozoic(Miocene to Pleistocene) basaltic rocks in Jiangsu province of eastern China include olivine tholeiite and alkali basalt.We present major,trace element and Sr-Nd isotopic data as well as Ar-Ar dating of these basalts to discuss the petrogenesis of the basalts and identify the geological processes beneath the study area.On the basis of chemical compisitions and Ar-Ar dating of Cenonoic basaltic rocks from Jiangsu province,we suggest that these basalts may belong to the same magmatic system.The alkali basalts found in Jiangsu province have higherΣFeO,MgO,CaO,Na2O, TiO2 and P2O5 and incompatible elements,but lower Al2O3 and compatible elements contents than olivine tholeiite which may be caused by fractional crystallization of olivine,pyroxene and minor plagioclase.In Jiangsu basaltic rocks the incompatible elements increase with decreasing MgO/ΣFeO ratios.The primitive mantle-normalized incompatible elements and chondrite-normalized REE patterns of basaltic rocks found in Jiangsu province are similar to those of OIB.Partial loss of the mantle lithosphere accompanied by rising of asthenospheric mantle may accelerate the generation of the basaltic magma.The 143Nd/144Nd vs.87Sr/86Sr plot indicates a mixing of a depleted asthenospheric mantle source and an EMI component in the study area.According to Shaw’s equation,the basalts from Jiangsu province may be formed by l%-5%partial melting of a depleted asthenospheric mantle source.On the basis of Ar-Ar ages of this study and the fractional crystallization model proposed by Brooks and Nielsen(1982),we suggest that basalts from Jiangsu province may belong to a magmatic system with JF-2 as the primitive magma which has undergone fractional crystallization and evolved progressively to produce other types of basalts.  相似文献   

11.
The Ethiopian continental flood basalt (CFB) province (∼30 Ma, > 3 × 105 km3) was formed as the result of the impingement of the Afar mantle plume beneath the Ethiopian lithosphere. This province includes major sequences of rhyolitic ignimbrites generally found on top of the flood basalt sequence. Their volume is estimated to be at least 6 × 104km3, which represents 20% of that of the trap basalts. Their phenocryst assemblage (alkali feldspar, quartz, aegyrine-augite, ilmenite ± Ti-magnetite, richterite, and eckermanite) suggests temperatures in the range of 740 to 900°C. Four units were recognized in the field (Wegel Tena, Jima, Lima Limo, and Debre Birhan areas), each with its own geochemical specificity. Zr/Nb ratios remain constant between basalt and rhyolite in each area, and rhyolites associated with high-Ti or low-Ti basalts are, respectively, enriched or depleted in titanium. Their trace element and isotope (Sr, Nd, O) signatures (high 143Nd/144Nd and low 87Sr/86Sr ratios, compared to those of rhyolites from other CFB provinces) are clearly different from those of typical crustal melts and indicate that the Ethiopian rhyolites are among the most isotopically primitive rhyolites. Their major and trace element patterns suggest that they are likely to be derived from fractional crystallization of basaltic magmas similar in composition to the exposed flood basalts with only limited crustal contribution. Since Ethiopian high-Ti basalts have been shown to form from melting of a mantle plume, it is likely that Ethiopian ignimbrites, at least those that are Ti-rich, also incorporated material from the deep mantle.Rb-Sr isochrons on whole rocks and mineral separates (30.1 ± 0.4 Ma for Wegel Tena and 30.5 ± 0.4 Ma for Jima ignimbrites) show that most of the silicic volcanism occurred within < 2 Ma during the Oligocene. Ignimbritic eruptions resumed in the Miocene during two episodes dated at 15.4 ± 0.2 Ma and 8.0 ± 0.2 Ma for the Debre Birhan area. The Rb-Sr isochron ages of ignimbrites (both Oligocene and Miocene rhyolites) are indistinguishable within uncertainties from the 40Ar/39Ar ages of the underlying flood basalts. The Oligocene ignimbrites and the underlying trap basalts are synchronous with a shift in the oxygen composition of foraminifera recorded in Indian and Atlantic Ocean cores. The temporal coincidence of Ethiopian Oligocene volcanism, which released immense volumes of S (> 1.4 × 1015 mol) and Cl (6.4 × 1015 mol) into the atmosphere over a short time span, with the global cooling event at 30.3 Ma suggests that this volcanism might have accelerated the climate change that was already underway.  相似文献   

