首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Alteration of estuarine shorelines associated with increased urbanization can significantly impact biota and food webs. This study determined the impact of shoreline alteration on growth and movement of the estuarine fish Fundulus heteroclitus in a tributary of the Delaware Coastal Bays. Fundulus heteroclitus is abundant along the east coast of the USA, and is an important trophic link between marsh and subtidal estuary. The restricted home range of F. heteroclitus allowed discrete sampling, and fish growth comparisons, along 35–65-m long stretches of fringing Spartina alterniflora and Phragmites australis marsh, riprap, and bulkhead. Fundulus heteroclitus were tagged with decimal Coded Wire Tags. Of 725 tagged F. heteroclitus, 89 were recaptured 30–63 days later. Mean growth rate (0.06–0.15 mm day?1 across all shoreline types) was greatest at riprap, lowest at Spartina and Phragmites, and intermediate at bulkhead, where growth was not significantly different from any other shoreline. This suggests that discernible environments exist along different shoreline types, even at the scale of tens of meters. No difference in movement distance was detected at different shoreline types; most individuals displayed a high degree of site fidelity. Forty-seven percent were recaptured within 5 m of their tagging location, although alongshore movements up to 475 m were recorded. Estimates of relative F. heteroclitus productivity, using relative density data from a concurrent study, were highest along Spartina and Phragmites, intermediate at riprap, and lowest at bulkhead. Therefore, despite greater growth rates along riprap than at vegetated shores, armoring reduces abundance sufficiently to negatively impact localized productivity of F. heteroclitus.  相似文献   

2.
Anthropogenic modifications of estuarine environments, including shoreline hardening and corresponding alteration of water quality, are accelerating worldwide as human population increases in coastal regions. Estuarine fish species inhabiting temperate ecosystems are adapted to extreme variations in environmental conditions including water temperature, salinity, and dissolved oxygen across seasonal, daily, and hourly time scales. The present research utilized quantitative sampling to examine the spatiotemporal distribution of shore-zone estuarine fish species in association with four unique shoreline types across a range of water temperature and dissolved oxygen conditions. Fish were collected from the intertidal and shallow subtidal region of four shoreline types, Spartina alterniflora marsh, Phragmites australis marsh, riprap, and bulkhead, in the summer and fall of 2009 and 2010. Analyses were performed to (1) compare mean fish density among shoreline types across all water conditions and (2) explore relationships of the complete fish assemblage, three functional species groupings, and two fish species (Fundulus heteroclitus and Menidia menidia) to unique shoreline/water conditions. Significantly greater mean fish densities were found along S. alterniflora shorelines than armored shorelines. Several metrics including fish density, species richness, and occurrence rates suggest S. alterniflora shorelines may serve as a form of refuge habitat during periods of low dissolved oxygen and high temperatures for various species, particularly littoral-demersal species including F. heteroclitus. Potential mechanisms that could contribute to a habitat providing refuge during adverse water quality conditions include tempering of the adverse condition (decreased temperatures, increased dissolved oxygen), predation protection, and increased foraging opportunities.  相似文献   

3.
Colonial nesting of long-legged wading birds (Ciconiiformes) in the coastal northeastern U.S. is limited primarily to islands, which provide isolated habitats that are relatively free of ground predators. Estuarine wetlands in this heavily developed region, including foraging wetlands and fringe marshes surrounding nesting islands, are often dominated byPhragmites australis. On Pea Patch Island in Delaware Bay, site of one of the largest and most enduring mixed-species heron colonies on the East Coast, wading birds nest inPhragmites marsh habitat as well as in adjacent upland shrubs and trees. BecausePhragmites is aggressively managed in Delaware Bay, we investigated the relative habitat value of marsh and upland nesting sites for the purpose of developing recommendations for marsh and wildlife management. Utilization of marsh habitat by nesting birds ranged from 27–82% during 1993–1998. Two species (great blue heronArdea herodias and great egretA. alba) never nested inPhragmites, four species (little blue heronEgretta caerulea, snowy egretE. thula, cattle egretBubulcus ibis, and black-crowned night-heronNycticorax nycticorax) nested in approximately equal proportions in both habitats, and one species (glossy ibisPlegadis falcinellus) was largely confined to marsh nesting. Productivity (egg and nestling production) varied between habitats for some species. Cattle egrets produced larger clutches and had higher hatching rates inPhragmites compared to upland habitat. Little blue herons were more successful in the uplands. Managers should retainPhragmites marsh at colony sites, such as Pea Patch Island, where it provides critical habitat for nesting wading birds both as substrate for nesting and buffer habitat to control human disturbance.  相似文献   

