首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The capability of a current state-of-the-art regional climate model for simulating the diurnal and annual cycles of rainfall over a complex subtropical region is documented here. Hourly rainfall is simulated over Southern Africa for 1998–2006 by the non-hydrostatic model weather research and forecasting (WRF), and compared to a network of 103 stations covering South Africa. We used five simulations, four of which consist of different parameterizations for atmospheric convection at a 0.5 × 0.5° resolution, performed to test the physic-dependency of the results. The fifth experiment uses explicit convection over tropical South Africa at a 1/30° resolution. WRF simulates realistic mean rainfall fields, albeit wet biases over tropical Africa. The model mean biases are strongly modulated by the convective scheme used for the simulations. The annual cycle of rainfall is well simulated over South Africa, mostly influenced by tropical summer rainfall except in the Western Cape region experiencing winter rainfall. The diurnal cycle shows a timing bias, with atmospheric convection occurring too early in the afternoon, and causing too abundant rainfall. This result, particularly true in summer over the northeastern part of the country, is weakly physic-dependent. Cloud-resolving simulations do not clearly reduce the diurnal cycle biases. In the end, the rainfall overestimations appear to be mostly imputable to the afternoon hours of the austral summer rainy season, i.e., the periods during which convective activity is intense over the region.  相似文献   

2.
3.
 The horizontal and vertical structure of the 3–5-day and 6–9-day easterly waves over West Africa and tropical Atlantic are investigated. NCEP/NCAR reanalyses are used for the period 1979–1995 to produce a 17-year climatology of both 3–5-day and 6–9-day easterly waves. Composite patterns of convection, wind, temperature and vertical velocity are analysed with respect to the following: the modulation by 3–5-day and 6–9-day wave regimes; the contrasts between the ITCZ (5°N–10°N) and the Sahelo-Saharan band (15°N–20°N); the difference between land and ocean, and seasonal variations. Similarities and differences in the characteristics of the two wave regimes are identified. Received: 18 August 1999 / Accepted: 14 March 2001  相似文献   

4.
A hierarchical modeling approach is used to study the process by which interactions of easterly waves with the background flow can result in a reduction in the longitudinal and vertical scale of the waves. Theory suggests that in flows that possess a negative longitudinal gradient (U x  < 0) there is a reduction of longitudinal and vertical group speeds and an increase in regional wave action density (or “wave energy”). Relative vorticity increases locally leading to an increase in the likelihood of tropical cyclogenesis near the wave axis. Opposite impacts on the structure of the waves is expected in a U x  > 0 domain. In the simplified framework of a free-surface and divergent shallow water model, Rossby wave properties are tracked through a range of background flow scenarios to determine the important scales of interaction. The importance of wave energy accumulation for tropical cyclogenesis is then studied in a full physics and dynamics model using a nested regional climate model simulation, at 12 km horizontal grid spacing, over the tropical North Atlantic region for the entire 2005 hurricane season. The dynamical environment within which 70% of easterly waves formed tropical cyclones exhibits coherent regions in which easterly winds increase towards the east, consistent with the occurrence of wave energy accumulation.  相似文献   

5.
张人禾  黄荣辉 《大气科学》1998,22(4):587-599
通过资料分析,研究了发生在热带西太平洋海表面西风或东风应力异常与El Ni?o事件的关系。分析结果表明,对应着El Ni?o事件从发生到消亡的过程,热带西太平洋纬向风应力存在着从西风应力异常到东风应力异常的变化,并且在这个过程中,西风应力异常向东传,东风应力异常紧接其后也向东传。本文还根据观测资料的分析结果建立了理想风应力,并利用简单热带海洋模式,对热带西太平洋纬向风应力异常及其东传在ENSO循环中的作用进行了动力学分析,指出了它们在El Ni?o事件发生和消亡中起着重要的作用。西风应力异常通过激发出海洋中东传的暖Kelvin波及其在大洋东边界反射产生的暖Rossby波、以及西风应力异常本身东传到赤道东太平洋,引起正的海洋混合层扰动厚度异常,导致了El Ni?o事件的发生;而异常东风应力则通过激发出东传的冷Kelvin波及其在大洋东边界反射产生的冷Rossby波、以及东风应力异常本身东传到赤道东太平洋,引起负的海洋混合层扰动厚度异常,导致了El Ni?o事件的消亡。对于热带西太平洋上风应力异常的形式是东部为异常西风应力而其西部为异常东风应力,并且它们同时向东传时,则大洋东部混合层厚度对异常风应力的响应随异常东风和西风应力的强度不同而不同,它们强度的相对大小对El Ni?o的持续时间具有重要的作用。  相似文献   

