首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
利用1961~2020年西南地区东部118个气象站逐日降水量资料和1979~2020年欧洲中期天气预报中心(ECMWF)的ERA5逐月再分析资料以及美国气象环境预报中心和美国国家大气研究中心(NCEP/NCAR)提供的逐6 h全球再分析资料,采用相关、回归、聚类、混合单粒子拉格朗日综合轨迹(HYSPLITv5.0)模型模拟等方法对2020年6~7月西南地区东部降水异常偏多特征、大尺度水汽输送特征及水汽收支状况和主要水汽源地及贡献等进行了分析,定义了关键区水汽强度指标,分析了关键区水汽强度与海温的联系。结果表明,2020年6~7月西南地区东部平均降水量异常偏多5成,为1961年以来最多,除贵州中部和四川东北部的局部地区降水较常年略偏少外,其余地区降水均较常年明显偏多。2020年6~7月200 hPa上高空急流位置偏南,西南地区东部正好位于急流轴以南地区,高层强辐散流出,低层强辐合流入,配合从低层到高层的深厚的强烈的垂直运动,为降水提供了良好的动力条件,而西太平洋副热带高压(副高)明显西伸,有利于其西南侧的暖湿气流向西南地区东部输送,使得该区域降水偏多。采用拉格朗日方法计算的定量的水汽轨迹...  相似文献   

2.
1979年夏季我国东部各纬带水汽输送周期振荡的初步分析   总被引:8,自引:0,他引:8  
本文根据1979年5—8月逐日850hPa的探空和测风资料计算了我国东部各纬度带平均的经向水汽输送,并进行了功率谱分析。结果发现与我国夏季雨带季节性北移紧密联系的水汽输送随着地理位置的变化呈现明显不同振荡特性。南海到华南地区,存在准40天和4天左右的显著周期;长江流域存在80天和8天左右的显著周期;华北地区存在5天左右的显著周期。并且综合分析表明,我国华南和东部地区的降水也呈现出40—50天的振荡特性,且与来自南海地区水汽输送的变化位相一致。   相似文献   

3.
研究水汽输送问题,无论在理论上或实际应用上都有很重要的意义。从理论上来说,大气中的各种环流机制可以引起水汽输送,而要维持稳定的大气环流又必然要求一定的水汽输送,以达到水份、热量和能量的平衡。此外,由于水汽一温室效应是气候形成过程中一个重要的正反馈机制,因此,水汽输送的正确考虑是气候模拟一个成功的关键。从实际应用方面来说,水汽输送及其时空变化的分析对于暴雨形成、旱涝分布、水分资源、水份循环等与国民经济密切相关的问题是必不可少的。  相似文献   

4.
中国东部地区夏季水汽输送个例计算   总被引:45,自引:6,他引:45  
谢义炳  戴武杰 《气象学报》1959,30(2):173-185
本文根据实测风与温度记录计算了1957年7月11日到20日黄河中下游地区大量降水的水汽输送情况,并简单讨论水汽循环问题.  相似文献   

5.
东亚地区水汽输送强、弱年水汽输送的异同   总被引:5,自引:1,他引:4  
利用1950-2002年NCAR/NCEP再分析逐日平均资料,计算全球格点整层水汽输送通量,分析东亚地区水汽输送强、弱年候平均水汽输送的异同点.水汽输送强、弱年都存在一条行星尺度水汽输送带,但是又有显著的差异:(1)南半球越赤道、阿拉伯海、孟加拉湾的水汽输出量不同.(2)副热带高压外围水汽的强度和影响范围不同.(3)中纬度向内蒙古中部和东北地区输送水汽的偏西风水汽输送带在水汽输送强年明显、弱年不明显.(4)在水汽输送强年中国云贵高原-长江中游-华北-东北南部有一条明显的水汽输送大值带,中国中、东部均有水汽输送,只是中国东南部和长江中下游地区水汽输送相对较少;在水汽输送弱年仅中同南方、东部沿海和东北地区南部有弱的水汽输送.(5)水汽输送强年的变化较为平缓,而水汽输送弱年则比较迅速.东哑地区偏南风水汽输送在水汽输送强、弱年的相同特征是:特征线南撤的速度非常快,在20°一30°N附近有东南风水汽输送加入,并取代西南风水汽输送;不同之处是,水汽输送强年建立的时间早、能够到达更北的纬度、强盛期长、撤退的时间迟.副热带高压南侧东南风水汽输送在水汽输送强、弱年的共同点是,西界均为95°E,由建立到强盛的速度郁非常快,在强盛期突然就东撤到130°E以东的区域;不同点是,在160°E处东南风水汽输送建证的时间不同,强盛期不同,纠达西界的时间不同,印度季风槽在95°E以西形成的东南风水汽输送持续时间和影响范围不同,西扩和东撤的速度不同.  相似文献   