4.
Since 1965 large areas of lower Connecticut River tidelands have been converted from high diversity brackish meadow andTypha angustifolia marsh to near monocultures ofPhragmites australis. This study addresses the impact ofPhragmites invasion on fish and crustacean use of oligohaline high marsh. During spring tides from early June through early September 2000, fishes and crustaceans leaving flooded marsh along 3 km of the Lieutenant River, a lower Connecticut River tributary, were captured with Breder traps at 90 sites, equally distributed amongPhragmites, Typha, and treated (herbicide and mowing)Phragmites areas. Pit traps, 18 per vegetation type in 2000 and 30 each inPhragmites andTypha in 2001, caught larvae and juveniles at distances of up to 30 m into the marsh interior. There were no significant differences in fish species compositions or abundances among the vegetation types. Size distributions, size specific biomasses, and diets ofFundulus heteroclitus, the numerically dominant fish, were also similar. The shrimpPalaemonetes pugio was more abundant inPhragmites than in other types of vegetation, whereas the fiddler crabUca minax was least numerous inPhragmites. Mean numbers ofF. heteroclitus andP. pugio caught per site event were positively correlated with increasing site hydroperiod. Significantly moreF. heteroclitus were captured along the upper reach of the river where marsh elevations were lower than farther downstream. MoreF. heteroclitus and fewerP. pugio andU. minax were captured during the day than at night. A relatively small number of larval and juvenileFundulus sp. were captured in pit traps, but consistently fewer inPhragmites than inTypha, suggesting thatTypha and brackish meadow marshes may provide better nursery habitat. Vegetation was sampled along a 30 m transect at each trap site in 2000. Plant species diversity was greatest in treatedPhragmites areas and lowest inPhragmites sites.  相似文献   

5.
We assess the probability and importance of different spatial distributions ofPhragmites australis (Trin Ex Steud) within brackish tidal marshes of the mid-Atlantic United States coast. The comparative impact ofPhragmites expansion on the larger coupled marsh-estuary system may partially be a function of the landscape area dominated byPhragmites, the landscape position occupied byPhragmites, the landscape pattern created byPhragmites expansions, and the resulting impact on tidal drainage networks. We find evidence thatPhragmites establishment can occur at many landscape positions, and thatPhragmites spread within a marsh can occur via colonization (new patches), linear clonal growth (along a preferred axis), or circular clonal growth (non-directional, random spread). Early intervals ofPhragmites spread were dominated by colonization for all sites except for Piermont Marsh (which appeared to be dominated by linear clonal growth) and Lang Tract (which appeared to be dominated by circular clonal growth). Although 46–100% of new patches ofPhragmites occurred within 5 m of drainages, at only one site (Piermont Marsh, New York) didPhragmites populations remain concentrated along creek banks. Except for Iona Island, New York, which appears to be in an early stage ofPhragmites invasion, patch dynamics at all sites showed an increase followed by a decrease in patch number, as independent patches became established, expanded, and coalesced. We also found some evidence for a loss of first order streams at later stages ofPhragmites invasions in several sites (Hog Island, Lang Tract, Silver Run).  相似文献   

6.
Coastal shoreline hardening is intensifying due to human population growth and sea level rise. Prior studies have emphasized shoreline-hardening effects on faunal abundance and diversity; few have examined effects on faunal biomass and size structure or described effects specific to different functional groups. We evaluated the biomass and size structure of mobile fish and crustacean assemblages within two nearshore zones (waters extending 3 and 16 m from shore) adjacent to natural (native wetland; beach) and hardened (bulkhead; riprap) shorelines. Within 3 m from shore, the total fish/crustacean biomass was greatest at hardened shorelines, driven by greater water depth that facilitated access to planktivore (e.g., bay anchovy) and benthivore-piscivore (e.g., white perch) species. Small-bodied littoral-demersal species (e.g., Fundulus spp.) had greatest biomass at wetlands. By contrast, total biomass was comparable among shoreline types within 16 m from shore, suggesting the effect of shoreline hardening on fish biomass is largely within extreme nearshore areas immediately at the land/water interface. Shoreline type utilization was mediated by body size across all functional groups: small individuals (≤60 mm) were most abundant at wetlands and beaches, while large individuals (>100 mm) were most abundant at hardened shorelines. Taxonomic diversity analysis indicated natural shoreline types had more diverse assemblages, especially within 3 m from shore, although relationships with shoreline type were weak and sensitive to the inclusion/exclusion of crustaceans. Our study illustrates how shoreline hardening effects on fish/crustacean assemblages are mediated by functional group, body size, and distance from shore, with important applications for management.  相似文献   