6.
 NCEP/NCAR and ECMWF daily reanalyses are used to investigate the synoptic variability of easterly waves over West Africa and tropical Atlantic at 700 hPa in northern summer between 1979–1995 (1979–1993 for ECMWF). Spectral analysis of the meridional wind component at 700 hPa highlighted two main periodicity bands, between 3 and 5 days, and 6 and 9 days. The 3–5-day easterly wave regime has already been widely investigated, but only on shorter datasets. These waves grow both north and south of the African Easterly Jet (AEJ). The two main tracks, noted over West Africa at 5 °N and 15 °N, converge over the Atlantic on latitude 17.5 °N. These waves are more active in August–September than in June–July. Their average wavelength/phase speed varies from about 3000 km/8 m s-1 north of the jet to 5000 km/12 m s-1 south of the jet. Rainfall, convection and monsoon flux are significantly modulated by these waves, convection in the Inter-Tropical Convergence Zone (ITCZ) being enhanced in the trough and ahead of it, with a wide meridional extension. Compared to the 3–5-day waves, the 6–9-day regime is intermittent and the corresponding wind field pattern has both similar and contrasting characteristics. The only main track is located north of the AEJ along 17.5 °N both over West Africa and the Atlantic. The mean wavelength is higher, about 5000 km long, and the average phase speed is about 7 m s-1. Then the wind field perturbation is mostly evident at the AEJ latitude and north of it. The perturbation structure is similar to that of 3–5-days in the north except that the more developed circulation centers, moving more to the north, lead to a large modulation of the jet zonal wind component. South of the AEJ, the wind field perturbation is weaker and quite different. The zonal wind core of the jet appears to be an almost symmetric axis in the 6–9-day wind field pattern, a clockwise circulation north of the AEJ being associated with a counter-clockwise circulation south of the jet, and vice versa. These 6–9-day easterly waves also affect significantly rainfall, convection and monsoon flux but in a different way, inducing large zonal convective bands in the ITCZ, mostly in the trough and behind it. As opposed to the 3–5-day wave regime, these rainfall anomalies are associated with anomalies of opposite sign over the Guinea coast and the Sahelian regions. Over the continent, these waves are more active in June–July, and in August–September over the ocean. GATE phase I gave an example of such an active 6–9-day wave pattern. Considered as a sequence of weak easterly wave activity, this phase was also a sequence of high 6–9-day easterly wave activity. We suggest that the 6–9-day regime results from an interaction between the 3–5-day easterly wave regime (maintained by the barotropic/baroclinic instability of the AEJ), and the development of strong anticyclonic circulations, north of the jet over West Africa, and both north and south of the jet over the Atlantic, significantly affecting the jet zonal wind component. The permanent subtropical anticyclones (Azores, Libya, St Helena) could help initiation and maintenance of such regime over West Africa and tropical Atlantic. Based on an a priori period-band criterion, our synoptic classification has enabled us to point out two statistical and meteorological easterly wave regimes over West Africa and tropical Atlantic. NCEP/NCAR and ECMWF reanalyses are in good agreement, the main difference being a more developed easterly wave activity in the NCEP/NCAR reanalyses, especially for the 3–5-day regime over the Atlantic. Received: 28 May 1998 / Accepted: 2 May 1999  相似文献   

7.
本文利用常规地面与高空观测资料、自动站逐时资料、NECP1°×1°再分析资料,对阿克苏地区2015年9月7日局地暴雨进行分析。结果表明,造成此次暴雨的主要原因有(1)中尺度分析暴雨发生前阿克苏处于高能高湿不稳定区域;(2)08时至20时探空图中湿层、风向以及不稳定能量的突变预示了强对流天气的发生;(3)暴雨过程的大部分水汽是通过低层偏东气流输送,水汽的来源主要为孟加拉湾,其次北疆短波槽及蒙古槽也提供了少量水汽(4)锋区加强、垂直风切变增大、水平风速辐合提供了热力及动力条件,垂直速度伸展高度影响了对流云厚度及高度。(5)地面风速辐合触发对流,加之较好的地面热力条件以及一定的地形增益暴雨强度。(6)地面辐合线及偏东风输送位置影响暴雨落区。  相似文献   

