首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite excessive growth of macroalgae in estuarine systems, little research has been done to examine the impacts of increased algal biomass that drifts into nearby salt marshes and accumulates on intertidal flats. The accumulation of macroalgal mats and subsequent decomposition-related releases of limiting nutrients may potentially alter marsh communities and impact multiple trophic levels. We conducted a 2-year in situ study, as well as laboratory mesocosm experiments, to determine the fate of these nutrients and any bottom-up impacts from the blooms on the dominant salt marsh plant (Spartina alterniflora) and herbivores. Mesocosm results showed that macroalgal decomposition had a positive impact on sediment nitrogen concentrations, as well as S. alterniflora growth rates. In contrast, our in situ results suggested that S. alterniflora growth was hindered by the presence of macroalgal mats. From our results, we suggest that macroalgal accumulation and subsequent release of nitrogen during decomposition may be beneficial in nitrogen limited areas. However, as marshes are becoming increasingly eutrophic, releasing lower marsh plants from nitrogen limitation, this accumulation of macroalgal biomass may hinder S. alterniflora growth through smothering and breakage of culms. As macroalgal blooms are predicted to intensify with rising temperatures and increased eutrophication, the ecological impacts associated with these changes need to be continuously monitored in order to preserve these fragile ecosystems.  相似文献   

2.
Docks constructed over salt marsh can reduce vegetation production and associated ecosystem services. In Massachusetts, there is a 1:1 height-to-width ratio (H:W) dock design guideline to reduce such impacts, but this guideline’s efficacy is largely untested. To evaluate dock height effects on underlying marsh vegetation and light availability, we deployed 1.2-m-wide experimental docks set at three different heights (low (0.5:1 H:W), intermediate (1:1 H:W), and high (1.5:1 H:W)) in the high and low marsh zones in an estuary in Massachusetts, USA. We measured temperature, light, vegetation community composition, and stem characteristics under the docks and in unshaded control plots over three consecutive growing seasons. Temperature and light were lower under all docks compared with controls; both increased with dock height. Maximum stem height and nitrogen content decreased with available light. In the Spartina patens-dominated high marsh, stem density and biomass were significantly lower than controls under low and intermediate but not high docks. Spartina alterniflora, the dominant low marsh vegetation, expanded into the high marsh zone under docks. S. alterniflora aboveground biomass significantly differed among all treatments in the low marsh, while stem density was significantly reduced for low and intermediate docks relative to controls. Permit conditions and guidelines based on dock height can reduce dock impacts, but under the current guideline of 1:1 H:W, docks will still cause significant adverse impacts to vegetation. Such impacts may interfere with self-maintenance processes (by decreasing sediment capture) and make these marshes less resilient to other stressors (e.g., climate change).  相似文献   

3.
An integrated marsh management (IMM) project in an urbanized watershed on Long Island, New York, USA, aimed to mitigate salt marsh degradation and to reduce mosquito production by an innovative combination of restoration and open marsh water management methods. The grid ditch network at two treatment marshes was replaced with naturalized tidal channels and ponds. Effects of the hydrologic alterations were monitored utilizing a before–after–control–impact approach. The treatment marshes experienced a number of beneficial outcomes including a fourfold reduction in the invasive Phragmites australis and increased native vegetation cover in the most degraded portions of the marsh, increased abundance and diversity of marsh killifish and estuarine nekton species, higher shorebird and waterfowl densities, and increased avian species diversity. The successful implementation of IMM concept led to improved marsh health and diminished mosquito production. Therefore, this study may serve as a template for similar large-scale integrated salt marsh restoration projects.  相似文献   

4.
Recruitment- and predation-related effects on populations of salt marsh codominants mummichog (Fundulus heteroclitus) and pinfish (Lagodon rhomboides), were examined based on marsh size and landscape setting. Six island marshes—three small island marshes (SIM) ~40–1,000 m2 and three large island marshes (LIM) ~3,000–10,000 m2—were paired with six expansive fringing marshes (EFM), each >76,000 m2 in size and located within ~1.0 km of a paired SIM or LIM. Over a 2-year period, triannual collections at these sites assessed F. heteroclitus, L. rhomboides, and predator finfish populations as well as habitat characteristics. No significant population density trends were apparent for L. rhomboides young-of-year (YOY) or year-one-and-older (Y1+) cohorts based on marsh size or were any significant differences in density apparent among marsh types. F. heteroclitus YOY and Y1+ densities differed significantly among marsh types demonstrating a positive relationship between density and marsh size. Larval and juvenile F. heteroclitus abundances were significantly lower within SIM than LIM and EFM. Although larval F. heteroclitus abundances between LIM and EFM did not differ significantly, juvenile abundances did, suggesting mortality constrained LIM juvenile abundances. A significant negative relationship of F. heteroclitus to predator finfish density and a significant negative relationship of predator finfish density to low marsh area/perimeter (access restriction) estimates suggest that predation on F. heteroclitus is greater within SIM and LIM than within EFM. Habitat and landscape level attributes can affect resident nekton population regulation and these effects should be considered relative to the life history traits of targeted species when managing coastal resources.  相似文献   

