首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Grand Bay National Estuarine Research Reserve (Grand Bay NERR), Mississippi, we used quantitative drop sampling in three common shallow estuarine habitats—low profile oyster reef (oyster), vegetated marsh edge (VME), and nonvegetated bottom (NVB)—to address the dearth in research comparing nekton utilization of oyster relative to adjacent habitats. The three habitats were sampled at two distinct marsh complexes within Grand Bay NERR. We collected a total of 633 individual fishes representing 41 taxa in 22 families. The most diverse fish family was Gobiidae (seven species) followed by Blennidae and Poeciliidae (three species each). We collected a total of 2,734 invertebrates representing 24 taxa in 11 families. The most diverse invertebrate family was Xanthidae (six species) followed by Palaemonidae (five species). We used ordination techniques to examine variation in species relative abundance among habitats, seasons, and sampling areas, and to identify environmental gradients correlated with species relative abundances. Our resulted indicated that oyster provided a similarly complex and important function as the adjacent VME. We documented three basic trends related to the importance of oyster and VME habitats: 1) Oyster and VME provide habitat for significantly more species relative to NVB, 2) Oyster and VME provide habitat for rare species, and 3) Several species collected across multiple habitats occurred at higher abundances in oyster or VME habitat. We also found that salinity, temperature, and depth were associated with seasonal and spatial shifts in nekton communities. Lastly, we found that the relative location of the two marsh complexes we studied within the context of the whole estuary may also explain some of the temporal and spatial differences in communities. We conclude that oyster habitat supported a temporally diverse and spatially distinct nekton community and deserves further attention in research and estuarine conservation efforts.  相似文献   

2.
Species richness declines to a minimum (artenminimum) in the oligohaline reach of estuaries and other large bodies of brackish water. To date, observations of this feature in temperate estuaries have been largely restricted to benthic macroinvertebrates. Five years of seine data collected during the summers of 1990–1995 in the major tidal tributaries to the lower Chesapeake Bay were examined to see if this feature arose in estuarine fish assemblages. Estimates of numerical species richness (alpha diversity) and rates of species turnover between sites (beta diversity) were generated via rarefaction and detrended correspondence analysis. Two spatial attributes of the distribution of littoral fish species along salinity gradients in the tributaries of the lower Chesapeake Bay were revealed: (1) a species richness depression in salinities of 8–10% and (2) a peak in the rate of species turnover associated with the tidal freshwater interface (salinities of 0–2%). Expression of the minimum is influenced by the physical length of the salinity gradient and the interaction between a species’ salinity preferences and tendency to make long excursions from favorable habitats.  相似文献   

3.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

4.
Seagrass beds provide important habitat for fishes and invertebrates in many regions around the world. Accordingly, changes in seagrass coverage may affect fish communities and/or populations, given that many species utilize these habitats during vulnerable early life history stages. In lower Chesapeake Bay, seagrass distribution has contracted appreciably over recent decades due to decreased water clarity and increased water temperature; however, effects of changing vegetated habitat on fish community structure have not been well documented. We compared fish community composition data collected at similar seagrass sites from 1976–1977 and 2009–2011 to investigate potential changes in species richness, community composition, and relative abundance within these habitats. While seagrass coverage at the specific study sites did not vary considerably between time periods, contemporary species richness was lower and multivariate analysis showed that assemblages differed between the two datasets. The majority of sampled species were common to both datasets but several species were exclusive to only one dataset. For some species, relative abundances were similar between the two datasets, while for others, there were notable differences without directional uniformity. Spot (Leiostomus xanthurus) and northern pipefish (Syngnathus fuscus) were considerably less abundant in the contemporary dataset, while dusky pipefish (Syngnathus floridae) was more abundant. Observed changes in community structure may be more attributable to higher overall bay water temperature in recent years and other anthropogenic influences than to changes in seagrass coverage at our study sites.  相似文献   

