首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
本文利用1993–2019年基于海表面高度异常的涡旋数据集和高度计数据统计分析了日本海区域中尺度涡旋的大小、极性、生命周期、振幅、传播等表面特征的时空变化规律。27年间,共探测到1 429个涡旋,气旋和反气旋数量基本相当,其中气旋675个,反气旋754个。两种极性涡旋均具有较强的季节变化:秋季较多,冬季次之,春季最少。郁陵盆地、大和盆地等为涡旋多发区域呈现西南–东北向带状分布。其中,南部海域反气旋占优,靠近津轻海峡的北部海域气旋占优。西部和南部受东韩暖流和对马暖流的驱动,涡旋移动方向与流场基本一致,北部涡旋与黎曼寒流以及副极地锋流有关。研究表明,动力学不稳定是涡旋在秋冬季大量产生的重要原因。此外,半封闭盆地、局地流场以及复杂的海气相互作用等都可能会对涡旋的产生和消亡造成一定影响。  相似文献   

2.
景振华 《海洋与湖沼》1992,23(1):101-108
将由海洋中各物理过程产生的海水特性分布非均匀性,分为小、中、天气式和全球4种时、空尺度。对比副势带急民生罗斯贝波变形半径,阐明海洋天气式涡旋小于和慢于大气中的数十倍。对比在高空锋带下方,低怪大气锋中出现地面涡,揭示海洋蛇曲中不产生高空锋带类似物及近海底锋;大洋中自由涡虽能集中于海洋上半部,便与大气中低空正、反气旋正相反。因而,锋流环和洋中涡能对局地天气起作用,流环能成为海洋子午向热传递的重要机制。  相似文献   

3.
4.
本文结合二维流线可视化技术和中尺度涡旋识别技术,提出了3种中尺度涡旋时空连续可视化的方法:基于OW参数的涡旋可视化方法、基于栅格模板的涡旋可视化方法和基于矢量模板的涡旋可视化方法,这3种方法分别基于Okubo-Weiss算法、Faghmous的算法和Liu的算法来进行涡旋识别,同时将流场可视化的结果填充到涡旋内部,以获得更好的可视化效果。在可视化过程中本文引入了传输函数来对涡旋中的流线颜色和透明度进行实时交互,能够在控制界面上通过设置Key值点的颜色和位置来控制速度、涡度和OW参数等信息的显示效果。本文在性能和显示效果方面比较了3种方法的优劣。从性能上来讲,性能由高到低依次为:基于OW参数的涡旋可视化方法、基于栅格模板的涡旋可视化方法和基于矢量模板的涡旋可视化方法。从显示效果上来讲,基于OW参数的涡旋可视化方法在三者中最差,效果中有较多的杂乱的短线,同时涡旋边界较小,局限于涡旋核心区;基于栅格模板的涡旋可视化方法较第一种方法的显示效果有所提升,杂乱的短线较少,涡旋相对完整,但由于数据分辨率不够高的原因,在放大多倍后涡旋边界呈现锯齿状;基于矢量模板的涡旋可视化方法显示效果最好,涡旋完整、饱满。同时,因为首先进行了涡旋边界的重构,将涡旋边界矢量化,涡旋边界更加平滑。相对于传统长时间序列的涡旋可视化的方法而言,这3种方法提供了一个美观、动态和更富信息性的可视化方法,同时由于传输函数的加入,其可以成为科研人员研究涡旋的一个实用的工具。  相似文献   

5.
本文基于卫星高度计得到的全球非线性中尺度涡旋数据集,分析了北太平洋副热带逆流(Subtropical Countercurrent.STCC)区域中尺度涡旋的统计特征,包括其基本特征、空间分布、传播特征、季节和年际变化;给出了该区域涡旋振幅、半径、旋转速度和罗斯贝数的分布直方图,并利用瑞利分布和对数正态分布对其进行了拟合。结果显示,涡旋振幅、半径、旋转速度和罗斯贝数的直方图很好地服从于对数正态分布。此外,通过与北太平洋中涡旋的对比研究,我们发现在STCC区中对数正态分布的拟合效果更好。本研究提高了对STCC区域中尺度涡旋统计特征的认识,明确了其与大洋中涡旋的区别;通过对数正态分布对涡旋特征的拟合,清晰地体现出了其分布规律,这在很大程度上降低了对观测数据的依赖,从而帮助我们更加有效地判断和预测涡旋特征的变化,同时为数值模式中涡旋的参数化提供了依据。  相似文献   

6.
应用1985—2002年夏季欧洲中期天气预报中心(ECMWF)的40a再分析资料,初步分析了副热带西北太平洋区域温带气旋、热带气旋和高空冷涡三种涡旋的三维结构及其时空分布特征。结果指出:(1)不同种类的涡旋具有不同的三维结构特征;(2)温带气旋和热带气旋主要分布在400hPa以下,涡旋分布的高值区位于近海海区,向内陆方向或向远海方向分布减少。副热带高空冷涡分布在太平洋上空的400~100hPa,呈东西向带状分布;(3)三种涡旋的个体强度有不同的年际变化特征。  相似文献   