8.
This study evaluates the convectively coupled equatorial waves in ten coupled general circulation models (GCMs) in the twentieth century experiment from the Coupled Model Intercomparison Project phase 3 of the World Climate Research Programme. The antisymmetric bands in all GCMs are weaker than in observations, and the mixed Rossby-gravity (MRG) wave seems to be a mixture of the equatorial Rossby (ER) and tropical depression-type (TD-type) waves rather than a mixture of the ER and inertiogravity waves found in observations. The simulated TD-type wave is more organized than in observations with a quasilinear wavenumber–frequency relationship. In most GCMs, the two observed activity centers of the MRG and TD-type waves over the southern Indian Ocean and the southwestern Pacific cannot be separated; only one wave activity center is found over the Maritime Continent. The observed northwestward propagation of the TD-type wave over the western North Pacific is also not well simulated in the GCMs. The simulated active season of the MRG and TD-type waves over the northern hemisphere during the boreal summer and fall is much shorter than in observations. The models from CCSR utilizing the Pan and Randall scheme with the convection suppression simulate the realistic Kelvin wave activity with the maximum activity near the equator, while the wave activities filtered for the Kelvin wave in the other GCMs are similar to the extratropical Rossby wave with the maximum activity at higher latitudes. Likewise, only these two models produce a realistic seasonal cycle of the Kelvin wave activity.  相似文献   

9.
Summary The climatology and variability of summer convection and circulation over the tropical southwest Indian Ocean is investigated using satellite imagery, routine synoptic observations, outgoing longwave radiation (OLR) data, sea surface temperatures (SST) and areal averaged rainfall departures. OLR has a –0.90 correlation with rainfall departures and the OLR minimum (ITCZ) in January and February lies across the 10°S latitude, extending further south near Madagascar. The intensity of ITCZ convection is greatest in the longitudes 20–35°E over northern Zambia and is considerably reduced over the SW Indian Ocean. Spatial correlations are analyzed for standardized departures of OLR, rainfall and SST. The correlations change sign in a coherent fashion, creating a climatic dipole between southern Africa and the SW Indian Ocean. Interannual trends are examined through analysis of January–February zonal and meridional wind indices constructed from significantly correlated variables at Zimbabwe, Madagascar and Mauritius. Circulation variability is dominated by quasi-decadal cycles and a trend of inereasing westerly winds. Zonal wind shear alternates from easterly (barotropic) to westerly and together with SST appears to regulate the frequency and intensity of tropical cyclogenesis. Areally averaged rainfall departures exhibit 6.25 year cycles in NE Madagascar and 12.5 and 18.75 year cycles in SW Madagascar and Zimbabwe, respectively. Summer rainfall and meridional winds in NE Madagascar and Zimbabwe are out of phase and negatively correlated in most summers. The presence of synoptic weather systems is assessed using daily Hovmoller-type satellite imagery composites. Convective structure is dominated by transient waves in the 10°–20°S latitude band, with periods of 15–20 days common. The waves are more prominent in summers with increased easterly shear and contribute to fluctuations in rainfall over SE Africa.With 8 Figures  相似文献   

10.
Biases in AMIP model simulations of the east China monsoon system   总被引:6,自引:0,他引:6  
 AMIP model simulations of the east China (5–50°N; 105–122°E) monsoon system are analyzed to study coherent relationships between rainfall and wind annual cycle biases. A comparison with observed interannual variability patterns is carried out to identify the physical processes that explain the biases. The analyses show that poleward displacement of the simulated east Asian jet stream causes the ascending branch of the jet-induced transverse circulation to move north and, as a consequence, produces negative (positive) rainfall biases occur in central (northeast) China. The model simulations show decreased southwesterly flow and ITCZ rainfall over the South China Sea when weaker (versus observations) summer Hadley and Walker circulations are present. This results from diminished model tropical disturbance activity, and highlights the importance of air-sea interactions. In addition, during October–January, intensified model low-level easterlies enhance moisture transport and produce positive local rainfall biases over central and northeast China. Biases in the east China monsoon system are concurrently reflected in the planetary circulation. Enhanced northeast China rainfall results from increased surface pressure over the North Pacific and an amplified zonal pressure gradient along the east China coast. This bias pattern is associated with differences in model representations of topography. On the other hand, the South China Sea experiences an extensive elongated meridional rainfall bias dipole structure that straddles the equator. This is accompanied by a baroclinic vertical pattern over the tropics as well as a barotropic wave train that extends from Australia to the Antarctic, where the teleconnection is likely a direct atmospheric response to tropical convective heating. Received: 20 June 2000 / Accepted: 17 September 2000  相似文献   