5.
The distribution of macroinfauna was quantified in subtidal, soft-bottom habitats, extending from the estuarine mouth to the tidal head of the Gamtoos—a small, shallow, temperate estuary situated on the south coast of South Africa. Sampling covered the full salinity gradient from fresh to marine waters, and all sediment types from marine sands to fluvial silts. A total of 35 taxa was recorded, of which 22 occurred throughout the year. Species richness and diversity declined from the seawater-dominated mouth region toward the fresh water section at the tidal head of the estuary. Sediment type generally bore no clear relation to biotic diversity. A marked drop in salinity between winter and summer sample series (Δ 0.2‰ to 24‰) coincided with a reduction of mean macrofaunal density by 70%, a more seaward relocation, and a compression of axial ranges of most taxa. Numerical classification and ordination of faunistically similar regions and of co-occurring species delineated four habitat zones along the longitudinal axis of the estuary which harbour four distinct macrofaunal assemblages: 1) A tidal inlet area with salinities close to seawater; clean, coarse, marine sands, rich in CaCO3 harbour a stenohaline fauna normally found on adjacent, marine sandy beaches. 2) In the lower reaches, where fine, fluvial silts of high organic content prevail, euryhaline polychaetes dominate the macrozoobenthic community; bottom salinities in this zone seldom dropped below 25‰ 3) The middle reaches, characterized by oligohaline- to polyhaline waters, stretch over sandy sediments of intermediate carbonate, silt, and organic fractions; the fauna comprises typical estuarine forms, which occurred throughout most of the estuary except at its seaward and landward limits. 4) The upper reaches encompass the limnetic waters near the tidal head of the estuary with sediments in this zone being composed mostly of coarse, clean sands, low in CaCO3; the macrobenthos in this region is dominated by taxa of freshwater origin, which generally do not penetrate seaward beyond the oligohaline waters, and by exceptionally euryhaline estuarine species. Salinity appears as the main factor in controlling faunal assemblages at both extremes of the estuarine gradient (i.e., tidal inlet and head), whereas sediment type delineates between communities in the mesohaline to polyhaline reaches. Axial (i.e., from tidal inlet to tidal head of the estuary) zonation patterns of macroinfauna broadly matched those of mesozooplankton and fishes, supporting the notion of a general structure underlying species distribution patterns in the Gamtoos estuary.  相似文献   

6.
We studied the late June–August fish community in extant and former eelgrass (Zostera marina L.) habitats in 15 estuaries of Buzzards Bay, and in Waquoit Bay, Massachusetts, U.S. Our objective was to quantify the effects of eelgrass habitat loss on fish abundance, biomass, species composition and richness, life-history characteristics, and habitat use by examining the response of the fish community to eelgrass loss in Waquoit and Buttermilk Bays over an 11-yr period (1988–1999) and in 14 other embayments of Buzzards Bay during 1993, 1996, and 1998. Sampling sites were located in present-day or historical eelgrass beds and were classified according to eelgrass habitat complexity (zero complexity: no eelgrass; low complexity: <100 eelgrass shoots or <100 g wet weight m−2; high complexity: ≥100 shoots and ≥100 g wet weight m−2). Habitats that had lost eelgrass included a variety of substratum types, from bare mud bottom to dense accumulations of red, brown, and green macroalgae (up to 7,065 g wet weight m−2). Contemporaneous sampling of fish (by otter trawl) and vegetated habitat (by divers) was conducted at each site. Overall, fish abundance, biomass, species richness, dominance, and life history diversity decreased significantly along the gradient of decreasing eelgrass habitat complexity. Loss of eelgrass was accompanied by significant declines in these measures of fish community integrity. Ten of the 13 most common species collected from 1988–1996 in Waquoit and Buttermilk Bays showed maximum abundance and biomass in sites with high eelgrass habitat complexity. All but two common species declined in abundance and biomass with the complete loss of eelgrass.  相似文献   