6.
中国西北东部地区春季降水及其水汽输送特征   总被引:36,自引:4,他引:36  
文中使用 1 96 2~ 2 0 0 2年逐日降水资料和NCEP/NCAR再分析资料 ,考察了中国西北东部地区春季降水及其水汽输送的气候特征和异常变化。分析表明 ,该地区春季降水时段集中、变率较大 ,具有明显的年际和年代际变化特征 ;水汽主要来源于南部季风区 ,输送路径集中于青藏高原和偏南方向 ,偏东方向输送相对较弱 ,而且西太平洋副高和高原对输送路径具有显著影响 ;多雨年的异常水汽输送主要来源于偏东方向海洋上的异常向西输送和前期由菲律宾及其北部海区的向北输送 ;对异常水汽通量进行分解后发现 :由环流异常引起的平均水汽输送在多数年份的降水正异常过程中起主导作用 ,而平均环流对异常水汽的前期输送对于局地降水异常也有一定贡献 ;多雨年的环流异常集中表现为高度场上位于中国东北地区的正异常中心 ,这有利于偏东、偏南的异常水汽输送到西北东部。结果初步认为西北东部地区的空中水汽资源具有一定的补偿能力和利用潜力 ,该地区是维系西北内陆地区空中水资源乃至水分循环过程的水汽输送关键区  相似文献   

7.

基于武汉市加密站的降水量资料和ERA5再分析资料,对2020年7月5—6日发生在武汉江夏的一次特大暴雨过程的水汽通量、水汽收支进行分析,并引入拉格朗日混合单粒子轨道模型(HYSPLIT4)定量分析暴雨过程中的水汽来源以及水汽源区对降水的贡献。结果表明:(1)天气系统的有效配置和异常稳定是本次江夏特大暴雨产生和维持的主要原因。(2)特大暴雨所需水汽主要由南边界和西边界输入暴雨区,低纬度印度夏季风环流和副高外沿的偏南气流对水汽的输送和聚集是此次特大暴雨得以发生发展的必要条件,两支环流中偏南气流带来的水汽净流入是暴雨区水汽净收支的主要贡献者。(3)定量估算结果表明,水汽源地可追踪至印度洋、孟加拉湾-南海和西太平洋,对此次特大暴雨事件的水汽贡献率分别是24%、41%和34%。(4)对流层低层的水汽通道和源地发现925 hPa以南方路径为主,其水汽来源大值区为西太平洋和南海,而850 hPa则以西南路径为主,其水汽来源大值区位于印度洋和孟加拉湾。

  相似文献   

8.
本文利用FGGEⅢ_b级资料对青藏高原及其附近地区1979年5月15日到7月20日的热源和水汽分布进行了计算和诊断分析。所用方法同罗会邦的,计算范围为15—60°N,60—120°E,共分10个小区。分析表明:(1)高原地区是这一时期东亚地区内热源最强和出现最早的。雨季前四周几乎还是热汇时,高原上的热源已经很强,並且在对流层高层最强。(2)高原地区上升运动最强和高空湿度最大。它使四周,特别是南方低空的水汽向高原辐合,然后沿上升气流输送到高原上空,在400hPa以上高空把水汽从高原输送到下游(东边)。从而高原对这一时期的水汽输送起到烟囱效应。  相似文献   

9.
大尺度低空急流附近的水汽输送与暴雨   总被引:5,自引:2,他引:5  
本文利用1977—79年华南前汛期的暴雨实验资料,分析研究了大尺度低空急流附近的水汽输送及其对暴雨的贡献。研究表明,与低空急流相联系的暴雨的生成,主要是由于低空急流之下水汽的横向辐合,而不是低空急流所在层的水汽辐合。低空急流之下的水汽由急流左侧向右侧输送,在暴雨区上升,而后在低空急流之上向右侧输送并下沉,从而构成一中尺度的水汽输送环流圈,它与大尺度环流圈同相叠加,有利于暴雨的维持。由于摩擦作用,在低空急流之下的边界层中风向随高度顺转,这是水汽横向输送的主要原因,因此,暴雨可在低空急流左侧的任何位置生成。  相似文献   