12.
介绍一个产生玄武岩的模型   总被引:1,自引:0,他引:1  
刘新秒 《华北地质》2006,29(2):150-154
地幔柱存在的一个主要证据是大规模高熔玄武岩省的出现,而且多认为玄武岩的来源依赖于地幔柱从下地幔输送。Michele Lustrino研究了造山时下地壳和岩石圈地幔的拆沉和拆离作用,提出了产生玄武岩的一个新模型。该模型认为即使地幔柱不存在,拆沉到地幔的下地壳物质再循环同样可以解释小规模的板内(大洋岛弧和大陆内部)火山岩和大洋、大陆溢流玄武岩及洋中脊玄武岩的生成及其常见的几种地球化学特征。在陆-陆碰撞过程中,下地壳中的变质反应生成石榴石,导致岩石的密度增大,致使过厚岩石圈底部(下地壳和岩石圈地幔)和上地壳分离并沉入上地幔。下地壳发生部分熔融形成富SiO2的熔体,和上涌的软流圈地幔(充填在下沉的岩石圈地幔和下地壳的空间)发生变质交代反应,导致具有强烈的地壳特点的富含斜方辉石层的形成。这个变质交代地幔体可以在拆沉后保持不变长达几个百万年。这种源的部分熔体可以保有下地壳的明显特征,产生类似富集地幔1型玄武岩浆作用。因此,该模型是提供了玄武岩浆来源的一个新选择。  相似文献   

13.
Scottish Dinantian transitional to mildly alkaline volcanism is represented by abundant outcrops in the Midland Valley, Southern Uplands and Highlands provinces. Dinantian volcanic rocks from Kintyre in the Scottish Highlands range in composition from basalt through basaltic hawaiite, hawaiite, mugearite and benmoreite to trachyte, the compositions of the evolved types being largely due to differentiation from the basaltic parents.Recent geochemical investigations of Scottish Caledonian granitoids, Siluro-Devonian Old Red Sandstone (ORS) lavas and xenolith suites from numerous vents and dykes of Permo-Carboniferous to Tertiary age have revealed that the Scottish crust and upper mantle both increase in age and are increasingly enriched in incompatible elements towards the north and northwest. The upper mantle and lower crust below the Highlands province are therefore largely considered to be more enriched and in parts older than those below the Midland Valley and Southern Uplands. Dinantian alkali basalts from these latter two provinces have Nd values predominantly in the range +3 to +6, initial 87Sr/86Sr values of 0.7029–0.7041 and 207Pb/ 204Pb values of 15.48–15.60. However, similar basalts from Kintyre and Arran in the Highlands have lower Nd (+0.1 to +3.4) and 207Pb/204Pb (for given 206Pb/204Pb ratios; 15.49–15.51) and slightly higher 87Sr/86Sr (0.7033–0.7046). This regional variation correlates well with the differences seen between Midland Valley and Highland magmas in the ORS calc-alkaline suite (Thirlwall 1986) and it is suggested that both the ORS and Dinantian basic rocks are derived from similar types of mantle, although no lithospheric slab component is present in the later Dinantian suites. Isotopically-distinct portions of mantle therefore appear to have been present below the Highland and Midland Valley-Southern Upland provinces from at least Caledonian to Carboniferous times. The combined incompatible element and Sr-Nd-Pd isotopic evidence from Kintyre and Arran basaltic rocks does not allow unequivocal distinction between a lithospheric mantle and a sublithospheric mantle source. The observed correlation between isotopic composition of Dinantian basalts and the chemical composition of the lithosphere, together with the apparent involvement of long-term separated source reservoirs suggests that Kintyre and Arran lavas were derived largely from a lithospheric mantle source. On the other hand, the isotopic enrichment of Kintyre basaltic rocks is not extreme; trace element and isotopic compositions are still comparable to modem OIB. Sublithospheric mantle could therefore also be a viable source for Kintyre and Arran Dinantian volcanism.  相似文献   

