首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Indian Ocean and monsoon coupled interactions in a warming environment   总被引:1,自引:0,他引:1  
Several studies have drawn attention to the steady warming of the equatorial and tropical Indian Ocean (IO) sea surface temperature (SST) observed during recent decades. An intriguing aspect of the IO SST warming trend is that it is has been accompanied by a pronounced weakening of the large-scale boreal summer monsoon circulation. Based on a detailed diagnostic analysis of observed datasets, reanalysis products and IPCC AR4 coupled model output, this study examines how the observed changes in the summer monsoon circulation could have contributed to this SST warming trend. The present results reveal that the weakening trend of the summer monsoon cross-equatorial flow has favored a reorientation of surface westerlies towards the equatorial IO during recent decades, relative to summer monsoons of earlier decades, which were dominated by stronger cross-equatorial flow. Our analysis suggests that the weakening of the summer monsoon cross-equatorial flow has in turn significantly accelerated the SST warming in the central equatorial IO. While the trend in the equatorial westerlies has promoted downwelling and thermocline deepening in the eastern equatorial IO, the central equatorial IO warming is attributed to reduced upwelling in response to a weakening trend of the wind-stress curl. The observed trends in Indian monsoon rainfall and the near-equatorial SST warming are shown to be closely related to variations in the meridional gradient of the monsoon zonal winds. An examination of the twentieth century simulations from 22 IPCC AR4 models, suggests that some models capture the recent equatorial IO warming associated with the weakened summer monsoon circulation reasonably well. The individual member models, however, exhibit significant inter-model variations in representing the observed response of the IO and monsoon coupled system.  相似文献   

2.
The Northwest Pacific (NWP) circulation (subtropical high) is an important component of the East Asian summer monsoon system. During summer (June–August), anomalous lower tropospheric anticyclonic (cyclonic) circulation appears over NWP in some years, which is an indicative of stronger (weaker) than normal subtropical high. The anomalous NWP cyclonic (anticyclonic) circulation years are associated with negative (positive) precipitation anomalies over most of Indian summer monsoon rainfall (ISMR) region. This indicates concurrent relationship between NWP circulation and convection over the ISMR region. Dry wind advection from subtropical land regions and moisture divergence over the southern peninsular India during the NWP cyclonic circulation years are mainly responsible for the negative rainfall anomalies over the ISMR region. In contrast, during anticyclonic years, warm north Indian Ocean and moisture divergence over the head Bay of Bengal-Gangetic Plain region support moisture instability and convergence in the southern flank of ridge region, which favors positive rainfall over most of the ISMR region. The interaction between NWP circulation (anticyclonic or cyclonic) and ISMR and their predictability during these anomalous years are examined in the present study. Seven coupled ocean–atmosphere general circulation models from the Asia-Pacific Economic Cooperation Climate Center and their multimodel ensemble mean skills in predicting the seasonal rainfall and circulation anomalies over the ISMR region and NWP for the period 1982–2004 are assessed. Analysis reveals that three (two) out of seven models are unable to predict negative (positive) precipitation anomalies over the Indian subcontinent during the NWP cyclonic (anticyclonic) circulation years at 1-month lead (model is initialized on 1 May). The limited westward extension of the NWP circulation and misrepresentation of SST anomalies over the north Indian Ocean are found to be the main reasons for the poor skill (of some models) in rainfall prediction over the Indian subcontinent. This study demonstrates the importance of the NWP circulation variability in predicting summer monsoon precipitation over South Asia. Considering the predictability of the NWP circulation, the current study provides an insight into the predictability of ISMR. Long lead prediction of the ISMR associated with anomalous NWP circulation is also discussed.  相似文献   

3.
The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Niño Southern Oscillation–ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.  相似文献   

4.
Weakening of Indian summer monsoon in recent decades   总被引:13,自引:3,他引:10  
The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation intensity. The result shows that Indian summer monsoon circulation underwent two weakening processes in recent decades. The first occurred in circa the mid-1960s, and the other occurred in circa the late 1970s. The finding indicates that the mean tropospheric temperature may play a crucial role in the weakening of the Indian summer monsoon intensity via changing land-sea thermal contrast. The role of the tropospheric temperature contrast between East Asia and the tropical area from the eastern Indian Ocean to the tropical western Pacific is to weaken the Indian summer monsoon circulation.  相似文献   

