首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mine drainage from the weathering of sulfide minerals and magnetite   总被引:1,自引:0,他引:1  
Pyrite and pyrrhotite are the principal minerals that generate acid drainage in mine wastes. Low-pH conditions derived from Fe-sulfide oxidation result in the mobilization of contaminant metals (such as Zn, Cd, Ni and Cr) and metalloids (such as As) which are of environmental concern. This paper uses data from detailed mineralogical and geochemical studies conducted at two Canadian tailings impoundments to examine the mineralogical changes that pyrite, pyrrhotite, sphalerite and magnetite undergo during and after sulfide oxidation, and the subsequent release and attenuation of associated trace elements. The stability of sphalerite in tailings impoundments generally is greater than that of pyrrhotite, but less than pyrite. Dissolved Ni and Co derived from Fe sulfides, and to a lesser extent, dissolved Zn and Cd from sphalerite, are commonly attenuated by early-formed Fe oxyhydroxides. As oxidation progresses, a recycling occurs due to continued leaching from low-pH pore waters and because the crystallinity of Fe oxyhydroxides gradually increases which decreases their sorptive capacity. Unlike many other elements, such as Cu, Pb and Cr, which form secondary minerals or remain incorporated into mature Fe oxyhydroxides, Zn and Ni become mobile. Magnetite, which is a potential source of Cr, is relatively stable except under extremely low-pH conditions. A conceptual model for the sequence of events that typically occurs in an oxidizing tailings impoundment is developed outlining the progressive oxidation of a unit of mine waste containing a mixed assemblage of pyrrhotite and pyrite.  相似文献   

2.
Total concentrations of chemical elements in soils may not be enough to understand the mobility and bioavailability of the elements. It is important to characterise the degree of association of chemical elements in different physical and chemical phases of soil. Another geochemical characterisation methodology is to apply sequential selective chemical extraction techniques. A seven-step sequential extraction procedure was used to investigate the mobility and retention behaviour of Al, Fe, Mn, Cu, Zn, Pb, Cr, Co, Ni, Mo, Cd, Bi, Sn, W, Ag, As and U in specific physical–chemical and mineral phases in mine tailings and soils in the surroundings of the abandoned Ervedosa mine. The soil geochemical data show anomalies associated with mineralised veins or influenced by mining. Beyond the tailings, the highest recorded concentrations for most elements are in soils situated in mineralised areas or under the influence of tailings. The application of principal components analysis allowed recognition of (a) element associations according to their geochemical behaviour and (b) distinction between samples representing local geochemical background and samples representing contamination. Some metal cations (Mn, Cd, Cu, Zn, Co, Cr, Ni) showed important enrichment in the most mobilisable and bioavailable (i.e., water-soluble and exchangeable) fractions due likely to the acidic conditions in the area. In contrast, oxy-anions such as Mo and As showed lower mobility because of adsorption to Fe oxy-hydroxides. The residual fraction comprised largest proportions of Sn and Al and to a lesser extent Zn, Pb, Ni, Cr, Bi, W, and Ag, which are also present at low concentrations in the bioavailable fractions. The elements in secondary mineral phases (mainly Fe, Mn, Cu, Zn, Cd, Pb, W, Bi, Mo, Cr, Ni, Co, As and U) as well as in organic matter and sulphides are temporarily withheld, suggesting that they may be released to the environment by changes in physico-chemical conditions.  相似文献   

3.
The purpose of this work is to characterize the hydrochemical behavior of acid mine drainages (AMD) and superficial waters from the Adoria mine area (Northern Portugal). Samples of superficial and mine drainage water were collected for one year, bi-monthly, with pH, temperature, Eh, conductivity and HCO3 determined in situ with chemical analyses of SO4, Ca, K, Mg, Na, Cl, Ag, As, Bi, Co, Cu, Fe, Mn, Ni, Pb, Zn and Cd. In the mine, there are acidic waters, with low pH and significant concentrations of SO4, and metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni), while in the superficial natural stream waters outside the mine, the pH is close to neutral, with low conductivity and lower metal concentrations. The stream waters inside the mine influence are intermediate in composition between AMD and natural stream waters outside the mine influence. Principal Component Analysis (PCA) shows a clear separation between AMD galleries and AMD tailings, with tailings having a greater level of contamination.  相似文献   