7.
Understanding the conditions that drive variation in recruitment of key estuarine species can be important for effective conservation and management of their populations. The Olympia oyster (Ostrea lurida) is native to the Pacific coast of North America and has been a target of conservation efforts, though relatively little information on larval recruitment exists across much of its range. This study examined the recruitment of Olympia oysters at biweekly to monthly intervals at four sites in northern San Francisco Bay from 2010 to 2015 (except 2013). Mean monthly temperatures warmed at all sites during the study, while winter (January–April) mean monthly salinity decreased significantly during a wet year (2011), but otherwise remained high as a result of a drought. A recurring peak in oyster recruitment was identified in mid-estuary, in conditions corresponding to a salinity range of 25–30 and >16 °C at the time of settlement (April–November). Higher average salinities and temperatures were positively correlated with greater peak recruitment. Interannual variation in the timing of favorable conditions for recruitment at each site appears to explain geographic and temporal variation in recruitment onset. Higher winter/spring salinities and warmer temperatures at the time of recruitment corresponded with earlier recruitment onset within individual sites. Across all sites, higher winter/spring salinities were also correlated with earlier onset and earlier peak recruitment. Lower winter salinities during 2011 also resulted in a downstream shift in the location of peak recruitment.  相似文献   

8.
We examined the community structure of fish and selected decapod crustaceans and tested for within estuary differences among habitats at depths of 0.6 m to 7.9 m, in Great Bay and Little Egg Harbor in southern New Jersey. Several habitat types were identified a priori (e.g., eelgrass, sea lettuce, and marsh creeks) and sampled by trawl (4.9 m headrope, 19-mm mesh wings, 6.3-mm mesh liner), monthly, from June 1988 through October 1989. Repetitive (n=4) 2-min trawl tows were taken at each habitat type from 13 locations. The fishes and decapod crustaceans collected were typical of other Mid-Atlantic Bight estuaries but varied greatly inseasonal abundance and species. In the years sampled, bay anchovy (Anchoa mitchilli) was the dominant species (50.5% of the total number), followed by spot (Leiostomus xanthurus) (10.7%), Atlantic silverside (Menidia menidia) (9.7%), fourspine stickleback (Apeltes quadracus) (5.9%), blue crab (Callinectes sapidus) (4.6%), and northern pipefish (Syngnathus fuscus) (4.2%). The biota were examined by multi-dimensional scaling (MDS) for habitat associations and “best abiotic predictor” of community structure. Percent silt combined with salinity was the most important abiotic determinant of the faunal distributions among habitats. Temperature was a major factor influencing seasonal occurrence of the biota but had less effect on habitat comparisons. The analysis confirmed the distinct nature of the assemblages associated with the habitats, that is, eelgrass, upper estuary subtidal creeks, channels, and open bay areas. Several species were associated with specific habitats: for example,A. quadracus andS. fuscus with eelgrass, clupeids with subtidal creek stations,L. xanthurus with marsh channels, and black sea bass (Centropristis striata) and spotted hake (Urophycis regia) with sponge-peat habitat. Species richness appeared to be positively related to habitat structural heterogeneity. Thus, the best predictors for these estuarine fish and decapod crustacean assemblages were seasonal temperature, percent silt and salinity combined, and the physical heterogeneity of the habitat.  相似文献   

9.
The dominant plant in Humboldt Bay salt marshes in Spartina densiflora, a species of cordgrass apparently introduced from South America. At several salt marshes and restoration sites around Humboldt Bay, distribution of this plant has increased significantly. We investigated the relative contributions of vegetative tiller production and seed germination to the establishment and expansion of S. densiflora. Lateral spread of plants surrounded by competitors were compared to areas without competing plant species. Plants growing in areas without competitors had significantly higher rates of vegetative expansion (p<0.0001). Viable seed production, germination rates, seedling survivorship, and growth of adult plants were measured in six salinity treatments. Approximately 1,977±80 viable seeds are produced per plant (0.25–0.5 m2). The number of germinating seeds was inversely related to increases in salinity. Salinity treatments between 19‰ and 35‰ produced significantly lower germination rates than salinities of 0–18‰ (p<0.0001). Seedling survivorship was 50% at ≤4‰ and 8–14% at ≥11‰. Lateral expansion of adult, greenhouse-grown plants occurred in all salinity treatments, with modest decreases in the highest salinity treatments (p<0.05). Our findings indicate that S. densiflora expands primarily by vegetative expansion, and lateral tillers are produced by throughout the year. Spartina densiflora produces prolific amounts of seed, but recruitment in mature salt marshes may be limited by competitors and higher salinities. At restoration sites, planting of native species such as Salicornia virginica, Distichlis spicata, or Jaumea carnosa may prevent monospecific stands of S. densiflora from developing.  相似文献   