11.
The large sea surface temperature variations induced by the Madden-Julian Oscillation (MJO) on the northwest shelf of Australia and the remote influence of the MJO on the subtropical Western Australian coast are explored using the POAMA Ensemble Ocean Data Assimilation System reanalyses (PEODAS) for the period 1980–2010. The focus here is during the November–April extended summer season when the impacts of the MJO on and along the west coast of Australia are greatest. The MJO is well known to force equatorial Kelvin and Rossby waves in the Indian Ocean, and these are well depicted in the PEODAS reanalyses. When the downwelling Kelvin waves (forced by the westerly-convective phase of the MJO) reach the Indonesian region at the eastern boundary of the Indian Ocean, a coastally trapped Kelvin wave appears to propagate southeast along the Indonesian coastline. At the same time, the suppressed convection/easterly phase of the MJO arrives in the eastern Indian Ocean, with increased heat flux into the ocean due to reduced latent heat flux and increased insolation. The coastally trapped Kelvin waves do not appear to get onto the Western Australian coast. Rather, the increased heat flux and Ekman-induced downwelling onto the northwest (NW) coast in the suppressed/easterly phase of the MJO drive an increase in sea surface temperature on the NW Australian shelf. The piling up of warm water and associated sea level rise on the NW shelf is then communicated down the Western Australian coast as a coastally trapped wave, resulting in an increase in the Leeuwin current. Thus we conclude that the MJO signal in sea level along the west coast of Australia does not result from transmission of equatorial waves onto the Western Australian coast, but rather a southward-propagating coastal trapped wave that is directly forced on the NW shelf through Ekman-induced vertical advection and surface heat fluxes in the easterly phase of the MJO. Additionally, subtropical coastal sea level variability is reinforced locally via a teleconnection of the MJO to the local meridional wind off the southwest Australian coast. Considering the capability to predict the MJO to about 4 weeks lead time plus the 2 weeks taken for the MJO signal on the NW shelf to influence sea level at Fremantle, the use of MJO forecasts in management of the Western Australian marine environment should be considered for future application.  相似文献   

12.
应用广西壮族自治区国家气象站降水,NCEP/NCAR逐日再分析资料,NOAA逐日向外长波辐射(OLR)等逐日资料,NOAA-CPC热带大气季节内振荡(MJO)指数等,使用经验正交函数分解方法分析了广西冬季降水的气候特征;用功率谱、带通滤波、相关分析和滞后线性回归等方法,以及定义MJO相关降水事件,研究了广西冬季降水异常偏多年的降水低频特征及其与MJO的联系。(1)广西冬季降水特征以全区一致型分布为主;冬季降水异常偏多年份的逐日降水具有14~26 d的低频周期。(2) MJO强对流在赤道印度洋东部发展并东传到西太平洋热带地区时,广西可出现冬季持续强降水。(3)当MJO异常对流在印度洋东部热带地区产生,中南半岛地区到华南地区上空为异常低频偏南和偏西南气流,有利于降水形成;当印度洋东部热带地区为MJO对流抑制区,华南地区上空为异常低频偏东气流控制,不利于降水产生。(4)华南地区上空大气环流的异常是由热带印度洋地区的MJO对流激发的Rossby波列造成。   相似文献   