5.
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon.  相似文献   

6.
印度夏季风的减弱及其与对流层温度的关系   总被引:4,自引:0,他引:4       下载免费PDF全文
对43aNCEP/NCAR再分析资料和台站实际观测资料的分析,揭示了对流层温度变化和印度夏季风环流减弱之间的联系。印度夏季风的变化与东亚上空对流层温度具有密切的关系,主要表现为对流层平均温度与整个印度夏季降雨和季风环流强度之间存在显著的正相关。结果表明:印度夏季风环流在近几十年经历了两次减弱过程,第一次减弱约发生在20世纪60年代中期,第二次减弱则发生在20世纪70年代后期;通过改变海陆热力对比,对流层平均温度在印度夏季风减弱过程中可能起着重要作用,东亚地区与东印度洋至西太平洋热带地区之间的对流层温度差异导致了印度夏季风环流的减弱。  相似文献   

7.
Future projections of the Indian summer monsoon rainfall (ISMR) and its large-scale thermodynamic driver are studied by using CMIP5 model outputs. While all models project an increasing precipitation in the future warming scenario, most of them project a weakening large-scale thermodynamic driver arising from a weakening of the upper tropospheric temperature (UTT) gradient over south Asian summer monsoon region. The weakening of the UTT gradient under global warming scenarios is related to the increase in sea surface temperature (SST) over the equatorial Indian Ocean (EIO) leading to a stronger increase of UTT over the EIO region relative to the northern Indian region, a hypothesis supported by a series of Atmospheric General Circulation Model (AGCM) experiments forced by projected SSTs. To diagnose the inconsistency between the model projections of precipitation and the large-scale thermodynamic driver, we have examined the rate of total precipitation explained by convective and stratiform precipitations in observations and in CMIP5 models. It is found that most models produce too much (little) convective (stratiform) precipitation compared to observations. In addition, we also find stronger precipitable water—precipitation relationship in most CMIP5 models as compared to observations. Hence, the atmospheric moisture content produced by the model immediately gets converted to precipitation even though the large-scale thermodynamics in models weaken. Therefore, under global warming scenarios, due to increased temperature and resultant increased atmospheric moisture supply, these models tend to produce unrealistic local convective precipitation often not in tune with other large-scale variables. Our results questions the reliability of the ISMR projections in CMIP5 models and highlight the need to improve the convective parameterization schemes in coupled models for the reliable projections of the ISMR.  相似文献   

8.
Several observational and modeling studies indicate that the Indian summer monsoon rainfall (ISMR) is inversely related to the Eurasian snow extent and depth. The other two important surface boundary conditions which influence the ISMR are the Pacific sea surface temperature (SST) to a large extent and the Indian Ocean SST to some extent. In the present study, observed Soviet snow depth data and Indian rainfall data for the period 1951–1994 have been statistically analyzed and results show that 57% of heavy snow events and 24% of light snow events over west Eurasia are followed by deficient and excess ISMR respectively. Out of all the extreme monsoon years, care has been taken to identify those when Eurasian snow was the most dominant surface forcing to influence ISMR. During the years of high(low) Eurasian snow amounts in spring/winter followed by deficient(excess) ISMR, atmospheric fields such as temperature, wind, geopotential height, velocity potential and stream function based on NCEP/NCAR reanalyses have been examined in detail to study the influence of Eurasian snow on the midlatitude circulation regime and hence on the monsoon circulation. Results show that because of the west Eurasian snow anomalies, the midlatitude circulations in winter through spring show significant changes in the upper and lower level wind, geopotential height, velocity potential and stream function fields. Such changes in the large-scale circulation pattern may be interpreted as precursors to weak/strong monsoon circulation and deficient/excess ISMR. The upper level velocity potential difference fields between the high and low snow years indicate that with the advent of spring, the winter anomalous convergence over the Indian region gradually becomes weaker and gives way to anomalous divergence that persists through the summer monsoon season. Also the upper level anomalous divergence centre shifts from over the Northern Hemisphere and equator to the Southern Hemisphere over the Indian Ocean and Australia.  相似文献   