5.
The tropically associated black mangrove (Avicennia germinans) is expanding into salt marshes of the northern Gulf of Mexico (nGOM). This species has colonized temperate systems dominated by smooth cordgrass (Spartina alterniflora) in Texas, Louisiana, Florida and, most recently, Mississippi. To date, little is known about the habitat value of black mangroves for juvenile fish and invertebrates. Here we compare benthic epifauna, infauna, and nekton use of Spartina-dominated, Avicennia-dominated, and mixed Spartina and black mangrove habitats in two areas with varying densities and ages of black mangroves. Faunal samples and sediment cores were collected monthly from April to October in 2012 and 2013 from Horn Island, MS, and twice yearly in the Chandeleur Islands, LA. Multivariate analysis suggested benthic epifauna communities differed significantly between study location and among habitat types, with a significant interaction between the two fixed factors. Differences in mangrove and marsh community composition were greater at the Chandeleurs than at Horn Island, perhaps because of the distinct mangrove/marsh ecotone and the high density and age of mangroves there. Infaunal abundances were significantly higher at Horn Island, with tanaids acting as the main driver of differences between study locations. We predict that if black mangroves continue to increase in abundance in the northern GOM, estuarine faunal community composition could shift substantially because black mangroves typically colonize shorelines at higher elevations than smooth cordgrass, resulting in habitats of differing complexity and flooding duration.  相似文献   

6.
The purpose of this study is to investigate the effects of salt marsh geomorphology on the distribution of surface metal content. Surface sediment samples (46) were taken along two transects across an intertidal salt marsh island. Abundance of Ca, Al, Fe, Ni, Cr, Cu, Zn, Rb, Sr, As, and Zr vary up to 300?% with statistically significant differences along transects and between transects. Along transect, metal abundances are strongly influenced by elevation and distance from the subtidal channel. Between transects, salt marsh morphodynamics, relative marsh age, and water sources seem to affect metal distribution. These observations lead us to hypothesize that at least three scales of variability can be expected for assessing salt marsh sediment metal distributions. Larger-scale variations associated with salt marsh sediment sources and age, and another related to local salt marsh geomorphic structure. Therefore, studies that characterize salt marsh metal loading should explicitly consider the variability imposed over a range of spatial scales.  相似文献   

7.
The literature often holds that, in salt marshes, surface elevation mediates the depth, duration, and frequency of submergence, thereby constituting the fundamental factor of plant species distribution and most other environmental variables. However, such an elevation-centered view has not been fully tested in a temporal sense; it is still unclear whether elevation is also a significant control on the rate of changes in species composition over time. In the Skallingen salt marsh of the Danish Wadden Sea, this question was evaluated along two elevation gradients where distinct physical and ecological processes operate: a gradient across a marsh platform and the other across creek bars. The rate of vegetation dynamics was measured as the Euclidean distance between two positions of the same plot, each representing two different points in time, in a two-dimensional diagram produced by nonmetric multidimensional scaling. Results showed that the rate of vegetation dynamics did not show any significant relationships with surface elevation across either marsh platform or tidal creeks (R 2 less than 0.04). This suggests that, other than elevation, some biological factors, such as the presence of keystone species and the initial species composition, control patterns of vegetation change in the marsh. This logic leads to a point that hydrological effects (e.g., inundation frequency and duration), often represented by surface elevation, are not necessarily overriding factors of rates of changes in species composition in backbarrier marshes like Skallingen. The conventional elevation-centered perspective may be an oversimplification of the biological and environmental variability of salt marshes.  相似文献   