7.
中尺度涡旋在海洋中无处不在,研究中尺度涡旋的海表温度(SST)对于研究中尺度涡旋上的海气相互作用具有重要意义。本文使用南海2000—2015年的SST和海面高度异常(SSHA)卫星观测数据,分析了南海不同振幅范围中尺度涡内SST的特征。研究表明,不是所有的反气旋涡(气旋涡)内的SST异常(SSTA)都是正(负)的,大约35%(29%)的反气旋涡(气旋涡)与SSTA呈正相关,且在不同振幅范围下表现出不同的空间和季节变化。中尺度涡旋内合成SSTA与SSHA表现出位相不一致,反气旋涡(气旋涡)内的SSTA的最大值(最小值)相对于涡心偏向于赤道(两极)方向。涡旋内SSTA与SSHA呈线性相关,反气旋涡(气旋涡)振幅每增加1 cm,涡旋内平均SSTA则增加(降低)0.02(0.01)℃。  相似文献   

8.
This study produced a statistical analysis of multicore eddy structures based on 23 years' altimetry data in global oceans. Multicore structures were identified using a threshold-free closed-contour algorithm of sea surface height, which was improved for this study in respect of certain technical details. Meanwhile a more accurate definition of eddy boundary was used to estimate eddy scale. Generally, multicore structures, which have two or more closed eddies of the same polarity within their boundaries, represent an important transitional stage in their lives during which the component eddies might experience splitting or merging. In comparison with global eddies, the lifetimes and propagation distances of multicore eddies were found to be much smaller because of their inherent structural instability. However, at the same latitude, the spatial scale of multicore eddies was found larger than that of single-core eddies, i.e., the eddy area could be at least twice as large. Multicore eddies were found to exhibit some features similar to global eddies. For example, multicore eddies tend to occur in the Antarctic Circumpolar Current, some western boundary currents, and mid-latitude regions around 25°N/S, the majority(70%) of eddies propagate westward while only 30% propagate eastward, and large-amplitude eddies are restricted mainly to reasonably confined regions of highly unstable currents.  相似文献   

9.
海洋中尺度涡旋源汇空间分布特征研究   总被引:4,自引:0,他引:4       下载免费PDF全文
借助卫星高度计数据,对中尺度涡进行识别和追踪;以16年内中尺度涡个数上的生消为判据,发现中尺度涡在除赤道外的全球大洋中生消频繁,但在海盆内区并没有明显的生成占优区或消亡占优区;而在中纬度近岸的狭窄东边界内中尺度涡生成居多,在另一侧近岸的狭窄西边界中尺度涡消亡居多。同时,我们以一阶斜压模态所对应的特征深度作为两层结构的内界面深度,并假定涡动能平均分配于正压模态和一阶斜压模态,计算得到了包含涡动能和涡有效重力位能的中尺度涡能量年平均净生成率和净耗散率,发现虽然海盆西边界是涡场能量耗散大于能量生成的区域,但强耗散过程实际上在海盆西侧内区的强流及其回流区均有发生。另外,中尺度涡生消个数差值的分布与中尺度涡能量净生成率和净耗散率的分布表明,虽然海盆东边界近岸区域内中尺度涡的生成居多,但该区域中尺度涡的能量偏弱,因此该区并非涡场能量的主要源区。  相似文献   

10.
田丰林  王昊  刘巍  马颖  陈戈 《海洋科学》2023,47(9):12-27
海洋中尺度涡旋可视化可以将海洋中尺度涡旋的运动规律以图形图像等直观的方式加以展现,是研究海洋中尺度涡旋强有力的工具。然而,现有的可视化方法存在一些不足,如时空连续可视化框架中的流线不能表现全时空连续的运动过程,应用到海洋涡旋提取的特征值受阈值影响严重,交互式传输函数依赖用户经验等。为解决已有的不足,本文首次提出了全时空连续框架和传输函数标准形态模式,将基于区域的涡旋提取技术(?准则)应用到海洋中尺度涡旋可视化中,并提出了全时空连续可视化框架二维及三维的GPU实现方案。实验结果表明,本文的可视化方案达到了实时可交互的级别,对于海洋中尺度涡旋交互式可视化具有重要意义。  相似文献   

11.
Automated identification and tracking of mesoscale ocean eddies has recently become one research hotspot in physical oceanography. Several methods have been developed and applied to survey the general kinetic and geometric characteristics of the ocean eddies in the South China Sea(SCS). However, very few studies attempt to examine eddies' internal evolution processes. In this study, we reported a hybrid method to trace eddies' propagation in the SCS based on their internal structures, which are characterized by eddy centers, footprint borders, and composite borders. Eddy identification and tracking results were represented by a GIS-based spatiotemporal model. Information on instant states, dynamic evolution processes, and events of disappearance, reappearance, split, and mergence is stored in a GIS database. Results were validated by comparing against the ten Dongsha Cyclonic Eddies(DCEs) and the three long-lived anticyclonic eddies(ACEs) in the northern SCS, which were reported in previous literature. Our study confirmed the development of these eddies. Furthermore, we found more DCE-like and ACE-like eddies in these areas from 2005 to 2012 in our database. Spatial distribution analysis of disappearing, reappearing, splitting, and merging activities shows that eddies in the SCS tend to cluster to the northwest of Luzon Island, southwest of Luzon Strait, and around the marginal sea of Vietnam. Kuroshio intrusions and the complex sea floor topography in these areas are the possible factors that lead to these spatial clusters.  相似文献   

