首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Authigenic gypsum crystals, along with pyrite and carbonate mineralization, predominantly calcites were noticed in distinct intervals in a 32 m long piston core, collected in the gas hydrate- bearing sediments in the northern portion of the Krishna-Godavari basin, eastern continental margin of India at a water depth of 1691 m. X-ray diffraction and energy dispersive spectrum studies confirm presence of pyrite, gypsum, calcite, and other mineral aggregates. The occurrence of gypsum in such deep sea environment is intriguing, because gypsum is a classical evaporite mineral and is under saturated with respect to sea water. Sedimentological, geochemical evidences point to diagenetic formation of the gypsum due to oxidation of sulphide minerals (i.e. pyrite). Euhedral, transparent gypsum crystals, with pyrite inclusions are cemented with authigenic carbonates, possibly indicating that they were formed authigenically in situ in the gas hydrate-influenced environment due to late burial diagenesis involving sulphate reduction and anaerobic oxidation of methane (AOM). Therefore, the authigenic gypsums found in sediments of the Krishna-Godavari and Mahanadi offshore regions could be seen as one of the parameters to imply the presence of high methane flux possibly from gas hydrate at depth.  相似文献   

2.
Interplay of S and As in Mekong Delta sediments during redox oscillations   总被引:1,自引:1,他引:0  
The cumulative effects of periodic redox cycling on the mobility of As,Fe,and S from alluvial sediment to groundwater were investigated in bioreactor experiments.Two particular sediments from the alluvial floodplain of the Mekong Delta River were investigated:Matrix A(14 m deep)had a higher pyrite concentration than matrix B(7 m deep)sediments.Gypsum was present in matrix B but absent in matrix A.In the reactors,the sediment suspensions were supplemented with As(Ⅲ)and SO_4~(2-),and were subjected to three full-redox cycles entailing phases of nitrogen/CO_2,compressed air sparging,and cellobiose addition.Major differences in As concentration and speciation were observed upon redox cycling.Evidences support the fact that initial sediment composition is the main factor controlling arsenic release and its speciation during the redox cycles.Indeed,a high pyrite content associated with a low SO_4~(2-)content resulted in an increase in dissolved As concentrations,mainly in the form of As(Ⅲ),after anoxic half-cycles;whereas a decrease in As concentrations mainly in the form of As(Ⅴ),was instead observed after oxic half-cycles.In addition,oxic conditions were found to be responsible for pyrite and arsenian pyrite oxidation,increasing the As pool available for mobilization.The same processes seem to occur in sediment with the presence of gypsum,but,in this case,dissolved As were sequestered by biotic or abiotic redox reactions occurring in the Fe—S system,and by specific physico-chemical condition(e.g.pH).The contrasting results obtained for two sediments sampled from the same core show that many complexes and entangled factors are at work,and further refinement is needed to explain the spatial and temporal variability of As release to groundwater of the Mekong River Delta(Vietnam).  相似文献   

3.
《Applied Geochemistry》2002,17(8):1105-1114
Tailings from the Macraes Au mine cyanidation process are stored in an impoundment about 0.6 km2 and 80 m deep whose pH is maintained near 8 by the neutralizing capacity of the gangue minerals. The tailings are sandy (>50 μm particles), have a hydraulic conductivity of about 10−2 m/day, and contain 0.1–1.0 wt.% S and 0.1–1.5 wt.% graphitic C from the primary deposit. Concentrations of As in the pore water of the mixed tailings, which are a combination of various tailings types, range from 0.1 to 20 ppm, HCO3- is 100 to 200 ppm, and dissolved SO4 is 100–1700 ppm. The mixed tailings will be stored in this impoundment in perpetuity after mining ceases. Confidence in the long-term pH stability of these tailings can be gained from examination of mineralogically and chemically similar geological analogues in the immediate vicinity. A sequence, typically about 5 m thick, of sands and gravels derived from the Macraes mineralized zone 12–28 ka ago contains rounded detrital sulfide mineral grains which are unoxidized despite their close proximity to the surface and the occasional incursion of oxygenated waters. These sediments have a hydraulic conductivity of about 10−4 m/day. Saturating water pH is currently 7–8. Sands with 0.2–0.8 wt.% organic C host SO4-reducing bacteria (SRB), and local cementation by authigenic framboidal pyrite has occurred. SRB were found in water-saturated sediments with decreased hydraulic conductivity and alkaline and anoxic conditions. These bacteria are involved in the formation of authigenic framboidal pyrite, reducing the cycling of dissolved Fe in the sediments. Carbon is not a limiting factor in this process as organic matter is present in the sandstone and ground water contains up to 180 ppm HCO3-. Comparison of the 28 ka old sediments with the modern tailings suggests that the chemical behaviour of the two will be similar, possibly with the crystallization of authigenic pyrite in the tailings over the long term. As long as the present slightly anoxic and circumneutral pH environmental conditions are maintained in the mixed tailings impoundment, sulfide decomposition and acidification are unlikely.  相似文献   