13.
The influence of El Nio-Southern Oscillation (ENSO) on the convectively coupled Kelvin waves over the tropical Pacific is investigated by comparing the Kelvin wave activity in the eastern Pacific (EP) El Nio, central Pacific (CP) El Nio, and La Nia years, respectively, to 30-yr (1982-2011) mean statistics. The convectively coupled Kelvin waves in this study are represented by the two leading modes of empirical orthogonal function (EOF) of 2-25-day band-pass filtered daily outgoing longwave radiation (OLR), with the estimated zonal wavenumber of 3 or 4, period of 8 days, and eastward propagating speed of 17 ms-1 . The most significant impact of ENSO on the Kelvin wave activity is the intensification of the Kelvin waves during the EP El Nios. The impact of La Nia on the reduction of the Kelvin wave intensity is relatively weaker, reflecting the nonlinearity of tropical deep convection and the associated Kelvin waves in response to ENSO sea surface temperature (SST) anomalies. The impact of the CP El Nio on the Kelvin waves is less significant due to relatively weaker SST anomalies and smaller spatial coverage. ENSO may also alter the frequency, wavelength, and phase speed of the Kelvin waves. This study demonstrates that low-frequency ENSO SST anomalies modulate high-frequency tropical disturbances, an example of weather-climate linkage.  相似文献   

14.
The mechanisms of the maintenance and oscillation of 1982 summer tropical 200-hPa mean easterly flow and extra-long waves are investigated in terms of the energy equations in wavenumber-frequency space. Calculation results show that the difference in heating between land and sea and the boundary effect serve as the main source of energy; frictional dissipation as the sink; the conversion of available potential energy into kinetic takes place dominantly in the waves of number 1–2 such transformation is accomplished in just a small amount in zonal mean flow and therefore can be ignored because of the value. In the interaction between wave and zonal mean flow, the latter loses its available potential and gains kinetic energy. The tropical easterly belt over 20°N-5°S is found barotropically stable and that over 10°-5°S, unstable. The waves of number 2 and 1 manifest themselves a primary source and sink of kinetic energy, respectively, in the interplay between waves and between zonal mean flow and wave. It is found that zonal mean flow and the waves of number 1-2 have a roughly 40-and 20-day oscillational period of kinetic energy, respectively, whose primary mechanism is the transfer of barotropic energy, the conversion of baroclinic energy, and the boundary effect.  相似文献   

15.
一种对资源不稳定性敏感的EASY-backfill算法   总被引:2,自引:2,他引:0  
利用合成技术对1995—2006年冬季(11月—次年2月)生成在西北太平洋上的34个热带气旋(tropicalcyclone,TC)个例进行分析,研究冬季西北太平洋TC生成的大尺度环流特征及其生成机制,结果表明:冬季TC生成的大尺度环流特征型为东风波西传型;北半球冬季对流层低层出现的跨赤道气旋对是冬季北半球TC形成的重要特征;太平洋中部赤道混合Rossby重力波西北传,与强对流中心重合,性质转为"热带低压型扰动",为冬季热带气旋生成提供扰动源。对合成TC初始场的涡动扰动动能的收支分析表明,涡动有效位能和正压不稳定转换为TC形成提供了能量,这两种能量分别与积云对流加热和水平不均匀气流有关。正压不稳定能量转换为动能主要位于对流层中下层,而扰动有效位能的转换主要位于对流层中上层。低层热带东风波动从平均气流中获得正压不稳定能量,并与强积云对流耦合,热力和动力共同作用下形成TC。  相似文献   

16.
The results of two regional atmospheric model simulations are compared to assess the influence of the eastern tropical Atlantic sea-surface temperature maximum on local precipitation, transient easterly waves and the West African summer monsoon. Both model simulations were initialized with reanalysis 2 data (US National Center for Environmental Prediction and Department of Energy) on 15 May 2006 and extended through 6 October 2006, forced by synchronous reanalysis 2 lateral boundary conditions introduced four times daily. One simulation uses 2006 reanalysis 2 sea-surface temperatures, also updated four times daily, while the second simulation considers ocean forcing absent the sea-surface temperature maximum, achieved here by subtracting 3°K at every ocean grid point between 0° and 15°N during the entire simulation. The simulation with 2006 sea-surface temperature forcing produces a realistic distribution of June?CSeptember mean precipitation and realistic westward propagating swaths of maximum rainfall, based on validation against Tropical Rainfall Measuring Mission (TRMM) estimates. The simulation without the sea-surface temperature maximum produces only 57% of the control June?CSeptember total precipitation over the eastern tropical Atlantic and about 83% of the Sahel precipitation. The simulation with warmer ocean temperatures generates generally stronger circulation, which in turn enhances precipitation by increasing moisture convergence. Some local precipitation enhancement is also attributed to lower vertical thermal stability above the warm water. The study shows that the eastern tropical Atlantic sea-surface temperature maximum enhances the strength of transient easterly waves and broadens the spatial extent of associated precipitation. However, large-scale circulation and its interaction with the African continent, and not sea-surface temperatures, control the timing and trajectories of the waves.  相似文献   