7.
Fringing marshes are important but often overlooked components of estuarine systems. Due to their relatively small size and large edge to area ratio, they are particularly vulnerable to impacts from adjacent upland development. Because current shoreland zoning policies aim to limit activities in upland buffer zones directly next to coastal habitats, we tested for relationships between the extent of development in a 100-m buffer adjacent to fringing salt marshes and the structure of marsh plants, benthic invertebrates, and nekton communities. We also wanted to determine useful metrics for monitoring fringing marshes that are exposed to shoreline development. We sampled 18 fringing salt marshes in two estuaries along the coast of southern Maine. The percent of shoreline developed in 100-m buffers around each site ranged from 0 to 91 %. Several variables correlated with the percent of shoreline developed, including one plant diversity metric (Evenness), two nekton metrics (Fundulus heteroclitus %biomass and Carcinus maenas %biomass), and several benthic invertebrate metrics (nematode and insect/dipteran larvae densities in the high marsh zone) (p?<?0.05). Carcinus maenas, a recent invader to the area, comprised 30–97 % of the nekton biomass collected at the 18 sites and was inversely correlated with Fundulus %biomass. None of these biotic metrics correlated with the other abiotic marsh attributes we measured, including porewater salinity, marsh site width, and distance of the site to the mouth of the river. In all, between 25 and 48 % of the variance in the individual metrics we identified was accounted for by the extent of development in the 100-m buffer zone. Results from this study add to our understanding of fringing salt marshes and the impacts of shoreline development to these habitats and point to metrics that may be useful in monitoring these impacts.  相似文献   

8.
The range expansion of exotic plant species, including the invasive reed Phragmites australis, causes widespread structural and functional changes to coastal ecosystems along the Atlantic and Gulf Coasts of North America. Native estuarine species, such as the diamondback terrapin (Malaclemys terrapin), are at risk of adverse effects from rapid habitat changes due to exotic invasions. Diamondback terrapins currently face population threats including by-catch mortality in crab pots, predation, and habitat loss, and populations may continue to suffer if deleterious plant invasions into preferred nesting habitats are left unchecked. We examined the extent to which Phragmites affects nesting of a breeding population of diamondback terrapins at Fisherman Island National Wildlife Refuge on the eastern shore of Virginia, where Phragmites has recently expanded into known areas of terrapin nesting. With data collected from the 2015 nesting season, we quantified the extent to which Phragmites shading could impact nest incubation temperature and determined how Phragmites density impacts the risk of rhizome invasion into nests. We conclude that Phragmites cover greater than 50% would decrease incubation temperatures of terrapin nests sufficiently to produce predominantly male hatchlings. Phragmites cover had no observed effect on root growth into simulated nests, but cover by other dune plant species explained observed trends in root growth. These results suggest that terrapins may be negatively impacted by Phragmites expansion into open nesting sites. Breeding site fidelity exhibited by terrapins and other estuarine species could limit the ability of their populations to adjust to rapid coastal expansion of invasive plant species.  相似文献   

9.
Conserving and restoring submerged aquatic vegetation (SAV) are key management goals for estuaries worldwide because SAV integrates many aspects of water quality and provides a wide range of ecosystem services. Management strategies are typically focused on aggregated abundance of several SAV species, because species cannot be easily distinguished in remotely sensed data. Human land use and shoreline alteration have been shown to negatively impact SAV abundance, but the effects have varied with study, spatial scale, and location. The differences in reported effects may be partly due to the focus on abundance, which overlooks within-community and among-community dynamics that generate total SAV abundance. We analyzed long-term SAV aerial survey data (1984–2009) and ground observations of community composition (1984–2012) in subestuaries of Chesapeake Bay to integrate variations in abundance with differences in community composition. We identified five communities (mixed freshwater, milfoil-Zannichellia, mixed mesohaline, Zannichellia, and Ruppia-Zostera). Temporal variations in SAV abundance were more strongly related to community identity than to terrestrial stressors, and responses to stressors differed among communities and among species. In one fifth of the subestuaries, the community identity changed during the study, and the probability of such a change was positively related to the prevalence of riprapped shoreline in the subestuary. Mixed freshwater communities had the highest rates of recovery, and this may have been driven by Hydrilla verticillata, which was the single best predictor of SAV recovery rate. Additional species-specific and community-specific research will likely yield better understanding of the factors affecting community identity and SAV abundance, more accurate predictive models, and more effective management strategies.  相似文献   