8.
Tidal freshwater marshes around the world face an uncertain future with increasing water levels, salinity intrusion, and temperature and precipitation shifts associated with climate change. Due to the characteristic abundance of both annual and perennial species in these habitats, even small increases in early growing season water levels may reduce seed germination, seedling establishment, and late-season plant cover, decreasing overall species abundance and productivity. This study looks at the distribution of tidal freshwater marsh plant species at Jug Bay, Patuxent River (Chesapeake Bay, USA), with respect to intertidal elevation, and the relationship between inundation early in the growing season and peak plant cover to better understand the potential impacts and marsh responses to increased inundation. Results show that 62% of marsh plant species are distributed at elevations around mean high water and are characterized by narrow elevation ranges in contrast with species growing at lower elevations. In addition, the frequency and duration of inundation and water depth to which the marsh was exposed to, prior to the growing season (March 15–May 15), negatively affected peak plant cover (measured in end-June to mid-July) after a threshold value was reached. For example, 36 and 55% decreases in peak plant cover were observed after duration of inundation threshold values of 25 and 36% was reached for annual and perennial species, respectively. Overall, this study suggests that plant communities of tidal freshwater marshes are sensitive to even small systematic changes in inundation, which may affect species abundance and richness as well as overall wetland resiliency to climate change.  相似文献   

9.
Anammox bacteria are widespread in the marine environment, but studies of anammox in marshes and other wetlands are still scarce. In this study, the role of anammox in nitrogen removal from marsh sediments was surveyed in four vegetation types characteristic of New England marshes and in unvegetated tidal creeks. The sites spanned a salinity gradient from 0 to 20 psu. The impact of nitrogen loading on the role of anammox in marsh sediments was studied in a marsh fertilization experiment and in marshes with high nitrogen loading entering through ground water. In all locations, nitrogen removal through anammox was low compared to denitrification, with anammox accounting for less than 3% of the total N2 production. The highest relative importance of anammox was found in the sediments of freshwater-dominated marshes, where anammox approached 3%, whereas anammox was of lesser importance in saline marsh sediments. Increased nitrogen loading, in the form of nitrate from natural or artificial sources, did not impact the relative importance of anammox, which remained low in all the nitrogen enriched locations (<1%).  相似文献   

10.
为研究芦苇盐沼植物在一个生长周期不同生长季节的雷达后向散射系数变化特征,对芦苇分布信息进行提取,探究Sentinel-1A卫星数据在长江口湿地植被监测中的应用前景。以对长江河口崇明东滩南部为研究区域,利用2016年11个时相的Sentinel-1A雷达卫星影像VV(vertical transmit/vertical receive)+VH(vertical transmit/horizontal receive)双极化数据,分析潮滩地带芦苇、白茅、海三棱藨草、水体和光滩在植被生长周期内的雷达后向散射强度变化特征,对芦苇盐沼植被进行识别提取。结果表明:相较于VH极化方式,VV极化方式下不同地物的后向散射强度差异更为明显,芦苇的后向散射强度在枯叶期下显著高于其他地物;进行芦苇植被提取时,需要对植被枯萎期不同潮位状况下的雷达影像进行组合运算,芦苇提取精度可达到88.7%;对芦苇植被雷达后向散射强度和临近时相的光学遥感归一化植被指数(normalized difference vegetation index,INDV)进行相关性分析,发现两者呈良好的正相关关系,相关系数为0.78。  相似文献   

11.
To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of ∼80 m, although a marsh distance of ≥100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).  相似文献   

12.
We measured the effects of a plant invasion (Phragmites australis) on resident fish (Fundulus heteroclitus) in New England salt marshes by assessing diet quality at the food web base and by quantifying the importance of primary producers to secondary production using a recently developed Bayesian mixing model (Stable Isotope Analysis in R, “SIAR”). Spartina alterniflora, the dominant native plant, exhibited significantly greater leaf toughness and higher C/N ratios relative to P. australis. Benthic microalgae and phytoplankton (as suspended particulate matter) exhibited the lowest C/N indicating higher diet quality. We conducted a sensitivity analysis in SIAR by modeling F. heteroclitus at three separate trophic levels (1.5, 2.0, and 2.5) using species-specific discrimination factors to determine basal resource contributions. Overall, the best-fitting models include those that assume F. heteroclitus resides approximately 2.0 trophic levels above primary producers. Using discrimination factors from a range of data sources reported in the literature, our analyses revealed that consumers rely less on benthic microalgae and phytoplankton in restricted marshes (7–23 % and 11–44 %, respectively) relative to reference marshes (5–34 % and 23–48 %, respectively), resulting in a shift in diet toward invasive plant consumption (0–27 %). This is likely due to increased P. australis cover and marsh surface shading leading to decreased microalgal biomass, combined with reduced flooding of the marsh surface that favors terrestrial invertebrate assemblages. Restoration decreased the quantity of P. australis in the food web (0–15 %) and increased the importance of microalgae (1–30 %), phytoplankton (19–48 %), and native plants (23–63 %), indicating a shift in ecological recovery toward reference conditions.  相似文献   