4.
Comparison of benthic foraminiferal assemblages from the core obtained within the Peterburgskoe ore field (Mid-Atlantic Ridge) and from the core taken five kilometers away from the ore field revealed evident differences in their composition, in the appearance of their shells, and also in the benthic–plankton species ratio. It was noted that the foraminiferal assemblage from the ore-bearing sediments of the Petersburg field was characterized by a higher relative content of benthic species and a large number of chemically altered and broken shells. The first occurrence of the species Osangularia umbonifera, which is able to exist in lowoxygen and CaCO3-undersaturated bottom waters at the boundary of biogenic sediments surrounding the ore field and in the ore-bearing sediments, was established. In the core section sampled beyond the ore field, the composition of foraminiferal assemblages differs insignificantly from typical oceanic ones.  相似文献   

5.
An integrated study of the sedimentology, micropalaeontology, mineralogy and geochemistry of glauconites in the Oligocene Maniyara Fort Formation (western Kutch, India), has been undertaken. Authigenic glauconites, mostly of evolved type, formed within a back‐barrier lagoonal environment. Foraminifera help constrain the biostratigraphy and along with sedimentological evidence, provide information on the depositional conditions. Glauconite in the Maniyara Fort Formation occurs either as infillings within intra‐particle pores of larger foraminifers, or as an altered form of faecal pellets. X‐ray diffraction studies reveal the less mature nature of glauconite infillings compared to the glauconite pellets. Electron microprobe investigation confirms a relative enrichment of K2O and total Fe2O3 in the latter. Both varieties of glauconite formed by initial authigenic precipitation of K‐poor glauconite and subsequently matured by addition of potassium in the interlayer sites and fixation of total iron in the octahedral sites; calcium, magnesium and aluminum were released from the glauconite structure concomitantly. Alkaline conditions during the entire process of glauconite formation did not allow dissolution of foraminiferal tests. Mineralogical and chemical characteristics of the Maniyara Fort Formation glauconites are more similar to deep marine glauconites than those reported from other shallow or marginal marine settings. A low negative cerium anomaly, as well as abundant pyrite, suggests formation of glauconite in sub‐oxic micro‐environments, created by decay of organic matter associated with foraminiferal chambers and faecal pellets. Sub‐oxic condition apparently prevailed relatively longer within the Maniyara Fort Formation lagoons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Authigenic gypsum was found in a gravity core, retrieved from the top of Mound Perseverance, a giant cold‐water coral mound in the Porcupine Basin, off Ireland. The occurrence of gypsum in such an environment is intriguing, because gypsum, a classic evaporitic mineral, is undersaturated with respect to sea water. Sedimentological, petrographic and isotopic evidence point to diagenetic formation of the gypsum, tied to oxidation of sedimentary sulphide minerals (i.e. pyrite). This oxidation is attributed to a phase of increased bottom currents which caused erosion and enhanced inflow of oxidizing fluids into the mound sediments. The oxidation of pyrite produced acidity, causing carbonate dissolution and subsequently leading to pore‐water oversaturation with respect to gypsum and dolomite. Calculations based on the isotopic compositions of gypsum and pyrite reveal that between 21·6% and 28·6% of the sulphate incorporated into the gypsum derived from pyrite oxidation. The dissolution of carbonate increased the porosity in the affected sediment layer but promoted lithification of the sediments at the sediment‐water interface. Thus, authigenic gypsum can serve as a signature for diagenetic oxidation events in carbonate‐rich sediments. These observations demonstrate that fluid flow, steered by environmental factors, has an important effect on the diagenesis of coral mounds.  相似文献   