10.
Salt marsh plant communities are regulated by feedback processes involving hydrologic regimes, disturbance, and marsh physical characteristics, and as expected differ among habitat types. Using three barrier beach salt marshes along the Gulf of Maine, we examined the effects of ditching and ditch-plugging on plant characteristics by means of comparisons to natural creek and pool habitats. Results indicated that ditch and creek habitats were similar in terms of species richness and diversity of emergent vascular plants, but cover and biomass were significantly higher in habitat adjacent to creeks. Plant composition in ditch habitat was distinguished by the higher percentage of forb species (associated with poor drainage), while the proportion of tall-form Spartina alterniflora was much higher in creek habitat (associated with sloping banks of creeks). These results are indicative of differences in hydrologic and disturbance regimes that can influence competitive and facilitative interactions, habitat structure, and heterogeneity. Results for pool comparisons indicated that plant characteristics were significantly different between ditch-plug and natural pools. Species richness, diversity, and biomass were significantly lower in ditch-plug habitat compared with all other habitats, and plant cover averaged only 30 % in habitat adjacent to ditch-plugs, which was significantly lower than all other habitats. These differences have ecological implications in terms of habitat structure and function of ditch-plug habitat. In addition, increased stress leading to plant dieback due to ditch-plugging has resulted in subsidence that can decrease the stability of ditch-plug habitat and expedite the loss of salt marsh habitat, especially with rising sea levels.  相似文献   

11.
Submersed aquatic vegetation (SAV) communities have undergone declines worldwide, exposing them to invasions from non-native species. Over the past decade, the invasive species Hydrilla verticillata has been documented in several tributaries of the lower Chesapeake Bay, Virginia. We used annual aerial mapping surveys from 1998 to 2007, integrated with spatial analyses of water quality data, to analyze the patterns and rates of change of a H. verticillata-dominated SAV community and relate them to varying salinity and light conditions. Periods of declining SAV coverage corresponded to periods where salinities exceeded 7 and early growing season (April to May) Secchi depths were <0.4 m. Increases were driven by the expansion of H. verticillata along with several other species into the upper estuary, where some areas experienced an 80% increase in cover. Field investigations revealed H. verticillata dominance to be limited to the upper estuary where total suspended solid concentrations during the early growing season were <15 mg l−1 and salinity remained <3. The effect of poor early growing season water clarity on annual SAV growth highlights the importance of water quality during this critical life stage. Periods of low clarity combined with periodic salinity intrusions may limit the dominance of H. verticillata in these types of estuarine systems. This study shows the importance of the use of these types of biologically relevant episodic events to supplement seasonal habitat requirements and also provides evidence for the potential important role of invasive species in SAV community recovery.  相似文献   

12.
Organisms tend to inhabit predictable portions of estuaries along salinity gradients between the ocean inlets (salinity > 35 psu) and the freshwater tributaries (salinity = 0). Previous studies have suggested that the continuous change in biological community structure along this gradient is relatively rapid at certain salinities. This is the basis for estuarine salinity zonation schemes similar to the classic Venice System (i.e., 0–0.5, 0.5–5, 5–18, 18–30, 30–40, > 40). An extensive database (n > 16,000 samples) of frequency of occurrence of nekton was used to assess evidence for estuarine salinity zones in two southwest Florida estuaries: Tampa Bay and Charlotte Harbor. Rapid change in nekton community structure occurred at each end of the estuarine salinity gradient, with comparatively slow (but steady) change in between. There was little strong evidence for estuarine salinity zones at anything other than low salinities (0.1–1). As previously suggested by other authors, estuaries may be regarded as ecoclines, because they form areas of relatively slow but progressive ecological change. The ends of the estuarine salinity gradient appear to be ecotones (areas of rapid change) at the interfaces with adjacent freshwater and marine habitats. This study highlights the rapid change that occurs in nekton community structure at low salinities, which is of relevance to those managing freshwater inflow to estuaries.  相似文献   