10.
The tropically associated black mangrove (Avicennia germinans) is expanding into salt marshes of the northern Gulf of Mexico (nGOM). This species has colonized temperate systems dominated by smooth cordgrass (Spartina alterniflora) in Texas, Louisiana, Florida and, most recently, Mississippi. To date, little is known about the habitat value of black mangroves for juvenile fish and invertebrates. Here we compare benthic epifauna, infauna, and nekton use of Spartina-dominated, Avicennia-dominated, and mixed Spartina and black mangrove habitats in two areas with varying densities and ages of black mangroves. Faunal samples and sediment cores were collected monthly from April to October in 2012 and 2013 from Horn Island, MS, and twice yearly in the Chandeleur Islands, LA. Multivariate analysis suggested benthic epifauna communities differed significantly between study location and among habitat types, with a significant interaction between the two fixed factors. Differences in mangrove and marsh community composition were greater at the Chandeleurs than at Horn Island, perhaps because of the distinct mangrove/marsh ecotone and the high density and age of mangroves there. Infaunal abundances were significantly higher at Horn Island, with tanaids acting as the main driver of differences between study locations. We predict that if black mangroves continue to increase in abundance in the northern GOM, estuarine faunal community composition could shift substantially because black mangroves typically colonize shorelines at higher elevations than smooth cordgrass, resulting in habitats of differing complexity and flooding duration.  相似文献   

11.
Salt marsh ecosystems provide many critical ecological functions, yet they are subject to considerable disturbance ranging from direct human alteration to increased inundation due to climate change. We assessed emergent salt marsh plant characteristics in the Tuckerton Peninsula, a large expanse (~ 2000 ha) of highly inundated habitat along the southern New Jersey coast, USA. Key salt marsh plant parameters were monitored in the heavily grid-ditched northern segment, Open Marsh Water Management (OMWM) altered central segment, and the shoreline altered southern segment of the peninsula in the summer months of 2011 and 2013. Plant species composition and three metrics of abundance and structure (maximum canopy height, percent areal cover, and shoot density) were examined among marsh segments, along transects within segments, seasonally by month and between years. Despite seasonal or annual variability, the northern segment of the marsh differed in plant species composition from the central and southern segments. This difference was partly due to greater percent areal cover in the northern segment of upper marsh species such as Spartina patens and Distichlis spicata. S. patens also exhibited higher shoot densities in the northern segment than the central segment. Despite the higher abundance of upper marsh species, marsh surface elevations were lower in the northern segment than in the central or southern segments, suggesting the influence of altered hydrology due to human activities. Understanding current variation in the emergent salt marsh vegetation along the peninsula will help inform future habitat change in other coastal wetlands of New Jersey and the mid-Atlantic region subject to natural and anthropogenic drivers.  相似文献   

12.
Small-scale armoring placed near the marsh-upland interface to protect single-family homes is widespread but understudied. Using a nested, spatially blocked sampling design on the coast of Georgia, USA, we compared the biota and environmental characteristics of 60 marshes adjacent to either a bulkhead, a residential backyard with no armoring, or an intact forest. We found that marshes adjacent to bulkheads were at lower tidal elevations and had features typical of lower elevation marsh habitats: high coverage of the marsh grass Spartina alterniflora, high density of crab burrows, and muddy sediments. Marshes adjacent to unarmored residential sites had higher soil water content and lower porewater salinities than the armored or forested sites, suggesting that there may be increased freshwater input to the marsh at these sites. Deposition of Spartina wrack on the marsh-upland ecotone was negatively related to elevation at armored sites and positively related at unarmored residential and forested sites. Armored and unarmored residential sites had reduced densities of the high marsh crab Armases cinereum, a species that moves readily across the ecotone at forested sites, using both upland and high marsh habitats. Distance from the upland to the nearest creek was longest at forested sites. The effects observed here were subtle, perhaps because of the small-scale, scattered nature of development. Continued installation of bulkheads in the southeast could lead to greater impacts such as those reported in more densely armored areas like the northeastern USA. Moreover, bulkheads provide a barrier to inland marsh migration in the face of sea level rise. Retaining some forest vegetation at the marsh-upland interface and discouraging armoring except in cases of demonstrated need could minimize these impacts.  相似文献   