17.
Tropical easterly waves are common features in the trade wind zones and they are important sources of tropical cyclogenesis. Despite numerous studies have analyzed the genesis and maintenance of easterly waves in the Western North Pacific, few had examined their dissipation processes. Focusing on tropical easterly waves during May-September of 1979–2017, this study shows that most of the easterly waves (∼70 %) eventually dissipate when encountering the monsoon trough and associated westerlies, while 22 % were carried northward by the monsoonal southwesterly flows and became recurving disturbances. Less than 10 % of easterly waves propagate across the South China Sea against the prevailing monsoon westerlies and into the Indochina peninsula. The vorticity budget analysis illustrates that total vortex stretching in the lower troposphere is the key factor in propelling the small number of easterly waves westward, suggesting that stronger and more convectively active easterly waves tend to move further into the developed monsoon trough. This echoes the previous observation that tropical disturbances alone have a limited probability in developing into a typhoon, for those disturbances or easterly waves almost always need to interact with the monsoon trough or a monsoon gyre, as well as other intraseasonal features to sustain the organized convection and rotation.  相似文献   

18.
2015年7月29日浙江出现大范围冰雹和雷雨大风,影响范围、强度远超各级台站预判。利用地面气象站、区域自动站、FY-2G红外云图、多普勒雷达产品、NCEP(1°×1°)分析资料,对该过程进行综合分析。结果表明:1)由多单体风暴组成、位于高层东风波槽前的中尺度对流复合体是本次大范围强对流天气过程的直接制造者。2)中等偏弱的垂直风切变、上干下湿的水汽垂直分布及东风波西进叠加于低层暖区之上形成强不稳定层结是多单体风暴发生发展的有利环境背景。3)热带东风急流和高层东风波形成的辐散抽吸、近地面非绝热加热升温、地形抬升和边界层辐合线为对流发生发展提供有利动力抬升和对流触发条件。4)逆风区的出现、发展和控制与雹暴单体强度的发展、维持和减弱阶段有很好的对应关系。脉冲风暴单体中层径向气流辐合与核心反射率因子的下降对地面大风预报存在2个体扫的时间提前量。5)东风波系统以动能转换的方式为本次对流天气过程中的中尺度系统发展提供动能补给。6)加强500 h Pa以上中高层东向系统的监测和雷达产品短临实时监测,可提高此类对流过程预报的时间提前量。  相似文献   

19.
黄荣辉  严邦良 《气象学报》1988,46(2):154-163
本文利用一个包括Rayleigh摩擦、Newton冷却及水平涡旋热力扩散的准地转34层球坐标模式来研究冬季北半球地形与热源强迫所产生的准定常行星波与热带基本气流的关系。 计算结果表明,冬季热带平流层基本气流是西风时,其北半球中高纬度平流层波数2准定常行星波的振幅偏大;而当冬季热带平流层基本气流是东风时,其北半球中高纬度平流层波数2准定常行星波的振幅偏小,这与实际结果比较一致。 计算结果还表明冬季热带对流层基本气流对中高纬度准定常波的影响要比平流层基本气流的影响大。  相似文献   

20.
The present study applies a space-time filter to identify three dominant types of tropical waves: Madden-Julian oscillations (MJOs), equatorial Rossby (ER) waves, and tropical depression (TD)-type disturbances. The impacts of these waves on tropical cyclones (TCs) were investigated based on 131 observations during the period 2000-07. The results suggest that 72% of TC geneses were related to the joint impacts of more than one type of wave. The composites for cases in different categories reveal that TCs related to the concurrence of the three types of waves have strong and large initial vortices at the time of TC genesis. In the absence of the MJO, ER- and TD-related TC genesis, embedded in easterly flow, exhibits a relatively fast initiation process and gives rise to a relatively small scale vortex. In contrast, without the ER wave contribution, TCs associated with ER and TD waves did not require strong convection at the time of genesis because an initial vortex can rapidly develop in the MJO active phase through persistent energy transfer. The MJO-related TC geneses were scattered in geographic distribution, as opposed to the clustered and eastward shift observed for genesis cases without contributions from MJOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号