13.
Nonnative species cause economic and ecological impacts in habitats they invade, but there is little information on how they spread and become abundant. This is especially true for nonnative species in native Zostera marina eelgrass beds in coastal British Columbia, Canada, which play a vital role in estuarine ecosystems. We tested how nonnative species richness and abundance were related to both arrival vectors and environmental factors in northeast Pacific eelgrass. Using correlation tests and generalized linear models, we examined how nonnative macroinvertebrates (benthic, epifaunal, and large mobile) and some algae species were related to arrival vectors (shipping and aquaculture) and environmental factors (climate variables, human population density, and native richness and abundance). We found 12 nonnative species, 50 % with known negative impacts within eelgrass habitats. For benthic organisms, both nonnative richness and abundance were strongly correlated with shellfish aquaculture activities, and not with shipping activity. For epifaunal nonnative richness and abundance, neither vector was significantly correlated. Climate (temperature and salinity) helped explain nonnative richness but not abundance; there was no relationship of nonnative richness or abundance to native species richness and abundance or population density. Results suggest that aquaculture activities are responsible for many primary introductions of benthic nonnative species, and that temperature and salinity tolerances are responsible for post-introduction invasion success. While aquaculture and shipping vectors are becoming increasingly regulated to prevent further international spread of nonnative species, it will be important when managing nonnatives to consider secondary spread from intraregional transport through local shellfish aquaculture and shipping.  相似文献   

14.
This study evaluated the use by fish of restored tidal wetlands and identified links between fish species composition and habitat characteristics. We compared the attributes of natural and constructed channel habitats in Sweetwater Marsh National Wildlife Refuge, San Diego Bay, California, by using fish monitoring data to explore the relationships between channel environmental characteristics and fish species composition. Fishes were sampled annually for 8 yr (1989–1996) at eight sampling sites, four in constructed marshes and four in natural marshes, using beach seines and blocking nets. We also measured channel habitat characteristics, including channel hydrology (stream order), width and maximum depth, bank slope, water quality (DO, temperature, salinity), and sediment composition. Fish colonization was rapid in constructed channels, and there was no obvious relationship between channel age and species richness or density. Total richness and total density did not differ significantly between constructed and natural channels, although California killifish (Fundulus parvipinnis) were found in significantly higher densities in constructed channels. Multivariate analyses showed fish assemblage composition was related to channel habitat characteristics, suggesting a channel’s physical properties were more important in determining fish use than its restoration status. This relationship highlights the importance of designing restoration projects with natural hydrologic features and choosing proper assessment criteria in order to avoid misleading interpretations of constructed channel success. We recommend that future projects be designed to mimic natural marsh hydrogeomorphology and diversity more closely, the assessment process utilize better estimates of fish habitat function (e.g., individual and community-based species trends, residence time, feeding, growth) and reference site choice, and experimental research be further incorporated into the restoration process.  相似文献   

15.
The distribution and salinity preference of immature bull sharks (Carcharhinus leucas) were examined based on the results of longline surveys in three adjacent estuarine habitats in southwest Florida: the Caloosahatchee River, San Carlos Bay, and Pine Island Sound. Mean sizes were significantly different between each of these areas indicating the occurrence of size-based habitat partitioning. Neonate and young-of-the-year animals occurred in the Caloosahatchee River and juveniles older than 1 year occurred in the adjacent embayments. Habitat partitioning may reduce intraspecific predation risk and increase survival of young animals. Classification tree analysis showed that both temperature and salinity were important factors in determining the occurrence and catch per unit effort (CPUE) of immatureC. leucas. The CPUE of <1 year oldC. leucas was highest at temperatures over 29°C and in areas with salinities between 7‰ and 17.5‰ Although they are able to osmoregulate in salinities from fresh to fully marine, youngC. leucas may have a salinity preference. Reasons for this preference are unknown, but need to be further investigated.  相似文献   