4.
Coal mine rejects and sulfide bearing coals are prone to acid mine drainage (AMD) formation due to aqueous weathering. These acidic effluents contain dissolved trace and potentially harmful elements (PHEs) that have considerable impact on the environment. The behavior of these elements in AMD is mainly controlled by pH. The focus of the present study is to investigate aqueous leaching of mine rejects for prediction of acid producing potential, rates of weathering, and release of PHEs in mine drainage. Mine reject (MR) and coal samples from the active mine sites of Meghalaya, India typically have high S contents (1.8–5.7% in MR and 1.7–4.7% in coals) with 75–90% of the S in organic form and enrichment of most of the PHEs in rejects. Aqueous kinetic leaching experiments on mine rejects showed high acid producing potential and release of trace and potentially harmful elements. The elements (Sb, As, Cd, Cr, Co, Cu, Pb, Mn, Ni, V and Zn) in mine sample leachates are compared with those in mine waters. The concentrations of Al, Si, P, K, Ti, Mn, Fe, Co, Ni, Cu, Zn and Pb are found to increase with leaching time and are negatively correlated with pH of the solution. The processes controlling the release of these elements are acid leaching, precipitation and adsorption. The critical loads of PHEs in water affected by AMD are calculated by comparing their concentrations with those of regulatory levels. The Enrichment Factors (EFs) and soil pollution indices (SPIs) for the elements have shown that PHEs from coal and mine reject samples are mobilized into the nearby environment and are enriched in the associated soil and sediment.  相似文献   

5.
Weathering of heavy metal enriched black shales may be one of the most important sources of environmental contamination in areas where black shales are distributed. Heavy metal release during weathering of the Lower Cambrian Black Shales (LCBS) in western Hunan, China, was investigated using traditional geochemical methods and the ICP-MS analytical technique. Concentrations of 16 heavy metals, 8 trace elements and P were measured for samples from selected weathering profiles at the Taiping vanadium ore mine (TP), the Matian phosphorous ore mine (MT), and Taojiang stone-coal mine (TJ). The results show that the bedrock at these three profiles is enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Th, U, Mo, Cd, Sb, Tl, and P. Based on mass-balance calculation, the percentages of heavy metals released (in % loss) relative to immobile element Nb were estimated. The results show significant rates of release during weathering of: V, Cr, Co, Ni, Cu, Zn, U, Mo, Cd, Sn, Sb, and Tl for the TP profile; Sc, Cr, Mn, Co, Ni, Cu, Zn, Pb, Th, Cd, and Sn for the MT profile; and Sc, Mn, Co, Ni, Zn, Th, Cd, Sn, and Tl for the TJ profile. Among these heavy metals, Co, Ni, Zn, Cd, and Sn show very similar features of release from each of the three weathering profiles. The heavy metals released during weathering may affect the environment (especially topsoil and surface waters) and are possibly related to an observed high incidence of endemic diseases in the area.  相似文献   

6.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   

7.
固体聚合膜电解浓集法是浓缩氚含量较低(1 Bq/m~3)的天然水样的常用方法,但因水样自身含有杂质离子或电解装置聚合膜带入杂质进入浓集液,使浓集液偏酸性,在测量过程中易产生化学淬灭效应,导致氚的测量值偏低。本文研究了水样自身存在的杂质离子和聚合膜上残留的杂质离子、样品溶液的pH值及其电导率所产生的化学淬灭效应的影响,实验表明,为减少化学淬灭效应,提高测量低含量氚的准确性,需保证水样溶液呈中性,电导率≤1μS/cm,同时避免杂质沉积在聚合膜上。如果水样溶液的pH值偏酸性、电导率大于1μS/cm,可采用酸碱混合型离子交换树脂去除水样中自身的杂质;对于聚合膜引入的杂质,可在电解后的水样中加入微量氨水将其pH值调节至中性。  相似文献   