9.
Summary Observational data are used to explore the relationship between surface air temperature anomaly gradients and Indian summer monsoon rainfall (ISMR). The meridional temperature anomaly gradient across Eurasia during January directed towards equator (pole) is a very good precursor of subsequent excess (deficient) Indian summer monsoon rainfall (ISMR). This gradient directed towards equator (pole) indicates below (above) normal blocking activity over Eurasia, which leads to less (more) than normal southward penetration of dry and cold mid latitude westerlies over the Indian monsoon region, which ultimately strengthens (weakens) the normal monsoon circulation. These findings suggest a mechanism for the weakening of relationship between El Niño and ISMR.Though there is a strong fundamental association between El Niño (warm ENSO) and deficient Indian summer monsoon rainfall (ISMR), this relationship was weak during the period 1921–1940 and the recent decade (1991–1998). During the El Niño years of 1921–1940 and 1901–1998, the meridional temperature anomaly gradient across Eurasia (Eurasian forcing) during January was directed towards equator. On the other hand, during the El Niño years of 1901–1920 and 1941–1990 this gradient was directed towards pole. Thus during 1921–1940 and 1991–1998, the adverse impact of El Niño on Indian monsoon was reduced by the favorable Eurasian forcing resulting in the weak association between El Niño and ISMR. This finding disagrees with the hypothesis of winter warming over the Eurasian continent as the reason for the observed weakening of this relationship during recent decade.  相似文献   

10.
The inverse relationship between the warm phase of the El Ni?o Southern Oscillation(ENSO) and the Indian Summer Monsoon Rainfall(ISMR) is well established. Yet, some El Ni?o events that occur in the early months of the year(boreal spring) transform into a neutral phase before the start of summer, whereas others begin in the boreal summer and persist in a positive phase throughout the summer monsoon season. This study investigates the distinct influences of an exhausted spring El Ni?o(springtime)...  相似文献   

11.
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia, The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However,the opposite interdecadal variation was found in the rainfall anomaly in North China and South China.The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.  相似文献   

12.
利用多成员集合试验结果,比较分析了热带印度洋和太平洋增暖各自对东亚夏季风趋势变化的影响。试验所用模式是GFDLAM2大气环流模式,增暖是通过在气候平均海洋表面温度(SST)基础上,叠加随时间线性增加的、相当于实际50a左右达到的SST异常来实现的。结果表明:热带印度洋和太平洋共同增暖有使东亚夏季风减弱的趋势。相比较而言,单独印度洋增暖有使东亚夏季风增强、华北降水增多的趋势,而单独太平洋增暖有使东亚夏季风减弱的趋势,即印度洋增暖与太平洋增暖对东亚夏季风存在相反的、竞争性影响。进一步分析指出,热带太平洋特别是热带中东太平洋的增温可能对20世纪70年代末期开始的夏季风年代际减弱有更重要的贡献;在未来热带印度洋和太平洋持续增暖、但增暖强度纬向差异减小的新情况下,东亚夏季风减弱的趋势可能还将持续。  相似文献   

13.
Wilhelm May 《Climate Dynamics》2011,37(9-10):1843-1868
In this study the potential future changes in different aspects of the Indian summer monsoon associated with a global warming of 2°C with respect to pre-industrial times are assessed, focussing on the role of the different mechanisms leading to these changes. In addition, these changes as well as the underlying mechanisms are compared to the corresponding changes associated with a markedly stronger global warming exceeding 4.5°C, associated with the widely used SRES A1B scenario. The study is based on two sets of four ensemble simulations with the ECHAM5/MPI-OM coupled climate model, each starting from different initial conditions. In one set of simulations (2020?C2200), greenhouse gas concentrations and sulphate aerosol load have been prescribed in such a way that the simulated global warming dioes not exceed 2°C with respect to pre-industrial times. In the other set of simulations (1860?C2200), greenhouse gas concentrations and sulphate aerosol load have been prescribed according to observations until 2000 and according to the SRES A1B scenario after 2000. The study reveals marked changes in the Indian summer monsoon associated with a global warming of 2°C with respect to pre-industrial conditions, namely an intensification of the summer monsoon precipitation despite a weakening of the large-scale monsoon circulation. The increase in the monsoon rainfall is related to a variety of different mechanisms, with the intensification of the atmospheric moisture transport into the Indian region as the most important one. The weakening of the large-scale monsoon circulation is mainly caused by changes in the Walker circulation with large-scale divergence (convergence) in the lower (uppper) troposphere over the Indian Ocean in response to enhanced convective activity over the Indian Ocean and the central and eastern Pacific and reduced convective activity over the western tropical Pacific. These changes in the Walker circulation induce westerly (easterly) wind anomalies at lower (upper) level in the Indian region. The comparison with the changes in the Indian summer monsoon associated with a global warming of 4.5°C reveals that both the intensification of the monsoon precipitation and the weakening of the large-scale monsoon circulation (particularly in the lower troposphere) are relatively strong (with respect to the magnitude of the projected global warming by the end of the twentieth century for the two scenarios) in the scenario with a global warming of 2°C. The relatively strong intensification of the monsoon rainfall is related to rather strong increases in evaporation over the Arabian Sea and the Bay of Bengal, while a rather weak amplification of the meridional temperature gradient between the Indian Ocean and the land areas to the north contributes to the relatively strong reduction of the large-scale monsoon flow.  相似文献   