16.
Nearshore benthic habitats of Biscayne Bay fit the prediction of communities at risk due to their location adjacent to a large metropolitan center (Miami) and being influenced by changes in hydrology through the activities of the Comprehensive Everglades Restoration Plan (CERP). We examine whether the proposed programmatic expansion of mesohaline salinities through the introduction of additional fresh water would result in: (1) increases in seagrass cover; (2) expansion in the distribution and cover of Halodule; and (3) a reduction in the dominance of Thalassia, as hypothesized by CERP. Seagrasses were present at 98 % of sites where they covered 23 % of the bottom. Salinity was the only physical variable with a significant relationship to the occurrence of all SAV taxa. Occurrence of Thalassia, Halimeda, and Penicillus increased significantly with increasing salinity, but Halodule, Syringodium, Laurencia, Udotea, Batophora, Caulerpa, and Acetabularia showed a significant negative relationship with salinity. Mesohaline habitats had higher cover of seagrass and Halodule, and reduced dominance by Thalassia. Thus, we expect increases in the extent of mesohaline habitats to achieve the established CERP goals. We also examined the nutrient content of seagrass blades to evaluate whether: (1) nutrient availability is higher in areas close to canal discharges; and (2) tissue nutrient levels are related to seagrass abundance. The low abundance of Thalassia along the shoreline is not only due to its exclusion from low-salinity environments but also by higher nutrient availability that favors Halodule. Percent N and P, and N:P ratios in seagrass tissue suggest that Biscayne Bay receives high N inputs and is P-limited. Thus, increased P availability may facilitate an expansion of Halodule. The data presented suggest that increased mesohaline salinities will increase seagrass abundance and support co-dominance by Halodule and Thalassia as hypothesized, but raise concerns that current high N availability and increases in P may prompt a shift away from seagrass-dominated to algal-dominated communities under scenarios of enhanced fresh water inputs.  相似文献   

17.
We used two methods and existing field survey data to link juvenile fish and their habitats. The first method used seine survey data collected monthly from July to October 1988–1996 at fixed stations in Narragansett Bay, Rhode Island. Thirteen fish species making up 1% or more of the catch were analyzed by principal components analysis for two time periods: July–August and September–October. The stations were then plotted by their principal component scores to identify station groupings and habitat types. The second method used environmental data collected in July and August 1996 at the established survey stations in a principal components analysis. The stations and 13 most abundant species were plotted by principal components scores resulting from the environmental data. For the environmental data, the first two principal components explained 59% of the variance. The first principal component described the amount of energy shaping the habitat and was positively correlated with salinity, dissolved oxygen, current flow, and slope, and negatively correlated with silt. The second component was positively correlated with depth and silt, and negatively correlated with dissolved oxygen. The environmental data grouped the stations according to their distance from the ocean and three habitat types emerged. The uppermost station was a silty barren having low salinities and dissolved oxygen. Three other stations grouped together as low energy, protected habitats with sandy substrates. Lower bay stations had higher salinities, higher dissolved oxygen, higher flow rates, greater slopes, and larger size substrates, mostly cobble and gravel. Results from the fish data grouped the stations similarly. Combining results from both datasets revealed the uppermost station had the highest catches, most species, and greatest number of winter flounder (Pseudopleuronectes americanus) juveniles. Plots of winter flounder catches with principal component scores from the environmental data indicated the winter flounder distribution in the bay has shrunk from baywide to mostly the upper estuary near their primary spawning grounds. Results illustrate the value of coupling historic fish survey data with environmental measurements for identifying previously undervalued habitats important to fish.  相似文献   