8.
The acid mine drainage (AMD) discharged from the Hejiacun uranium mine in central Hunan (China) was sampled and analyzed using ICP-MS techniques. The analyzing results show that the AMD is characterized by the major ions FeTotal, Mn, Al and Si, and is concentrated with heavy metals and metalloids including Cd, Co, Ni, Zn, U, Cu, Pb, Tl, V, Cr, Se, As and Sb. During the AMD flowing downstream, the dissolved heavy metals were removed from the AMD waters through adsorption onto and co-precipitation with metal-oxhydroxides coated on the streambed. Among these metals, Cd, Co, Ni, Zn, U, Cu, Pb and Tl are negatively correlated to pH values, and positively correlated to major ions Fe, Al, Si, Mn, Mg, Ca and K. The metals/metalloids V, Cr, Se, As and Sb are conservative in the AMD solution, and negatively-correlated to major ions Na, Ca and Mg. Due to the above different behaviors of these chemical elements, the pH-negatively related metals (PM) and the conservative metals (CM) are identified; the PM metals include Cd, Co, Ni, Zn, U, Cu, Pb and Tl, and the CM metals V, Cr, Se, As and Sb. Based on understanding the geochemistry of PM and CM metals in the AMD waters, a new equation: EXT = (Acidity + PM)/pH + CM × pH, is proposed to estimate and evaluate extent of heavy-metal pollution (EXT) of AMD. The evaluation results show that the AMD and surface waters of the mine area have high EXT values, and they could be the potential source of heavy-metal contamination of the surrounding environment. Therefore, it is suggested that both the AMD and surface waters should be treated before they are drained out of the mine district, for which the traditional dilution and neutralization methods can be applied to remove the PM metals from the AMD waters, and new techniques through reducing the pH value of the downstream AMD waters should be developed for removal of the CM metals.  相似文献   

9.
碳酸盐型尾矿在缓冲期/中性矿山废水(NMD)释放期的重金属污染问题易被忽视。本文以广西大厂锡石-硫化物尾矿作为研究对象,采用柱淋滤实验方法,探讨碳酸盐型尾矿在缓冲期重金属的释放机制,为此类型尾矿重金属污染的防治提供依据。实验结果表明,大厂尾矿在缓冲期(约7年,pH值为6. 6~8. 0)存在Sb、Zn、Cd、As(Pb)释放污染问题。在尾矿堆放初期(0. 5年,pH值由7. 6降至7. 2),Zn、Sb、Cd快速、大量释出;中期(0. 5~2. 5年,pH值由7. 2波动升高至8. 0),Sb较平稳释出;后期(2. 5~7年,pH值变化范围为8. 0~6. 6,呈降低趋势),受气温及pH值影响,As、Sb(Pb)呈波动或间歇振荡释出,即在夏季高温、pH值较高时,释出元素浓度较高,反之,在冬季低温、pH值较低时,释出元素浓度较低。重金属的释放与尾矿中硫化物的氧化程度高低及氧化先后顺序有关。这些矿物的氧化顺序大致为:闪锌矿(Zn、Cd)、辉锑锡铅矿(Sb)→脆硫锑铅矿(Sb)→毒砂(As)、方铅矿(Pb)。因此,对于(广西大厂)碳酸盐型尾矿在缓冲期的重金属污染应分阶段、季节(夏季),采取有针对性的防治措施;在缓冲期(7年)后应注意尾矿酸性矿山废水(AMD)+重金属(如As、Sb)复合污染的防治。  相似文献   

10.
A presentation is made of the study of an underground polymetallic sulphide mine and the pollution caused by this in the adjoining aquatic ecosystems. Troya Mine is in the Basque Cantabrian region (northern Spain). The annual production of the ore deposit of over 3.7 million tons of Pb (0.9%), Zn (11.2%) and Cu (0.2%) was 300,000 t. It was open and producing from 1986-1993. The mineralization was made up of pyrite, marcasite, sphalerite, galena, chalcopyrite and arsenopyrite. Only the Zn and the Pb were mined. We studied the distribution and behaviour of the heavy metals Zn, Pb, Fe, Mn, Cu, Cr and Cd in the water column, dissolved and suspended fractions, and in the sediments of Estanda Stream and of Gezala Creek. Zn, Cd and Mn tend to be found in the water; Fe, Pb, Cu and Cr appear as an adsorbed fractionin the solid phases. Those of the second group are significantly linked to the fluvial sediments and present very high levels. The concentrations of the metals are conditioned by the waters from the mine galleries, by the leached waste, by the surface runoff, and by overflow from the spillway of the tailings pond. Our observations provide knowledge on the extent of the polluting power of the metals, the physico-chemical effects in play and the subsequent chances of recovering these highly affected environments.  相似文献   