13.
The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).  相似文献   

14.
Several recent studies indicate that the replacement of extant species withPhragmites australis can alter the size of nitrogen (N) pools and fluxes within tidal marshes. Some common effects ofP. australis expansion are increased standing stocks of N, greater differentiation of N concentrations between plant tissues (high N leaves and low N stems), and slower whole-plant decay rates than competing species (e.g.,Spartina, Typha spp.). Some of the greater differences between marsh types involveP. australis effects on extractable and porewater pools of dissolved inorganic nitrogen (DIN) and N mineralization rates. Brackish and salt marshes show higher concentrations of DIN in porewater beneathSpartina spp. relative toP. australis, but this is not observed in freshwater tidal marshes whenP. australis is compared withTypha spp. or mixed plant assemblages. With few studies of concurrent N fluxes, the net effect ofP. australis on marsh N budgets is difficult to quantify for single sites and even more so between sites. The magnitude and direction of impacts ofP. australis on N cycles appears to be system-specific, driven more by the system and species being invaded than byP. australis itself. WhereP. australis is found to affect N pools and fluxes, we suggest these alterations result from increased biomass (both aboveground and belowground) and increased allocation of that biomass to recalcitrant stems. Because N pools are commonly greater inP. australis than in most other communities (due to plant and litter uptake), one of the most critical questions remaining is “From where is the extra N inP. australis communities coming?” It is important to determine if the source of the new N is imported (e.g., anthropogenic) or internallyproduced (e.g., fixed, remineralized organic matter). In order to estimate net impacts ofP. australis on marsh N budgets, we suggest that further research be focused on the N source that supports high standing stocks of N inP. australis biomass (external input versus internal cycling) and the relative rates of N loss from different marshes (burial versus subsurface flow versus denitrification).  相似文献   

15.
The nearshore land-water interface is an important ecological zone that faces anthropogenic pressure from development in coastal regions throughout the world. Coastal waters and estuaries like Chesapeake Bay receive and process land discharges loaded with anthropogenic nutrients and other pollutants that cause eutrophication, hypoxia, and other damage to shallow-water ecosystems. In addition, shorelines are increasingly armored with bulkhead (seawall), riprap, and other structures to protect human infrastructure against the threats of sea-level rise, storm surge, and erosion. Armoring can further influence estuarine and nearshore marine ecosystem functions by degrading water quality, spreading invasive species, and destroying ecologically valuable habitat. These detrimental effects on ecosystem function have ramifications for ecologically and economically important flora and fauna. This special issue of Estuaries and Coasts explores the interacting effects of coastal land use and shoreline armoring on estuarine and coastal marine ecosystems. The majority of papers focus on the Chesapeake Bay region, USA, where 50 major tributaries and an extensive watershed (~ 167,000 km2), provide an ideal model to examine the impacts of human activities at scales ranging from the local shoreline to the entire watershed. The papers consider the influence of watershed land use and natural versus armored shorelines on ecosystem properties and processes as well as on key natural resources.  相似文献   

16.
Sea level rise is a major stressor on many salt marshes, and its impacts include creek widening, ponding, vegetation dieback, and drowning. Marsh vegetation changes have been associated with sea level rise across southern New England, but most of these studies pre-date the current period of rapidly accelerating sea level rise coupled with episodic events of extreme increases in water levels. Here, we combine data from two salt marsh monitoring and assessment programs in Rhode Island that were designed to assess marsh responses to sea level rise and use these data to document temporal and spatial patterns in marsh vegetation during the current period of extreme water level increases. Vegetation monitoring at two Narragansett Bay salt marshes confirms the ongoing decline of the salt meadow species Spartina patens during this period as it becomes replaced by Spartina alterniflora. Bare ground resulting from vegetation dieback was significantly related to mean high water levels and led to the rapid conversion of mixed Spartina assemblages to S. alterniflora monocultures. A broader spatial assessment of RI marshes shows that S. alterniflora dominance increases at lower elevation marshes toward the mouth of Narraganset Bay. Our data provide additional evidence that S. patens continues to decline in southern New England marshes and show that losses can accelerate during periods of extreme high water levels. Unless adaptive management actions are taken, we predict that marshes throughout RI will continue to lose salt meadow habitat and eventually resemble lower elevation marshes that are already dominated by S. alterniflora monocultures.  相似文献   