18.
Our goal is to understand how removal regime and habitat type interact to influence removal success of a marine plant invader and the subsequent potential for restoration. In particular, we investigate the management program designed to eradicate the English cordgrass,Spartina anglica C. E. Hubbard, in marine intertidal habitats of Puget Sound, Washington, United States. Observational and manipulative experiments were used to measure the regrowth (vegetative growth), reinvasion (seedling recruitment), and restoration potential (return to native condition) of invaded habitats. Removal regime (consistent: yearly removal; interrupted: yearly removal with the last year missed) and habitat type (low salinity marsh, mudflat, cobble beach, and high salinity marsh sites) were considered. The response to removal regime was dramatic. Under consistent removal, cordgrass slowly declined but under interrupted removal, there was substantial regrowth of the invader. This pattern results from the resiliency of belowground biomass and the subsequent high aboveground productivity and seedling growth ofS. anglica. We also found that removal success depended on differences among sites that represent different habitat types. Cordgrass regrowth and reinvasion were substantially higher in the low salinity marsh sites where soils have lower salinity. We also found that at the low salinity marsh sites, some restoration of native plants and soil conditions was evident. At mudflat, cobble beach, and high salinity marsh sites, colonization of native vascular plants and algae not normally present, in the absence of the invasion, occurred. Whether these habitats will eventually revert back to the pre-invasion conditions over a longer period of time is unknown.  相似文献   

19.
Comparison of the relative abundance of fish species from different life-history groups and their temporal patterns of estuarine habitat use from two estuaries north and south of Cape Cod indicates that the Cape acts as a zoogeographic boundary. Between April 1988 and December 1989, monthly seine and trawl samples were collected from nearshore, shallow-water marsh, and beach and deeper open-water habitats in Wells Harbor, Maine, and Waquoit Bay, Massachusetts. Forty-eight species and 80,341 individuals were collected from Waquoit Bay compared to 24 species and 22,561 individuals from Wells Harbor. Waquoit Bay had proportionally fewer resident species and more marine, nursery, and occasional species than Wells Harbor. Annual density and biomass values were greater across all habitats in Waquoit Bay, with the summer values from the marsh habitat an order of magnitude higher than comparable summer data from the Wells habitats. We suggest that marsh and beach habitats provide a nursery area for young-of-the-year fishes, while deeper, open-water habitats serve as a corridor for fishes moving to nearshore habitats or serve as a refuge during low tide.  相似文献   

20.
We investigated whether within wetland environmental conditions or surrounding land cover measured at multiple scales were more influential in structuring regional vegetation patterns in estuarine tidal wetlands in the Pacific Northwest, USA. Surrounding land cover was characterized at the 100, 250, and 1,000 m, and watershed buffer scales. Vegetation communities were characterized by high species richness, lack of monotypic zonation, and paucity of invasive species. The number of species per site ranged between 4 and 20 (mean?±?standard deviation?=?10.2?±?3.1). Sites supported a high richness (mean richness of native species 8.7?±?2.8) and abundance of native macrophytes (mean relative abundance 85 %?±?19 %). Vegetation assemblages were dominated by a mix of grasses, sedges, and herbs with Sarcocornia pacifica and Distichlis spicata being common at sites in the oceanic zone of the estuary and Carex lyngbyei and Agrostis stolonifera being common at the fresher sites throughout the study area. The vegetation community was most strongly correlated with salinity and land cover within close proximity to the study site and less so with land cover variables at the watershed scale. Total species richness and richness of native species were negatively correlated with the amount of wetland in the buffer at all scales, while abundance of invasive species was significantly correlated to within wetland factors, including salinity and dissolved phosphorus concentrations. Landscape factors related to anthropogenic disturbances were only important at the 100-m buffer scale, with anthropogenic disturbances further from the wetland not being influential in shaping the vegetation assemblage. Our research suggests that the traditional paradigms of tidal wetland vegetation structure and environmental determinants developed in east coast US tidal wetlands might not hold true for Pacific Northwest wetlands due to their unique chemical and physical factors, necessitating further detailed study of these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号