11.
Total concentrations of Cd, Cr, Co, Fe, Pb, Ni, Mn and Zn were determined by atomic absorption spectrophotometry in the surface sediments of Taylor Creek, Southern Nigeria. The most concentrated trace metals, ranging from 113.2 to 5160.7 mg/g-dry weights were Fe, Pb, Mn, Ni and Zn. There was no significant variation in sediment-associated metal levels (P>0.05). The metal pollution index was highest at Agbia/Nedugo and is attributed to local contamination of the Creek. The concentrations of low molecular weight polycyclic aromatic hydrocarbons (PAHs) were also detected and quantified in the sediments by capillary gas chromatography equipped with a flame ionization detector. The concentration levels of 178.1-1266.3 mg/g-wet weights were high for the PAHs. The results indicate that the pollutants, which are bio-accumulatable, could contribute to inferior biodiversity, and shifts in community composition from sensitive to tolerant taxa.  相似文献   

12.
Tailings generated during processing of sulfide ores represent a substantial risk to water resources. The oxidation of sulfide minerals within tailings deposits can generate low-quality water containing elevated concentrations of SO4, Fe, and associated metal(loid)s. Acid generated during the oxidation of pyrite [FeS2], pyrrhotite [Fe(1−x)S] and other sulfide minerals is neutralized to varying degrees by the dissolution of carbonate, (oxy)hydroxide, and silicate minerals. The extent of acid neutralization and, therefore, pore-water pH is a principal control on the mobility of sulfide-oxidation products within tailings deposits. Metals including Fe(III), Cu, Zn, and Ni often occur at high concentrations and exhibit greater mobility at low pH characteristic of acid mine drainage (AMD). In contrast, (hydr)oxyanion-forming elements including As, Sb, Se, and Mo commonly exhibit greater mobility at circumneutral pH associated with neutral mine drainage (NMD). These differences in mobility largely result from the pH-dependence of mineral precipitation–dissolution and sorption–desorption reactions. Cemented layers of secondary (oxy)hydroxide and (hydroxy)sulfate minerals, referred to as hardpans, may promote attenuation of sulfide-mineral oxidation products within and below the oxidation zone. Hardpans may also limit oxygen ingress and pore-water migration within sulfide tailings deposits. Reduction–oxidation (redox) processes are another important control on metal(loid) mobility within sulfide tailings deposits. Reductive dissolution or transformation of secondary (oxy)hydroxide phases can enhance Fe, Mn, and As mobility within sulfide tailings. Production of H2S via microbial sulfate reduction may promote attenuation of sulfide-oxidation products, including Fe, Zn, Ni, and Tl, via metal-sulfide precipitation. Understanding the dynamics of these interrelated geochemical and mineralogical processes is critical for anticipating and managing water quality associated with sulfide mine tailings.  相似文献   

13.
Redistribution of potentially harmful metals and As was studied based on selective extractions in two active sulphide mine tailings impoundments in Finland. The Hitura tailings area contains residue from Ni ore processing, while the Luikonlahti site includes tailings from the processing of Cu–Co–Zn–Ni and talc ores. To characterize the element solid-phase speciation with respect to sulphide oxidation intensity and the water saturation level of the tailings, drill cores were collected from border zones and mid-impoundment locations. The mobility and solid-phase fractionation of Ni, Cu, Co, Zn, Cr, Fe, Ca, Al, As, and S were analysed using a 5-step non-sequential (parallel) selective extraction procedure. The results indicated that metal redistribution and sulphide oxidation intensity were largely controlled by the disposal history and strategy of the tailings (sorting, exposure of sulphides due to delayed burial), impoundment structure and water table, and reactivity of the tailings. Metal redistribution suggested sulphide weathering in the tailings surface, but also in unsaturated proximal areas beside the earthen dams, and in water-saturated bottom layers, where O2-rich infiltration is possible. Sulphide oxidation released trace metals from sulphide minerals at both locations. In the Hitura tailings, with sufficient buffering capacity, pH remained neutral and the mobilized metals were retained by secondary Fe precipitates deeper in the oxidized zone. In contrast, sulphide oxidation-induced acidity and rise in the water table after oxidation apparently remobilized the previously retained metals in Luikonlahti. In general, continuous disposal of tailings decreased the sulphide oxidation intensity in active tailings, unless there was a delay in burial and the reactive tailings were unsaturated after deposition.  相似文献   