7.
Barium and radium discharged from coal mines in the Upper Silesia, Poland   总被引:1,自引:1,他引:1  
 Waters discharged from coal mines in the Upper Silesia in Poland cause contamination of rivers and their sediments. Saline waters discharged from coal mines of the southern region contain elevated barium and radium. The discharge of these elements can be reduced by treating these waters with sulphates in mine workings. Sources of sulphate used in treatments include gypsum, anhydrite and industrial wastes such as: fly ash, slags and flotation tailings. Gypsum and anhydrite are used in the coal mine workings as components of the fire protection walls. Industrial wastes from power plants are stored in the mine workings as fire- and methane-protection agents. Sulphates precipitate barium and radium from saline waters inflowing into the mine workings. The waters can be treated by flowing them through old mine workings. In this case, the source of sulphates is the natural oxidation of pyrite. Mining activities and the natural process of desulphurisation of the Carboniferous rocks reduce the amount of barium and radium that is discharged in the southern region of Upper Silesia. The processes for reducing the environmental impact of toxic discharges from the mines should be monitored. Received: 3 July 1997 · Accepted: 27 March 2000  相似文献   

8.
The Upper Gypsum unit of the Caltanissetta Basin (Sicily) records the last phase of the Messinian salinity crisis comprising the so‐called ‘Lago Mare’ event. A new facies analysis study recognizes nine to ten depositional cycles consisting of seven rhythmically interbedded primary gypsum bodies, and two to three sandstone bodies separated by marly terrigenous horizons showing laterally persistent vertical organization. A basal thin gypsum bed is overlain by a cluster of five thicker gypsum bodies. A marly interval containing two distinct sandstone horizons separates this cluster from the overlying uppermost (seventh) gypsum body. The terrigenous Arenazzolo Formation, in turn followed by the lower Pliocene Trubi Formation, is considered here to form the uppermost part of the Upper Gypsum unit. The rhythmic alternation in the sandy marls and gypsum/sandstone bodies records the response of sediments from shelfal to deltaic systems to precession‐driven arid‐wet climate fluctuations causing cyclical changes of both base‐level and water concentration. During wet climate phases (at insolation maxima) marl and sandstone were deposited in a hypohaline environment as suggested by: (i) the typical Lago Mare faunal assemblage and (ii) the negative δ18O values. During arid phases (at insolation minima) the reduced meteoric supply, recorded by higher δ18O values in the carbonate, caused the development of a negative hydrological budget leading to evaporite precipitation. At a basinal scale the Upper Gypsum unit unconformably overlies a mainly clastic evaporite unit containing carbonate breccia (the so‐called ‘Calcare di Base’) and/or clastic gypsum. Towards the basin centres, where the basal contact becomes conformable, a primary gypsum cumulate horizon is present. This layer is interpreted as a possible lateral equivalent of the Halite unit present only in the deepest depocentres. Based on astronomical calibration of the depositional cycles, the Upper Gypsum unit, including the Arenazzolo Formation, spans the interval between 5·33 and 5·53 Ma. This new age calibration allows the deposition of the Halite unit to be dated between 5·6 Ma (top of the Lower Evaporites) and 5·55 Ma (base of the Upper Evaporites) corresponding to isotopic stages TG12 and/or TG14.  相似文献   