14.
This study reports new geochemical and Sr and Nd isotope data for 11 samples of hynormative late Miocene (~6.5 Ma) basalt, basaltic andesite, and rhyolitic volcanic rocks from Meseta Rio San Juan, located in the states of Hidalgo and Queretaro, Mexico, in the north-central part of the Mexican Volcanic Belt (MVB). The in situ growth-corrected initial isotopic ratios of these rocks are as follows: 87Sr/86Sr 0.703400-0.709431 and 143Nd/144Nd 0.512524-0.512835. For comparison, the isotopic ratios of basaltic rocks from this area show very narrow ranges as follows: 87Sr/86Sr 0.703400-0.703540 and 143Nd/144Nd 0.512794-0.512835. The available geological, geochemical, and isotopic evidence does not support the generation of the basic and intermediate magmas by direct (slab melting), nor by indirect (fluid transport to the mantle) participation of the subducted Cocos plate. The basaltic magmas instead could have been generated by partial melting of the upper mantle. The evolved basaltic andesite magmas could have originated from such basaltic magmas through assimilation coupled with fractional crystallization. Rhyolitic magmas might represent partial melting of different parts of the underlying heterogeneous crust. Their formation and eruption probably was facilitated by extensional tectonics and upwelling of the underlying mantle. The different petrogenetic processes proposed here for basaltic and basaltic andesite magmas on one hand and rhyolitic magmas on the other might explain the bimodal nature of Meseta Rio San Juan volcanism. Finally, predictions by the author about the behavior of Sr and Nd isotopic compositions for subduction-related magmas is confirmed by published data for the Central American Volcanic Arc (CAVA).  相似文献   

15.
There are large areas of Permian basaltic rocks in the Tarim basin (PBRT) in northwestern China. Precise Ar–Ar dating of these rocks revealed an eruption age span of 262 to 285 Ma. Most of the PBRT is composed of alkaline basaltic rocks with high TiO2 (2.43%–4.59%, weight percent), high Fe2O3 + FeO (12.63%–17.83%) and P2O5 (0.32%–1.38%) contents. Trace elements of these rocks have affinities with oceanic island basalts (OIB), as shown in chondrite normalized rare earth elements (REE) diagrams and primitive mantle normalized incompatible elements diagrams. The rocks show complex Sr–Nd isotopic character based on which they can be subdivided into two distinct groups: group 1 has relatively small initial (t = 280 Ma)87Sr/86Sr ratio ( 0.7048) and positive εNd(t) (3.42–4.66) values. Group 2 has relatively large initial 87Sr/86Sr ratio (0.7060–0.7083) and negative εNd(t) (from − 2.79 to − 2.16) values. Lead isotopes are even more complex with variations of (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t ranging from 17.9265 to 18.5778, 15.4789 to 15.6067 and 37.2922 to 38.1437, respectively. Moreover, these two groups have different trace elements ratios such as Nb/La, Ba/Nb, Zr/Nb, Nb/Ta and Zr/Hf, implying different magmatic processes. Based on the geochemistry of basaltic rocks and an evaluation of the tectonics, deformation, and the compositions of crust and lithospheric mantle in Tarim, we conclude that these basaltic rocks resulted from plume–lithosphere interaction. Permian mantle plume caused an upwelling of the Tarim lithosphere leading to melting of the asthenospheric mantle by decompression. The magma ascended rapidly to the base of lower crust, where different degrees of assimilation of OIB-like materials and fractionation occurred. Group 1 rocks formed where the upwelling is most pronounced and the assimilation was negligible. In other places, different degrees of assimilation and fractionation account for the geochemical traits of group 2.  相似文献   