14.
A series of laboratory column tests on reactive mine tailings was numerically simulated to study the effect of high water saturation on preventing sulfide mineral oxidation and acid mine drainage (AMD). The approach, also known as an elevated water table (EWT), is a promising alternative to full water covers for the management and closure of sulfidic tailings impoundments and for the long term control of acid mine drainage. The instrumented columns contained reactive tailings from the Louvicourt mine, Quebec, and were overlain by a protective sand cover. Over a 13–19 month period, the columns were exposed to atmospheric O2 and flushed approximately every month with demineralized water. A free draining control column with no sand cover was also used. During each cycle, water table elevations were controlled by fixing the pressure at the column base and drainage water was collected and analyzed for pH and Eh, major ions, and dissolved metals (Fe, Zn, Cu, Pb, and Mg). The columns were simulated using the multi-component reactive transport model MIN3P which solves the coupled nonlinear equations for transient water flow, O2 diffusion, advective–dispersive transport and kinetic geochemical reactions. Physical properties and mineralogical compositions for the material layers were obtained from independent laboratory data. The simulated and observed data showed that as the water table elevation increased, the effluent pH became more neutral and SO4 and dissolved metal concentrations decreased by factors on the order of 102–103. It is concluded that water table depths less than or equal to one-half of the air entry value (AEV) can keep mine tailings sufficiently saturated over the long term, thus reducing sulfide oxidation and AMD production.  相似文献   

15.
邬光海  王晨昇  陈鸿汉 《中国地质》2020,47(6):1838-1852
为研究内蒙古赤峰市废弃钨钼矿区周围土壤重金属污染特征、潜在生态风险及成因分析,共采集83份表层土壤样品和6个土壤钻孔。采用ArcGIS空间插值分析方法研究As、Cd、Cr、Cu、Ni、Pb、Mo和Zn的空间分布,构建重金属扰动指数函数研究重金属受人类活动的污染程度,利用地累积指数法验证矿区周围土壤重金属污染程度,通过相关性分析判断重金属来源并讨论污染成因。结果表明:矿区周围土壤As、Cd、Cu、Pb、Zn和Mo平均含量明显高于矿区周边背景值,高含量主要分布尾矿库周围,主要来源为矿山采选活动;Cr和Ni基本无污染,主要来源为母岩风化。通过重金属扰动指数函数计算发现:采用区域背景值对矿区周围进行重金属污染评价夸大了矿山采选活动对矿区周围土壤重金属的污染,矿区周围土壤重金属污染是由于天然重金属富集和采矿活动共同作用下的“双驱动模式”导致,尾矿库周围土壤重金属污染程度随着与尾矿库水平距离的增加和深度的加大而逐渐降低。降水量丰富程度是影响重金属迁移能力的关键因素,该矿处于降水量匮乏地区,尾矿库对周围土壤重金属污染范围有限,对生态环境影响轻微。  相似文献   

16.
为查明豫西成矿带潭头盆地金矿区农田土壤重金属污染特征及污染来源,在该盆地农田中系统采集土壤样品,分析土壤中的重金属含量,采用聚类分析和主成分分析/绝对主成分分数(PCA/APCS)受体模型对污染源进行解析并计算污染源贡献率。结果显示:研究区农田土壤重金属Hg、As、Cr、Ni、Cu、Pb、Zn、Cd含量平均值均低于农用地土壤污染风险筛选值,整体土壤污染风险较低,仅部分样品Hg、As、Cu、Pb、Zn、Cd含量超过风险筛选值;Pb、Zn和Cd主要呈区域性污染,其他重金属元素主要呈孤立点状污染。Hg、Cd、Pb变异系数达到强变异水平,表明潭头盆地农田土壤中Hg、Cd、Pb元素受人类活动干扰比较强烈。综合聚类分析、主成分分析及空间分布特征,8种重金属主要来源于4类污染源:Cu、Pb、Zn和Cd污染来源于交通源(PC1);Cr和Ni污染来源于自然源(PC2);As污染来源于与金矿开采和尾矿堆存相关的矿业源(PC3);Hg污染来源于与小作坊汞溶解炼金相关的矿业源(PC4)。  相似文献   