14.
Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun   总被引:2,自引:0,他引:2  
The latest version of the state-of-the-art global land–atmosphere–ocean coupled climate forecast system of NCEP has shown considerable improvement in various aspects of the Indian summer monsoon. However, climatological mean dry bias over the Indian sub-continent is further increased as compared to the previous version. Here we have attempted to link this dry bias with climatological mean bias in the Eurasian winter/spring snow, which is one of the important predictors of the Indian summer monsoon rainfall (ISMR). Simulation of interannual variability of the Eurasian snow and its teleconnection with the ISMR are quite reasonable in the model. Using composite analysis it is shown that a positive snow anomaly, which is comparable to the systematic bias in the model, results into significant decrease in the summer monsoon rainfall over the central India and part of the Equatorial Indian Ocean. Decrease in the summer monsoon rainfall is also found to be linked with weaker northward propagation of intraseasonal oscillation (ISO). A barotropic stationary wave triggered by positive snow anomaly over west Eurasia weakens the upper level monsoon circulation, which in turn reduces the zonal wind shear and hence, weakens the northward propagation of summer monsoon ISOs. A sensitivity experiment by reducing snow fall over Eurasian region causes decrease in winter and spring snow depth, which in turn leads to decrease in Indian summer monsoon rainfall. Results from the sensitivity experiment corroborate with those of composite analysis based on long free run. This study suggests that further improvements in the snow parametrization schemes as well as Arctic sea ice are needed to reduce the Eurasian snow bias during winter/spring, which may reduce the dry bias over Indian sub-continent and hence predictability aspect of the model.  相似文献   

15.
The evolution of sea surface temperature (SST) and thermocline (represented by 20 °C isotherm depth, D20) in the east equatorial Indian Ocean (EIO) associated with the Indian Ocean Dipole (IOD) years is studied for the period of 50 years from 1958 to 2007. A new IOD index based on combined anomalies of surface winds, D20 and SST over the equatorial Indian Ocean is defined to identify strong and weak IOD events. It is found that the evolution of strong IOD events is driven by ocean dynamics in the form of thermocline–SST coupling and is strongly interactive with the atmosphere, whereas the weak IOD events are mere response to surface winds without such dynamical coupling. The easterly wind anomalies extend up to the western equatorial Indian Ocean (WIO) during strong IOD years and support enhanced EIO air–sea interactions. On the other hand, the evolution of zonal wind anomalies is weak during the weak IOD years. Thermocline–SST coupling is robust in both EIO and WIO during strong IOD years, which is primarily responsible for the enhanced SST gradient, strong enough to establish anomalous Walker circulation within the Indian Ocean. The strong convection over the WIO associated with the Indian Ocean Walker cell triggers a secondary cell with subsidence over the African landmass. This double cell structure over the equatorial Indian Ocean is not reported before. Such double cell structure is not evident in weak IOD years and instead the convection over WIO extends up to African landmass. These are well supported by the spatial pattern of anomalous precipitable water during strong and weak IOD years. Strengthening of monsoon flow and local Hadley cell associated with strong IOD events enhances precipitation over the Indian subcontinent, whereas weak IOD years have less impact on the Indian summer monsoon circulation and rainfall. Analysis reveals that the EIO thermocline index and combined index could be potential predictors for the central Indian rainfall during summer.  相似文献   