17.
Private docks are common in estuaries worldwide. Docks in Massachusetts (northeast USA) cumulatively overlie ~ 6 ha of salt marsh. Although regulations are designed to minimize dock impacts to salt marsh vegetation, few data exist to support the efficacy of these policies. To quantify impacts associated with different dock designs, we compared vegetation characteristics and light levels under docks with different heights, widths, orientations, decking types and spacing, pile spacing, and ages relative to adjacent control areas across the Massachusetts coastline (n = 212). We then evaluated proportional changes in stem density and biomass of the dominant vegetation (Spartina alterniflora and Spartina patens) in relation to dock and environmental (marsh zone and nitrogen loading) characteristics. Relative to adjacent, undeveloped habitat, Spartina spp. under docks had ~ 40% stem density, 60% stem biomass, greater stem height and nitrogen content, and a higher proportion of S. alterniflora. Light availability was greater under taller docks and docks set at a north-south orientation but did not differ between decking types. Dock height best predicted vegetation loss, but orientation, pile spacing, decking type, age, and marsh zone also affected marsh production. We combined our proportional biomass and stem elemental composition estimates to calculate a statewide annual loss of ~ 2200 kg dry weight of Spartina biomass (367 kg per ha of dock coverage). Managers can reduce impacts through design modifications that maximize dock height (> 150 cm) and pile spacing while maintaining a north-south orientation, but dock proliferation must also be addressed to limit cumulative impacts.  相似文献   

18.
Submerged aquatic vegetation (SAV) provides many important ecosystem functions, but SAV has been significantly reduced in many estuaries. We used spatial–statistical models to identify estuarine shoreline characteristics that explain variations in SAV abundance among subestuaries of the Chesapeake Bay and mid-Atlantic Coastal Bays. We summarized digital spatial data on shoreline construction, shoreline land use, physical characteristics, watershed land cover, and salinity for each subestuary. We related SAV abundance to shoreline characteristics and other stressors using univariate regression and multivariate models. The strongest univariate predictors of SAV abundance were percent shoreline forest, percent shoreline marsh, the percentage of shoreline that is 5–10 m tall, percent riprap, the percentage of subestuary area <2 m deep, percent herbaceous wetland, and percent shrubland. Shoreline marsh, bulkhead, and shoreline forest had different effects on SAV in different salinity zones. Percent riprap shoreline was the most important variable in a regression tree analysis of all the subestuaries, and percent deciduous forest in the watershed was the most important variable in a separate regression tree analysis on the mesohaline subestuaries. Subestuaries with <5.4 % riprap followed a significantly different temporal trajectory than those with >5.4 % riprap. SAV abundance has increased steadily since 1984 in subestuaries with <5.4 % riprap, but has not increased since 1996–1997 in subestuaries with >5.4 % riprap. Some shoreline characteristics interact with larger-scale factors like land cover and salinity zone to affect the distribution of SAV, while the effects of other shoreline characteristics are consistent among subestuaries with different salinities or local watershed land covers. Many shoreline characteristics can be controlled by management decisions, and our results help identify factors that managers should consider in efforts to increase SAV abundance.  相似文献   

19.
The revised representatives of ammonite genera Malbosiceras and Pomeliceras from the Berriasian of the Crimean Mountains are classed with seven species, four of the first genus [M. malbosi (Pictet), M. chaperi (Pictet), M. broussei (Mazenot), M. pictetiforme Tavera] and three of the second one [P. aff. boisseti Nikolov, P. breveti (Pomel), P. (?) funduklense Lysenko et Arkadiev sp. nov.]. The identified species are described. The genus Mazenoticeras is considered as synonym of Malbosiceras. The above species prove that all the Berriasian zones (jacobi, occitanica and boissieri) are characteristic of corresponding deposits in the Crimean Mountains.  相似文献   

20.
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r 2?=?0.96; p?=?0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise and may not be stable as tidal flooding increases in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号