9.
In order to understand the response of authigenic pyrite to gas hydrate geo-systems, pyrite tubes or rods at the sulfate–methane transition (SMT) zone of core GC10 from the northern continental slope of the South China Sea (SCS) were investigated. In situ X-ray diffraction (XRD) results show that the pyrite tube consists of pyrite micro-crystals with trace amount of graphite in the inner tube. Scanning electron microscope (SEM) observations of pyrite tubes indicate various aggregations in the form of framboidal, euhedral, and colloidal pyrite microcrystals. Typical framboidal pyrite is considered as packing of octahedral microcrystals. Interestingly, many framboids in the tubes consist of round or irregular microcrystals and have an outer crust that consists of secondary pyrite. The size of the framboids in the inner wall of the tube is larger than that in the middle wall or foraminifer-filled pyrite. High-resolution transmission electron microscopic (HRTEM) images show marcasite lamellae defects in the spherulitic pyrite crystals, which reveal different solution conditions during the pyrite precipitation. Nano-foil-like graphitic carbon was observed to be closely associated with the pyrite spherules. The occurrence of both marcasite layers and nano-foil-like graphitic carbon suggest that the migration of methane from deep sediment. It is suggested that the formation of pyrite serves as a catalyst during the reaction from methane to elemental carbon under the anaerobic oxidation of methane. Meanwhile, this reaction results in local acidification of the solution inside the pyrite tubes, which favors marcasite lamellae growth on the host pyrite substrate.  相似文献   

10.
The data obtained from long-term field studies in the Baikal Rift area are summarized. A new stratigraphic scheme is developed on the basis of previous stratigraphic research of N.A. Logachev. The new elements of the scheme are (1) the use of regional correlation horizons; (2) recognition of pre-Tankhoi (pre-Late Oligocene) sediments correlated with the Maastrichtian-Early Oligocene deposits of the Baikal Fore-deep; (3) elimination from the scheme of the Khalagai and Anosovka formations and distinction on their basis of the Tagai, Sasa, Osinovka, and Shankhaikha formations; (4) recognition of several weathering crust beds and Neogene paleosols. The “lower Eopleistocene (Upper Pliocene)” red-rock formation of Logachev is subdivided into the following stratigraphic units: the Cretaceous-Paleogene unit characterized by a few finds of Early Oligocene fossils, the Upper Miocene-Lower Pliocene red clay bearing numerous fossil remains, and the Upper Pliocene reddish clay with abundant localities of fossils. The sections examined in the land portion of the Baikal Rift are correlated with bottom sediments of the Baikal depression and are subdivided into three instead of the two commonly accepted large tectonic-lithological-stratigraphic complexes. Stratigraphic studies provide a new insight into the history of the Baikal Rift and into some general questions of the continental rift formation.  相似文献   

11.
The effect of seeping of methane on marine sediment records has been studied in four gravity cores from Vestnesa Ridge, Svalbard margin. The area shows acoustic signs in the form of flares indicating active methane gas seepage. For a better understanding of the timing and variability of the flux of methane in the past and the effects on potential proxies, a detailed study of the diagenetic processes that may affect the composition and structure of both sediments and foraminiferal shells is needed. Here we discuss deep‐sea records from methane‐influenced environments in three cores from an active and very heterogeneous seep‐area (pockmark) and one core from outside the pockmark for background. The results include the distribution and stable isotopes of authigenic carbonates and of benthic and planktonic foraminifera, magnetic susceptibility, AMS‐14C dates, sedimentary data and biostratigraphy. Extremely low δ13C values recorded in both benthic and planktonic foraminifera during the Bølling‐Allerød interstadials indicate possible increased methane flux beginning at late Heinrich event H1. The recorded low values are mainly a result of diagenetic overprint by methane‐derived authigenic carbonates. The δ18O signals of authigenic carbonates are close to those of foraminiferal calcite and thus the δ18O records remain a valid stratigraphical tool in methane seep sites, except in the case of severely encrusted samples. In addition, the records from the active pockmark show nearly constant values of low magnetic susceptibility in contrast to higher and more variable magnetic susceptibility values from the control station and other published records from normal sediments west of Svalbard. This phenomenon is probably caused by dissolution of magnetic minerals in the reducing environmental conditions of methane seep sediments, associated with anaerobic oxidation of methane and formation of paramagnetic minerals (pyrite). This process enables magnetic susceptibility to be used as a common diagnostic tool for identifying methane‐related palaeo‐reductive environments.  相似文献   