16.
The Nb/U and Th/U of the primitive mantle are 34 and 4.04 respectively, which compare with 9.7 and 3.96 for the continental crust. Extraction of continental crust from the mantle therefore has a profound influence on its Nb/U but little influence on its Th/U. Conversely, extraction of midocean ridge-type basalts lowers the Th/U of the mantle residue but has little influence on its Nb/U. As a consequence, variations in Th/U and Nb/U with Sm/Nd can be used to evaluate the relative importance of continental and basaltic crust extraction in the formation of the depleted (Sm/Nd enriched) mantle reservoir.This study evaluates Nb/U, Th/U, and Sm/Nd variations in suites of komatiites, picrites, and their associated basalts, of various ages, to determine whether basalt and/or continental crust have been extracted from their source region. Emphasis is placed on komatiites and picrites because they formed at high degrees of partial melting and are expected to have Nb/U, Th/U, and Sm/Nd that are essentially the same as the mantle that melted to produce them. The results show that all of the studied suites, with the exception of the Barberton, have had both continental crust and basaltic crust extracted from their mantle source region. The high Sm/Nd of the Gorgona and Munro komatiites require the elevated ratios seen in these suites to be due primarily to extraction of basaltic crust from their source regions, whereas basaltic and continental crust extraction are of subequal importance in the source regions of the Yilgarn and Belingwe komatiites. The Sm/Nd of modern midocean ridge basalts lies above the crustal extraction curve on a plot of Sm/Nd against Nb/U, which requires the upper mantle to have had both basaltic and continental crust extracted from it.It is suggested that the extraction of the basaltic reservoir from the mantle occurs at midocean ridges and that the basaltic crust, together with its complementary depleted mantle residue, is subducted to the core-mantle boundary. When the two components reach thermal equilibrium with their surroundings, the lighter depleted component separates from the denser basaltic component. Both are eventually returned to the upper mantle, but the lighter depleted component has a shorter residence time in the lower mantle than the denser basaltic component. If the difference in the recycling times for the basaltic and depleted components is ∼1.0 to 1.5 Ga, a basaltic reservoir is created in the lower mantle, equivalent to the amount of basalt that is subducted in 1.0 to 1.5 Ga, and that reservoir is isolated from the upper mantle. It is this reservoir that is responsible for the Sm/Nd ratio of the upper mantle lying above the trend predicted by extraction of continental crust on the plot of Sm/Nd against Nb/U.  相似文献   

17.
浙闽沿海大面积出露的中生代酸性火山岩区有少量早白垩世玄武岩分布,它们具典型钾富集和铌等元素亏损特征,其同位素组成表现为较高ISr(0.7055-0.7106)、低的εNd(1.2--10.6,大多介于-3.2--10.6之间)及富放射性成因铅(206Pb/204Pb=18.355-18.726,207Pb/204Pb=15.455-15.799,208Pb/204Pb=38.530-39.319).这些特征表明玄武岩源区为一富集型的陆下岩石圈地幔,由古老的俯冲地壳物质再循环进入并交代地幔而形成。没有证据表明本区早白垩世基性和酸性岩浆之间发生过大规模的化学混合,但不排除同位素之间的交换以及局部的化学和机械混合。壳-幔混合与地壳混染仅在少数玄武岩的形成过程中起着较重要的作用。  相似文献   