17.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

18.
This study focused on the influence of base metal mining on heavy metal levels in soils and plants in the vicinity of Arufu lead-zinc mine, Nigeria. Soil samples (0-15 cm depth) and plant samples were collected from cul-tivated farmlands in and around the mine, the unmineralized site and a nearby forest (the control site). The samples were analyzed for heavy metals (Fe, Zn, Mn, Cu, Pb, Cr and Cd) by Atomic Absorption Spectrophotometry (AAS). The physical properties of soils (pH and LOI) were also measured. Results showed that soils from cultivated farm-lands have neutral pH values (6.5-7.5), and low organic matter contents (10%). Levels of Zn, Pb and Cd in culti-vated soils were higher than the concentrations obtained from the control site. These heavy metals are most probably sourced from mining and agricultural activities in the study area. Heavy metal concentrations measured in plant parts decreased in the order of rice leavescassava tuberspeelings. In the same plant species, metal levels decreased in the order of ZnFeMnCuPbCrCd. Most heavy metals were found in plant parts at average concentrations normally observed in plants grown in uncontaminated soil, however, elevated concentrations of Pb and Cd were found in a few cassava samples close to the mine dump. A stepwise linear regression analysis identified soil metal contents, pH and LOI as some of the factors influencing soil-plant metal uptake.  相似文献   

19.
Small-scale mining and mineral processing at the Webbs Consols polymetallic PbZnAg deposit in northern New South Wales, Australia has caused a significant environmental impact on streams, soils and vegetation. Unconfined waste rock dumps and tailings dams are the source of the problems. The partly oxidised sulphidic mine wastes contain abundant sulphides (arsenopyrite, sphalerite, galena) and oxidation products (scorodite, anglesite, smectite, Fe-oxyhydroxides), and possess extreme As and Pb (wt% levels) and elevated Ag, Cd, Cu, Sb and Zn values. Contemporary sulphide oxidation, hardpan formation, crystallisation of mineral efflorescences and acid mine drainage generation occur within the waste repositories. Acid seepages (pH 1.9–6.0) from waste dumps, tailings dams and mine workings display extreme As, Pb and Zn and elevated Cd, Cu and Sb contents. Drainage from the area is by the strongly contaminated Webbs Consols Creek and although this stream joins and is diluted by the much larger Severn River, contamination of water and stream sediments in the latter is evident for 1–5 km, and 12 km respectively, downstream of the mine site. The pronounced contamination of local and regional soils and sediments, despite the relatively small scale of the former operation, is due to the high metal tenor of abandoned waste material and the scarcity of neutralising minerals. Any rehabilitation plan of the site should include the relocation of waste materials to higher ground and capping, with only partial neutralisation of the waste to pH 4–5 in order to limit potential dissolution of scorodite and mobilisation of As into seepages and stream waters.  相似文献   

20.
为探讨富硫化物尾矿酸化及重金属污染特征,选择安徽铜陵水木冲尾矿库浅层(0~90 cm)剖面为研究对象,对其结构特点、矿物组成、重金属(Pb、Cd、Zn、Ni、Cr、Mn、Cu和As)含量及赋存形态进行研究。结果表明,该尾矿库浅层出现分层现象,即表层为强硬化层,向下依次为弱硬化层和松散层,且呈酸性;矿物主要以辉石、长石、云母和石膏为主,由浅及深,金属硫化物及碳酸盐型矿物特征峰呈现增强的趋势;重金属呈现两种富集类型:表层(0~30cm,As、Pb)富集和中部(40~60 cm,Cd、Cu、Mn、Ni、Zn和Cr)富集型,其中Cu、Cd、As污染较为严重。由相关性分析可知,部分金属之间存在一定的伴生性,且p H值是影响重金属迁移的重要因素之一。该尾矿重金属主要以残渣态为主,其中Pb的潜在迁移能力最强,As最弱,顺序为Pb Cd Zn Ni Cr Mn Cu As。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号