10.
“05.6”华南特大暴雨过程大尺度水汽输送特征   总被引:6,自引:5,他引:6  
利用NCEP/NCAR再分析资料、FY-2C卫星逐时云顶亮温TBB资料(0.05°×0.05°分辨率)、自动气象站逐时降水资料、实时地面加密观测资料和实况探空资料等,对“05.6”华南持续性暴雨过程期间大尺度水汽输送特征进行了深入分析。结果表明:南海夏季风的活动与本次暴雨过程水汽输送有密切关系。南亚季风在经过中南半岛后与伸入南海的副高西侧气流汇合,使得西南气流发生“S”形转换,从而演变为副热带季风并持续向华南地区输送水汽。暴雨期间,来自南海中北部和孟加拉湾的水汽输送带一直稳定在18°-27°N,水汽通量大值输送带和水汽通量辐合大值带均随高度向北明显倾斜,显示偏南方向的水汽输送特征,来自南海中北部的水汽是最主要源地,而来自孟加拉湾的输送通道仅对本次过程起到补充作用。过程期间,由于南北向净流入明显大于东西向净流出,故华南地区水汽总收支为净流入,水汽净流入量以低层横向(南北)为主,以行星边界层的水汽输入为最大。  相似文献   

11.
THE STUDY ON EDDY TRANSPORT OF WATER VAPOR OVER SOUTH CHINA   总被引:1,自引:1,他引:0  
Water vapor transport is decomposed into mean transport and eddy transport. Analysis of water vapor over South China during the first flood season of 1994 shows that difference between season mean transport and season total transport is less than 10%. For the monthly and ten-day averages, the difference is above it.The transient transport of water vapor is the least among all kinds of eddy transport. its amount is only ±2% of total transpoft for column. The constant wave transport is the Iapest Sometimes it may be 1-6 times of total transport.  相似文献   

12.
水汽输送按时空分离为平均输送和涡旋输送。对华南区域1994年前汛期的水汽输送所做的分析表明,季平均各种涡旋输送量与总输送量相比不到10%,月平均气柱涡旋输送量约占总输送量的10%—20%。在夏季风爆发前和暴雨期,旬平均水汽涡旋输送强烈,最大可达到总输送量的5至6倍,这时期不能用平均输送代表总输送。最后给出了用气候平均量计算的各时段水汽输送对总输送的代表性的估计。  相似文献   

13.
东亚地区秋季水汽输送特征及水汽源地分析   总被引:13,自引:3,他引:13  
用1980~1997年垂直积分的水汽输送通量资料,分析了秋季东亚地区大尺度水汽输送演变的气候特征以及主要水汽源地,结果表明:秋季各个月东亚大陆的主要水汽来源地并不相同,9月主要来源于孟加拉湾、南海和西太平洋地区;10~11月主要来源于南海、西太平洋地区。从夏季型到冬季型水汽输送的转换特征表现为:来自南半球的越赤道输送的显著减弱、消失直至转向,东亚南支偏西风水汽输送的逐渐建立,赤道太平洋地区的偏东风水汽输送的加强西进。秋季亚洲季风区范围最大的强水汽源地位于南海、西太平洋地区(115~120°E,15~25°N)。  相似文献   

14.
The turbulent fluxes for sensible and latent heat and momentum are computed and analyses are carried outabout the factors in terms of the fluxes,with the profile methods,based on the data from the Tibetan(Xi-zang)Plateau Meteorological Experiment in 1986(TIPMEX-86).It is shown that the fluxes of various kindshave evident diurnal variation,and each decade mean diurnal variation is quite different from others.Thesensible heat flux is about 2/3 less in July than in June.The results indicate that the averaged drag coefficient,C_d,and the averaged bulk transfer coefficient of sensible heat,C_h,are 0.0052 and 0.0075 respectively,for theperiod 13 to 28 in June for Nagqu.But for Lhasa,the mean C_d is 0.0056,and the mean C_h is 0.0085,for the period of June 11 to July 20.It is found that C_d and C_h are not only the function of wind velocity,but also influenced by stability conditions and wind and temperature gradients.  相似文献   