12.
《Applied Geochemistry》2005,20(11):2116-2137
Samples of mine water from Butte, Montana were collected for paired geochemical and stable isotopic analysis. The samples included two sets of depth profiles from the acidic Berkeley pit lake, deep groundwater from several mine shafts in the adjacent flooded underground mine workings, and the acidic Horseshoe Bend Spring. Beginning in July-2000, the spring was a major surface water input into the Berkeley pit lake. Vertical trends in major ions and heavy metals in the pit lake show major changes across a chemocline at 10–20 m depth. The chemocline most likely represents the boundary between pre-2000 and post-2000 lake water, with lower salinity, modified Horseshoe Bend Spring water on top of higher salinity lake water below. Based on stable isotope results, the deep pit lake has lost approximately 12% of its initial water to evaporation, while the shallow lake is up to 25% evaporated. The stable isotopic composition of SO4 in the pit lake is similar to that of Horseshoe Bend Spring, but differs markedly from SO4 in the surrounding flooded mine shafts. The latter is heavier in both δ34S and δ18O, which may be due to dissolution of hypogene SO4 minerals (anhydrite, gypsum, barite) in the ore deposit. The isotopic and geochemical evidence suggests that much of the SO4 and dissolved heavy metals in the deep Berkeley pit lake were generated in situ, either by leaching of soluble salts from the weathered pit walls as the lake waters rose, or by subaqueous oxidation of pyrite on the submerged mine walls by dissolved Fe(III). Laboratory experiments were performed to contrast the isotopic composition of SO4 formed by aerobic leaching of weathered wallrock vs. SO4 from anaerobic pyrite oxidation. The results suggest that both processes were likely important in the evolution of the Berkeley pit lake.  相似文献   

13.
《Geodinamica Acta》2013,26(1-3):29-40
In the Tertiary Basin of Piedmont (Northern Italy) a 100-150 m thick Messinian sedimentary succession crops out, composed of pre-evaporitic clays, gypsum beds and post-evaporitic lacustrine-marine fine-grained sediments. In the Monferrato area the thickness of the evaporite sequence is highly variable (0-140 m) due to an important erosion surface formed at the end of the evaporite cycle and carved in the gypsum beds. Epigenic caves probably formed during this short intra-Messinian phase of emersion. Cave sediments contain benthonic and planctonic foraminiferal associations ranging in age from Burdigalian to Upper Pliocene. These sediments have probably been deposited in recent times, although it cannot be completely ruled out that they accumulated in caves developed in Upper Messinian times. The formation of the most important caves of this area probably started at the end of the Messinian under epigenic conditions. Possibly, those inherited caves enlarged slowly during the Quaternary in an intrastratal and confined hypogene karst system.  相似文献   

14.
Solid phase P speciation has been determined in sediments from a transect across the central section of the continental shelf and slope of the Great Barrier Reef (GBR) lagoon. This region is characterized by a gradient of riverine aluminosilicate clay and silt nearshore, seawards of which biogenic carbonate sediment predominates. Phosphorus speciation results show large variations along this transect. Organic P and authigenic (apatite) P are the major chemical forms of phosphorus in the central GBR continental shelf sediments. Post-depositional reorganization of P was also observed, converting organic P and iron bound P (Fe-P) to authigenic (apatite) P. Phosphorus burial rate was estimated from measurements of total P concentration and excess 210Pb sediment mass accumulation rates. Burial efficiency varies significantly over the shelf. Inshore areas showed significant P remobilization from sediments to the water column (up to ∼50%). The mid and the outer shelf showed little evidence for remobilization (except for coral reef platform sediments), with more of the sediment P being in the less reactive authigenic apatite phases. An appreciable fraction of this non-labile authigenic apatite phase was identified as fish bone. P sources and sinks over the central part of the GBR shelf were quantified using a mass balance approach. This showed that Coral Sea shelf edge upwelling events are essential to satisfy the large P nutrient demand of the whole GBR lagoon. P inputs due to upwelling events were greater than those contributed by local rivers over an average year.  相似文献   