16.
In this paper, a diagnostic study is carried out with global analysis data sets to determine how the large scale atmospheric circulation affecting the anomalous drought of the Indian summer monsoon 2002. The daily analysis obtained from National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) for the month of July is used to investigate the mean circulation characteristics and the large scale energetics over the Indian monsoon domain. Examination of rainfall revealed that the summer monsoon (JJAS) rainfall of 2002 over India is 22% below normal in which the large deficit of 56% below normal rainfall in July. The recent past drought during summer season of 2004 and 2009 are 12 and 23%, respectively, below normal rainfall. The large deficit of rainfall in 2009 is from the June month with 48% below normal rainfall, where as 2004 drought contributed from July (19%) and August (24%). Another significant facet of the rainfall in July 2002 is lowest ever recorded in the past 138 years (1871–2008). The circulation features illustrated weak low level westerly wind at 850 hPa (Somali Jet) in July during large deficit rainfall years of 1987 and 2002 with a reduction of about 30% when compared with the excess and normal rainfall years of 1988 and 2003. Also, tropical easterly jet at 150 hPa reduced by 15% during the deficit rainfall year of 2002 against the excess rainfall year of 1988. Both the jet streams are responsible for low level convergence and upper level divergence leading to build up moisture and convective activity to sustain the strength of the monsoon circulation. These changes are well reflected in reduction of tropospheric moisture profile considerably. It is found that the maximum number of west pacific cyclonic system during July 2002 is also influenced for large deficit rainfall over India. The dynamic, thermodynamic and energetic clearly show the monsoon break type situation over India in the month of July 2002 resulting less convective activity and the reduction of moisture. The large diabatic heating, flux convergence of heat and moisture over south east equatorial Indian Ocean are also responsible for drought situation in July 2002 over the Indian region.  相似文献   

17.
We assess the ability of individual models (single-model ensembles) and the multi-model ensemble (MME) in the European Union-funded ENSEMBLES project to simulate the intraseasonal oscillations (ISOs; specifically in 10–20-day and 30–50-day frequency bands) of the Indian summer monsoon rainfall (ISMR) over the Western Ghats (WG) and the Bay of Bengal (BoB), respectively. This assessment is made on the basis of the dynamical linkages identified from the analysis of observations in a companion study to this work. In general, all models show reasonable skill in simulating the active and break cycles of the 30–50-day ISOs over the Indian summer monsoon region. This skill is closely associated with the proper reproduction of both the northward propagation of the intertropical convergence zone (ITCZ) and the variations of monsoon circulation in this band. However, the models do not manage to correctly simulate the eastward propagation of the 30–50-day ISOs in the western/central tropical Pacific and the eastward extension of the ITCZ in a northwest to southeast tilt. This limitation is closely associated with a limited capacity of models to accurately reproduce the magnitudes of intraseasonal anomalies of both the ITCZ in the Asian tropical summer monsoon regions and trade winds in the tropical Pacific. Poor reproduction of the activity of the western Pacific subtropical high on intraseasonal time scales also amplify this limitation. Conversely, the models make good reproduction of the WG 10–20-day ISOs. This success is closely related to good performance of the models in the representation of the northward propagation of the ITCZ, which is partially promoted by local air–sea interactions in the Indian Ocean in this higher-frequency band. Although the feature of westward propagation is generally represented in the simulated BoB 10–20-day ISOs, the air–sea interactions in the Indian Ocean are spuriously active in the models. This leads to active WG rainfall, which is not present in the observed BoB 10–20-day ISOs. Further analysis indicates that the intraseasonal variability of the ISMR is generally underrepresented in the simulations. Skill of the MME in seasonal ISMR forecasting is strongly dependent on individual model performance. Therefore, in order to improve the model skill with respect to seasonal ISMR forecasting, we suggest it is necessary to better represent the robust dynamical links between the ISOs and the relevant circulation variations, as well as the proportion of intraseasonal variability in the individual models.  相似文献   