18.
《Gondwana Research》2011,19(4):596-610
There are large areas of Permian basaltic rocks in the Tarim basin (PBRT) in northwestern China. Precise Ar–Ar dating of these rocks revealed an eruption age span of 262 to 285 Ma. Most of the PBRT is composed of alkaline basaltic rocks with high TiO2 (2.43%–4.59%, weight percent), high Fe2O3 + FeO (12.63%–17.83%) and P2O5 (0.32%–1.38%) contents. Trace elements of these rocks have affinities with oceanic island basalts (OIB), as shown in chondrite normalized rare earth elements (REE) diagrams and primitive mantle normalized incompatible elements diagrams. The rocks show complex Sr–Nd isotopic character based on which they can be subdivided into two distinct groups: group 1 has relatively small initial (t = 280 Ma)87Sr/86Sr ratio (∼ 0.7048) and positive εNd(t) (3.42–4.66) values. Group 2 has relatively large initial 87Sr/86Sr ratio (0.7060–0.7083) and negative εNd(t) (from − 2.79 to − 2.16) values. Lead isotopes are even more complex with variations of (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t ranging from 17.9265 to 18.5778, 15.4789 to 15.6067 and 37.2922 to 38.1437, respectively. Moreover, these two groups have different trace elements ratios such as Nb/La, Ba/Nb, Zr/Nb, Nb/Ta and Zr/Hf, implying different magmatic processes. Based on the geochemistry of basaltic rocks and an evaluation of the tectonics, deformation, and the compositions of crust and lithospheric mantle in Tarim, we conclude that these basaltic rocks resulted from plume–lithosphere interaction. Permian mantle plume caused an upwelling of the Tarim lithosphere leading to melting of the asthenospheric mantle by decompression. The magma ascended rapidly to the base of lower crust, where different degrees of assimilation of OIB-like materials and fractionation occurred. Group 1 rocks formed where the upwelling is most pronounced and the assimilation was negligible. In other places, different degrees of assimilation and fractionation account for the geochemical traits of group 2.  相似文献   

19.
Sr and Nd isotopic compositions of one trachyte, eight phonolites and five basalts have been measured. The isotopic characteristics of the trachyte can be explained by a combined assimilation–fractional crystallization process within an upper crustal magmatic chamber. Some phonolites display isotopic signatures identical to basalts, suggesting that they have been protected against any crustal assimilation during their formation. Some others have low Sr contents, whereas they are enriched in radiogenic Sr (0.70451<87Sr/86Sri<0.71192), and display basaltic 143Nd/144Nd ratios. Both observations could be explained by very strong alkali feldspar fractionation and by subsequent very low assimilation of surrounding rocks (between 0.3 and 4%) during intrusion. To cite this article: J.-M. Dautria et al., C. R. Geoscience 336 (2004).  相似文献   

20.
The island of Salina comprises one of the most distinct calc-alkaline series of the Aeolian arc (Italy), in which calc-alkaline, high-K calc-alkaline, shoshonitic and leucite-shoshonitic magma series are developed. Detailed petrological, geochemical and isotopic (Sr, Nd, Pb, O) data are reported for a stratigraphically well-established sequence of lavas and pyroclastic rocks from the Middle Pleistocene volcanic cycle (430–127 ka) of Salina, which is characterized by an early period of basaltic volcanism (Corvo; Capo; Rivi; Fossa delle Felci, group 1) and a sequence of basaltic andesites, and andesites and dacites in the final stages of activity (Fossa delle Felci, groups 2–8). Major and trace element compositional trends, rare earth element (REE) abundances and mineralogy reveal the importance of crystal fractionation of plagioclase + clinopyroxene + olivine/ orthopyroxene ± titanomagnetite ± amphibole ± apatite in generating the more evolved magma types from parental basaltic magmas, and plagioclase accumulation in producing the high Al2O3 contents of some of the more evolved basalts. Sr isotope ratios range from 0.70410 to 0.70463 throughout the suite and show a well-defined negative correlation with 143Nd/144Nd (0.51275–0.51279). Pb isotope compositions are distinctly radiogenic with relatively large variations in 206Pb/204Pb (19.30–19.66), fairly constant 207Pb/204Pb (15.68–15.76) and minor variations in 208Pb/204Pb ratios (39.15–39.51). Whole-rock δ18O values range from +6.4 to +8.5‰ and correlate positively with Sr isotope ratios. Overall, the isotopic variations are correlated with the degree of differentiation of the rocks, indicating that only small degrees of crustal assimilation are overprinting the dominant evolution by crystal–liquid fractionation (AFC-type processes). The radiogenic and oxygen isotope composition of the Salina basalts suggests derivation from primary magmas from a depleted mantle source contaminated by slab-derived fluids and subducted sediments with an isotopic signature of typical upper continental crust. These magmas then evolved further to andesitic and dacitic compositions through the prevailing process of low-pressure fractional crystallization in a shallow magma reservoir, accompanied by minor assimilation of crustal lithologies similar to those of the Calabrian lower crust. Received: 29 November 1999 / Accepted: 16 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号