15.
Organogenic sediments (sapropels) in lakes are characterized by a reduced type of diagenesis, during which organic compounds are decomposed, the chemical composition of the pore waters is modified, and authigenic minerals (first of all, pyrite) are formed. Pyrolysis data indicate that organic matter undergoes radical transformatons already in the uppermost sapropel layers, and the composition of this organic matter is principally different from the composition of the organic matter of the its producers. The sapropels contain kerogen, whose macromolecular structure starts to develop during the very early stages of diagenesis, in the horizon of unconsolidated sediment (0–5 cm). The main role in the diagenetic transformations of organic matter in sediments is played by various physiological groups of microorganisms, first of all, heterotrophic, which amonifying, and sulfate-reducing bacteria. SO42? and Fe2+ concentrations in the pore waters of the sediments are determined to decrease (because of bacterial sulfate reduction), while concentrations of reduced Fe and S species (pyrite) in the solid phase of the sediment, conversely, increase. Comparative analysis shows that, unlike sapropels in lakes in the Baikal area, sapropels in southern West Siberia are affected by more active sulfate reduction, which can depend on both the composition of the organic matter and the SO42? concentration in the pore waters.  相似文献   

16.
Hydrochemical analysis results suggest four different water types: bicarbonate dominant water (facies-I), sulfate dominant cold brine water (facies-II), sodium-bicarbonate dominant thermal water and thermal and mineralized water (facies-III), and sulfate–chloride dominant thermal and mineralized water (facies-IV). The mineral content/salinity of the water is related to the ions that these waters dissolve from the minerals on the rocks during infiltration and circulation in the saturated zone. Gypsum cover units that exist on the granitoids in the region is the main factor for the ion increase in the facies III geothermal water similar to the cold brine water (facies II). Isotopic analyses indicate that the thermal springs (Dutlu bath spring, Aya? bath well, Çoban bath well and Kapullu bath spring) are of meteoric origin and receive recharge from precipitation in the Beypazar? granitoids and around gypseous formations with elevations of about 950–1,150 m. Karakaya bath well and Il?ca bath spring thermal water points are recharged from the Bilecik limestone hills, Tekke volcanics and ?ncedoruk Formations. Karakoca mineral spring of thermal and mineralized water is recharged from out of the study area. According to oxygen-18 (SO42?) and sulfur-34 (SO42?) contents, sulfate in water samples from Aya? and Dutlu resorts as well as Çoban bath is derived from the gypsum of Kirmir Formation as the primary source. Sulfates of the Kapullu bath water and Karakoca mineral water originate from secondary sources such as pyrite oxidation and bacteriological reduction.  相似文献   

17.

At the well-preserved Yubileynoe VMS deposit (Southern Urals), sulfide breccias and turbidites host abundant tellurides represented by hessite, coloradoite, altaite, volynskite, stützite, petzite, and calaverite, as well as phases of the intermediate tellurobismuthite → rucklidgeite solid solution. Three telluride generations were highlighted: (1) primary hydrothermal tellurides in fragments of chalcopyrite and sphalerite of chalcopyrite-rich black smoker chimneys; (2) authigenic tellurides in pseudomorphic chalcopyrite and chalcopyrite veins after fragments of colloform and granular pyrite; and (3) authigenic tellurides in pyrite nodules. Authigenic tellurides are widespread in pyrite-chalcopyrite turbidites. Primary hydrothermal and authigenic tellurides are less common in sulfide turbidites and gritstones with fragments of sphalerite-pyrite, pyrite-sphalerite paleosmoker chimneys and clasts of colloform and fine-grained seafloor hydrothermal crusts. Siliceous siltstones intercalated with sulfide turbidites contain pyrite nodules, whose peripheral parts contain inclusions of epigenetic tellurides. It is assumed that Te for authigenic tellurides originated from fragments of colloform pyrite and hydrothermal chalcopyrite of pyrite-chalcopyrite chimneys, which dissolved during the postsedimentation processes. The main Te concentrators in clastic ores include pseudomorphic chalcopyrite, which inherits high Te, Bi, Au, Ag, Co, Ni, and As contents from the substituted colloform pyrite, and varieties of granular pyrite containing microinclusions of tellurobismuthite (Bi, Te), petzite (Au, Ag, Te), altaite (Pb, Te), coloradoite, and hessite (Ag, Te).