13.
Salt marshes are an important transition zone between terrestrial and marine ecosystems, and in their natural state, they often function to cycle or trap terrestrially derived nutrients and organic matter. Many US salt marshes were ditched during the twentieth century, potentially altering their functionality. The goal of this 4-year study was to assess the impact of water from ditches within seven salt marshes on estuarine water quality and plankton communities within four estuaries on Long Island, NY, USA. We found that concentrations of inorganic nutrients (ammonium, phosphate), dissolved and particulate organic nitrogen and carbon (POC, PON, DOC, DON), and total coliform bacteria were significantly enriched in salt marsh ditches compared to the estuaries they discharged into. In addition, concentrations of ammonium and DON became more enriched in ditches as tidal levels decreased, suggesting these constituents were generated in situ. Quantification of nitrogen sources in Flanders Bay, NY, suggested salt marsh ditches could represent a substantial source of N to this estuary during summer months. Experimental incubations demonstrated that water from salt marsh ditches was capable of significantly enhancing the growth of multiple classes of phytoplankton, with large diatoms and dinoflagellates displaying the most dramatic increases in growth. Experiments further demonstrated that salt marsh ditchwater was capable of significantly enhancing pelagic respiration rates, suggesting discharge from ditches could influence estuarine oxygen consumption. In summary, this study demonstrates that tidal draining of salt marsh ditches is capable of degrading multiple aspects of estuarine water quality.  相似文献   

14.
Increases in relative sea level are fragmenting the emergent vegetation of Louisiana’s coastal marshes. Nekton abundance is likely impacted by salinity and whether emergent vegetation is replaced by submerged aquatic vegetation (SAV) or open water. To assess these effects, we sampled nekton densities along a salinity gradient (categorized as freshwater, intermediate, and brackish marsh) in fragmented and non-fragmented areas. Total nekton density increased strongly with SAV in brackish marsh but only weakly in freshwater marsh (F 2,238 = 10.03, p < 0.0001). Freshwater and intermediate marshes had higher nekton densities when fragmented than when non-fragmented; this relationship was reversed in brackish marsh (F 2,238 = 8.89, p = 0.0002). Fragmentation, SAV, and salinity interacted to affect the densities of Gambusia affinis, Poecilia latipinna, Cyprinodon variegates, and Lucania parva. Our results suggest that the presence of both emergent vegetation and SAV was necessary for maintaining high nekton densities, with this combination being especially important in brackish marshes.  相似文献   

15.
We reconstruct past accretion rates of a salt marsh on the island of Sylt, Germany, using measurements of the radioisotopes 210Pb and 137Cs, as well as historical aerial photographs. Results from three cores indicate accretion rates varying between 1 and 16 mm year−1. Comparisons with tide gauge data show that high accretion rates during the 1980s and 1990s coincide with periods of increased storm activity. We identify a critical inundation height of 18 cm below which the strength of a storm seems to positively influence salt marsh accretion rates and above which the frequency of storms becomes the major factor. In addition to sea level rise, we conclude that in low marsh zones subject to higher inundation levels, mean storm strength is the major factor affecting marsh accretion, whereas in high marsh zones with lower inundation levels, it is storm frequency that impacts marsh accretion.  相似文献   