15.
东亚夏季降水的异常与水汽输送的变异密切相关。基于1958—2016年资料,研究了夏季东亚季风区经向水汽输送的主要变异特征及其对东亚夏季极端降水的影响。经向水汽输送的第一主变异模态表现出中国东部和西北太平洋上的水汽经向输送呈现反向异常,以年际变化为主。当中国东部向北输送的水汽增强(减弱)而西北太平洋向北输送减弱(增强),则中国东部大范围的极端降水量及频次增加(减少)。该模态与西太(西太平洋)副高西伸(东撤)有关,并主要受到热带中东印度洋海温的影响。第二变异模态以年代际变化为主兼有年际变化,表现在1980年后中国东部及邻近海域上空的经向水汽输送减弱,使得环渤海地区和华南沿海的极端降水量及频次减少而长江上、下游和贵州的极端降水量及频次增加。该模态与西太副高的减弱有关,并受到热带西太海温年代际增温的影响。第三变异模态以年际变化为主兼有年代际变化,反映中国长江以北地区和日本南部及附近区域的经向水汽输送的反相变化结构。长江以北水汽输送减弱(增强),可导致华北、东北的极端降水量及频次减少(增加)和长江下游及江南地区的极端降水量及频次的减少(增加)。该模态主要受欧亚大陆上空中高纬度纬向遥相关波列和热带印太(印度洋太平洋)海温异常的影响。   相似文献   

16.
基于1981—2010年ERA Interim再分析资料以及中国区域30年日降水量资料,采用相关关系计算方法,研究夏季中国东部陆海表面温差与夏季整层水汽输送以及春夏东亚温度高响应区的相关关系。研究结果表明:中国东部区域夏季各月(6、7、8月)陆海表面温差与夏季各月降水量存在西北-华北与江南-华南两个高相关区域,且滑动相关系数在30年间一直处于显著状态;夏季中国东部陆海表面温差自1990年代开始呈现波动式上升趋势;陆海温差异常高低值年水汽通量距平场输送通道存在明显差异,陆海温差高值年,水汽主要来自中国东北地区向南的水汽输送以及中国东部海域水汽向西的水汽流,并且两股水汽距平场在华南地区汇合后继续向南输送,陆海温差低值年,水汽通量距平输送主要来自中国东部海域,向西传输到达中国中东部后分别向南北两个方向输送;夏季中国东部陆海表面温差与夏季整层水汽通量在中国华北区域存在负位相相关关系,证明了中国东部陆海温差越高,经向水汽通量向南输送就会越强,所对应的蒙古区域、孟加拉湾区域表面温度就会越高,形成一个“高-强-高”的温差-水汽通量-温度相互响应现象,夏季中国东部陆海表面温差与春季中国整个海岸沿线表面温度有明显的相关关系,春季海岸沿线表面温度对夏季中国大陆水汽输送有一定预测作用。   相似文献   

17.
The interannual and intermonthly climatic features of the water vapor content(hereafterWVC)and its mean transfer in the atmosphere over Northwest China(hereafter NWC)arecalculated and analyzed by using the NCEP/NCAR global reanalysis grid data(2.5°×2.5°Lat/Lon)for 40 years(1958—1997).The results show that the WVC in the total air column over NWC infour seasons of the year is mainly concentrated on eastern and western NWC respectively.On theaverage,the WVC over eastern NWC decreases obviously during recent forty years except forwinter.while it decreases over western NWC in the whole year.But the WVC over NWC has beenincreasing since late 1980s in summer.The water vapor comes from the southwestern warm andwet air current along the Yarlung Zangbo River Valley and the Bay of Bengal.and from mid-western Tibetan Plateau and also from the Qinling Mountains at southern Shaanxi Province.Theyearly water vapor divergence appears over the middle of NWC to northern Xinjiang andsoutheastern Shaanxi Province.The yearly water vapor convergence appears over the Tarim Basinand the Tibetan Plateau as well as western Sichuan and southern Gansu.  相似文献   

18.
The trajectory of atmospheric particles and material lines on an isentropic surface are computed using the Lagrangian method. It is shown that the 1994 heavy rain in South China was closely linked to the summer monsoon, especially the tropical monsoon in East Asia. which plays a decisive role. The method is useful in tracking the source area and evolution of water moisture and analyzing the transporting part of airflow for water moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号