18.
The day-to-day behavior of Indian summer monsoon rainfall (IMR) is associated with a hierarchy of quasi-periods, namely 3?C7, 10?C20 and the 30?C60?days. These two periods, the 10?C20?days and the 30?C60?days have been related with the active and break cycles of the monsoon rainfall over the Indian sub-continent. The seasonal strength of Indian summer monsoon rainfall may depend on the frequency and duration of spells of break and active periods associated with the fluctuations of the above intra-seasonal oscillations (ISOs). Thus the predictability of the seasonal (June through September) mean Indian monsoon depends on the extent to which the intra-seasonal oscillations could be predicted. The primary objective of this study is to bring out the dynamic circulation features during the pre-monsoon/monsoon season associated with the extreme phases of these oscillations The intense (weak) phase of the 10?C20 (30?C60) days oscillation is associated with anti-cyclonic circulation over the Indian Ocean, easterly flow over the equatorial Pacific Ocean resembling the normal or cold phase (La Nina) of El Nino Southern Oscillation (ENSO) phenomenon, and weakening of the north Pacific Sub-tropical High. On the other hand the weak phase of 10?C20?days mode and the intense phase of 30?C60?days mode shows remarkable opposite flow patterns. The circulation features during pre-monsoon months show that there is a tendency for the flow patterns observed in pre-monsoon months to persist during the monsoon months. Hence some indications of the behavior of these modes during the monsoon season could be foreshadowed from the spring season patterns. The relationship between the intensity of these modes and some of the long-range forecasting parameters used operationally by the India Meteorological Department has also been examined.  相似文献   

19.
In this work, the authors investigate changes in the interannual relationship between the East Asian summer monsoon (EASM) and the tropical Indian Ocean (IO) in the late 1970s. By contrasting the correlations of the EASM index (EASMI) with the summer IO sea surface temperature anomaly (SSTA) between 1953–1975 and 1978–2000, a pronounced different correlation pattern is found in the tropical IO. The SSTA pattern similar to the positive Indian Ocean Dipole (IOD) shows a strongly positive correlation with the EASMI in 1953–1975. But in 1978–2000, significant negative correlation appears in the northern IO and the IOD-like correlation pattern disappears. It is indicated that the summer strong IOD events in 1953–1975 can cause a weaker-than-normal western North Pacific (WNP) subtropical high, which tends to favor a strong EASM. In 1978–2000, the connection between the summer IOD and the WNP circulation is disrupted by the climate shift. Instead, the northern IO shows a close connection with the WNP circulation in 1978–2000. The warming over the northern IO is associated with the significant enhanced 500 hPa geopotential height and an anomalous anticyclone over the WNP. The change in the IO–EASM relationship is attributed to the interdecadal change of the background state of the ocean–atmosphere system and the interaction between the ENSO and IO. In recent decades, the tropical IO and tropical Pacific have a warmer mean SST, which has likely strengthened (weakened) the influence of the northern IO (IOD) on the EASM. In addition, due to the increase in the ENSO variability along with the higher mean equatorial eastern Pacific SST in 1978–2000, the influence of ENSO on the East Asian summer circulation experiences a significant strengthening after the late 1970s. Because the warming over the northern IO is associated with the significant warming in the equatorial eastern Pacific, the strengthened ENSO–EASM relationship has likely also contributed to the strengthened relationship between the northern IO and the EASM in 1978–2000.  相似文献   

20.
The performance of the new multi-model seasonal prediction system developed in the frame work of the ENSEMBLES EU project for the seasonal forecasts of India summer monsoon variability is compared with the results from the previous EU project, DEMETER. We have considered the results of six participating ocean-atmosphere coupled models with 9 ensemble members each for the common period of 1960–2005 with May initial conditions. The ENSEMBLES multi-model ensemble (MME) results show systematic biases in the representation of mean monsoon seasonal rainfall over the Indian region, which are similar to that of DEMETER. The ENSEMBLES coupled models are characterized by an excessive oceanic forcing on the atmosphere over the equatorial Indian Ocean. The skill of the seasonal forecasts of Indian summer monsoon rainfall by the ENSEMBLES MME has however improved significantly compared to the DEMETER MME. Its performance in the drought years like 1972, 1974, 1982 and the excess year of 1961 was in particular better than the DEMETER MME. The ENSEMBLES MME could not capture the recent weakening of the ENSO-Indian monsoon relationship resulting in a decrease in the prediction skill compared to the “perfect model” skill during the recent years. The ENSEMBLES MME however correctly captures the north Atlantic-Indian monsoon teleconnections, which are independent of ENSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号