  相似文献   

18.
This study focused on planktic foraminifera in plankton tows and surface sediments from the western Indian sector of Southern Ocean in order to evaluate the potential foraminiferal secondary calcification and/or dissolution in the sediment. It is found that the symbiotic foraminiferal species are abundant in the subtropical region, whereas non-symbiotic species dominate in the sub-Antarctic and polar frontal regions. The distribution of the symbiotic and non-symbiotic foraminiferal species is controlled by temperature, salinity, light, nutrients and phytoplankton biomass. There is also a lateral southern extent in abundance of planktic foraminifera from surface sediments to plankton tows. The shell weights of the planktic foraminifera N. pachyderma, G. bulloides and G. ruber within the surface sediments are on an average heavier by 27%, 34% and 40% respectively than shells of the same size within the plankton tows, indicative of secondary calcification. The planktic foraminiferal isotopes show the presence of heavier isotopes in the surface sediment foraminifera as compared to plankton tows, thus confirming secondary calcification. Secondary calcification in G. ruber occurs in the euphotic zone, whereas in case of N. pachyderma and G. bulloides it is at deeper depths. We also observed a decrease in the shell spines in surface sediment foraminifera as compared to plankton tows, indicative of the morphological changes that foraminifera underwent during gametogenesis.  相似文献   

19.
边缘海沉积物是海洋重要的碳储库,其内部的碳循环主要是由有机质矿化分解过程来驱动的。有机碳进入边缘海沉积物后,矿化分解为溶解无机碳(DIC)进入沉积物孔隙水并扩散到上层水柱,参与海洋系统碳循环;同时还有部分DIC与钙镁等离子结合形成自生碳酸盐,保存于沉积物碳库。从生物地球化学角度探讨有机质埋藏机制和效率,在此基础上重点综述沉积物硫酸盐还原、产甲烷和甲烷厌氧氧化过程的耦合机制,以及有机质矿化对自生碳酸盐形成的影响等方面的研究进展,以期加深对陆架边缘海沉积物在全球碳循环收支平衡中的作用及其气候环境效应的认识。  相似文献   

20.
We measured U in sediments (both pore waters and solid phase) from three locations on the middle Atlantic Bight (MAB) from the eastern margin of the United States: a northern location on the continental shelf off Massachusetts (OC426, 75 m water depth), and two southern locations off North Carolina (EN433-1, 647 m water depth and EN433-2, 2648 m water depth). These sediments underlie high oxygen bottom waters (250-270 μM), but become reducing below the sediment-water interface due to the relatively high organic carbon oxidation rates in sediments (EN433-1: 212 μmol C/cm2/y; OC426: 120 ± 10 μmol C/cm2/y; EN433-2: 33 μmol C/cm2/y). Pore water oxygen goes to zero by 1.4-1.5 cm at EN433-1 and OC426 and slightly deeper oxygen penetration depths were measured at EN433-2 (∼4 cm).All of the pore water profiles show removal of U from pore waters. Calculated pore water fluxes are greatest at EN433-1 (0.66 ± 0.08 nmol/cm2/y) and less at EN433-2 and OC426 (0.24 ± 0.05 and 0.13 ± 0.05 nmol/cm2/y, respectively). Solid phase profiles show authigenic U enrichment in sediments from all three locations. The average authigenic U concentrations are greater at EN433-1 and OC426 (5.8 ± 0.7 nmol/g and 5.4 ± 0.2 nmol/g, respectively) relative to EN433-2 (4.1 ± 0.8 nmol/g). This progression is consistent with their relative ordering of ‘reduction intensity’, with greatest reducing conditions in sediments from EN433-1, less at OC426 and least at EN433-2. The authigenic U accumulation rate is largest at EN433-1 (0.47 ± 0.05 nmol/cm2/y), but the average among the three sites on the MAB is ∼0.2 nmol/cm2/y. Pore water profiles suggest diffusive fluxes across the sediment-water interface that are 1.4-1.7 times greater than authigenic accumulation rates at EN433-1 and EN433-2. These differences are consistent with oxidation and loss of U from the solid phase via irrigation and/or bioturbation, which may compromise the sequestration of U in continental margin sediments that underlie bottom waters with high oxygen concentrations.Previous literature compilations that include data exclusively from locations where [O2]bw < 150 μM suggest compelling correlations between authigenic U accumulation and organic carbon flux to sediments or organic carbon burial rate. Sediments that underlie waters with high [O2]bw have lower authigenic U accumulation rates than would be predicted from relationships developed from results that include locations where [O2]bw < 150 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号