16.
To assess the potential for habitat isolation effects on estuarine nekton, we used two species with different dispersal abilities and life history strategies, mummichog (Fundulus heteroclitus) and pinfish (Lagodon rhomboides) to examine: (1) distribution trends among estuarine shallow-water flat and various intertidal salt marsh habitats and (2) the influence of salt marsh habitat size and isolation. Collections were conducted using baited minnow traps set within nonisolated interior marshes (interior), nonisolated fringing marshes (nonisolated), isolated island marshes (isolated), and shallow-water flat habitats (flat) that were adjacent to isolated and nonisolated marshes. Size range of individuals collected included juvenile and adult F. heteroclitus (20–82-mm standard length) and L. rhomboides (22–151-mm standard length). During high tide, F. heteroclitus exclusively used marsh habitats, particularly high marsh, whereas L. rhomboides used marshes and flats. F. heteroclitus abundance followed an interior > nonisolated > isolated pattern. L. rhomboides abundance patterns were less consistent but followed a nonisolated > isolated > interior pattern. A size-dependent water depth relationship was observed for both species and suggests size class partitioning of marsh and flat habitats during high tide. Minimum water depth (~31 cm) restricted L. rhomboides populations in marshes, while maximum water depth (~69 cm) restricted F. heteroclitus population use of marshes and movement between marsh habitats. Disparities in F. heteroclitus young of year contribution between isolated compared to nonisolated and interior marsh types suggests isolated marshes acted as population sinks and were dependent on adult emigrants. Resident and transient salt marsh nekton species utilize estuarine habitats in different ways and these fundamental differences can translate into how estuarine landscape might affect nekton.  相似文献   

17.
18.
Patterns of nekton occurrence on the salt marsh surface at high tide and in an adjacent intertidal creek pool at low tide were used to investigate movements of nekton in an intertidal basin. Paired collections were made in North Inlet estuary, SC on 67 dates over 9 years. Comparisons of high- and low-tide total abundance indicated that what remained in the creek pool at low tide was representative of the nekton on the flooded marsh. Of the 64 taxa collected, the same 8 species ranked in the top 10 in both the high- and low-tide collections. Abundances of most resident species were positively correlated with the area of marsh flooded, but mummichog (Fundulus heteroclitus), the most abundant resident, was not. Abundances of young-of-the-year transient species were not related to the extent of tidal flooding. Some transient species used the flooded marsh but did not occupy the pool at low tide, and others found in the pool did not use the marsh. Differences in abundance, biomass, and length between the marsh and pool collections indicated differences in the tendency of species and life stages to retreat downstream of the pool to the subtidal channel. Proportionately more of the nekton that were present on the flooded marsh left the intertidal basin when large changes in temperature and salinity occurred between high and low tides. More transients left the basin following higher tides, but more residents did not. The results demonstrate a wide range of taxonomic and ontogenetic patterns among nekton using intertidal salt marsh basins and the underappreciated importance of intertidal creek pools as alternative low-tide refuges.  相似文献   

19.
Salt pools are water-filled depressions common to north-temperate salt marshes. In Wells, ME, USA, cores reveal a unique salt pool signature consisting of water-saturated dark-gray mud often containing fragments of Ruppia maritima. Cores through pool sediment reenter salt marsh peat, not tidal flat sediment, demonstrating that most pools are of secondary origin. A principal component analysis of attribute data collected from 119 pools defines three distinct pool types: those with (1) surrounding high-marsh vegetation and thick heavily undercut banks (40% of the variance), (2) surrounding low-marsh vegetation and thicker slightly undercut banks (18% of the variance), and (3) surrounding low-marsh vegetation and less thick moderately undercut banks, containing R. maritima and a surficial drainage (15% of the variance). Cores and spatiotemporal analyses of aerial photographs between 1962 and 2003 reveal dramatic salt marsh surface dynamism suggesting that salt pools influence the geomorphological evolution of coastal marshes.  相似文献   

20.
Although the broadly observed increase in nutrient loading rates to coastal waters in the last 100 years may increase aboveground biomass, it also tends to increase soil metabolism and lower root and rhizome biomass—responses that can compromise soil strength. Fourteen different multiyear field combinations of nutrient amendments to salt marshes were made to determine the relationship between soil strength and various nitrogen, phosphorus, and nitrogen+phosphorus loadings. There was a proportional decline in soil strength that reached 35% in the 60- to 100-cm soil layer at the highest loadings and did not level off. These loading rates are equivalent to those in the flow path of the Caernarvon river diversion, a major wetland restoration project near New Orleans; 12% of the wetlands in the flow path were converted to open water in 2005. The increased nutrient loading from the Mississippi River watershed this century has also driven the formation of the low oxygen zone (the “Dead Zone”) that forms off the Louisiana–Texas shelf each summer. These results suggest that improving water quality in the watershed will aid the restoration of both offshore waters and coastal wetland ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号