12.
为了从理论上解释中尺度涡旋冷暖性质与涡旋旋转方向的关系,本文基于中尺度涡的几何特征,做出如下假设:中尺度涡具有对称的几何形态,涡旋中海洋要素沿径向具有线性化变化的特征。从原始方程组出发,利用柱坐标系和上述假设条件,略去耗散力,推导出了中尺度涡的一些冷暖特征,论证气旋式中尺度涡对应冷涡和反气旋式中尺度涡对应暖涡的涡旋冷暖特征与部分涡旋的观测不符的现象。结果表明,中心对称的形式可以作为对中尺度涡的几何特征的一个理想的形态近似,在考虑上述假设条件的理想环境下,柱坐标系在研究中尺度涡的几何性质上具有一定的优势。  相似文献   

13.
北太平洋中尺度涡时空特征分析   总被引:5,自引:0,他引:5  
郑聪聪  杨宇星  王法明 《海洋科学》2014,38(10):105-112
利用1993~2011年19 a的AVISO卫星高度计资料研究了北太平洋(10°~60°N,120°E~100°W)中尺度涡的时空分布特征,结果表明:北太平洋每年约产生1 800余个涡旋,其中气旋涡稍多。北太平洋东部沿岸、西北沿岸、黑潮延伸体北侧、副热带逆流区是中尺度涡的高发区,春、冬季是涡旋的高发季节。涡极性分布以35°N为界,北部多反气旋涡,南部多气旋涡。涡旋半径以100 km左右为主,并且基本随纬度升高而减小,涡旋数量随着周期增长而急剧下降。反气旋涡的平均半径和周期均大于气旋涡。利用Argo浮标剖面资料分析的6个个例涡旋的垂直结构显示,每个涡旋都有其独特的冷暖核结构,深度不同。研究结果对于分析北太平洋涡动能分布及传输具有一定的参考价值。  相似文献   

14.
南海中尺度涡温盐异常三维结构   总被引:3,自引:1,他引:3  
基于1994-2015年海面高度异常数据,采用winding-angle中尺度涡旋探测算法识别出南海范围内共5 899个反气旋涡(AE)和3 792个气旋涡(CE),结合世界海洋数据集(WOD13)及中国科学院南海海洋研究所(SCSIO)温盐观测数据集,采用基于变分法的客观插值方法,合成了南海及南海各区域中尺度涡的温盐异常三维结构。结果表明,本文采取的插值方式能有效地获得涡旋三维结构,垂向尺度上也与前人研究结果较为一致。在平均状态下,南海AE温盐异常强度明显大于CE,AE正位温异常主体结构深度约440 m,而CE仅在320 m以浅维持涡旋结构;两者最大位温异常均出现在次表层约80 m上下,AE达2.02℃,CE达-1.60℃。盐度异常影响深度约150 m,最大盐度异常出现在50 m深附近,AE达-0.24,CE达0.28,同时由于涡旋在不单调变化的背景盐度场中引起海水下沉(上升),AE盐度异常结构呈"上负下正"而CE呈"上正下负"式结构。南海各区域合成涡旋的温、盐异常的影响程度并不完全相同,可能与各区域涡旋的生成机制及背景温盐场有关。  相似文献   

15.
Some life history statistics of the mesoscale eddies of the South China Sea (SCS) derived from altimetry data will be further discussed according their different formation periods.A total of three ATLAS (autonomous temperature line acquisition system)mooring buoys data will be analyzed to discuss eddies‘ impact on temperature profiles.They identify that the intraseasonal variation of SCS thermocline is partly controlled by mesoscale eddies.  相似文献   

16.
采用AVISO提供的卫星高度计融合数据,对南海及西北太平洋(5°~35°N,105°~150°E)1993~2009年17a间的中尺度涡活动进行统计分析.结果表明南海中尺度涡活动具有明显的年际变化,每年观测到产生的中尺度涡个数平均为21~22个,标准差约为4个,占年平均值的20%;而西北太平洋中尺度涡个数的年际差异不大,平均每年观测到150~151个中尺度涡产生,标准差约为14个,仅占年平均值的9%.中尺度涡的逐月统计结果表明南海和西北太平洋的中尺度涡活动均有明显季节变化,1993~2009年间的各月南海和西北太平洋分别观测到30~31个和213~214个中尺度涡产生,标准差分别约为6个和41个,均占各自月平均值的19%.中尺度涡主要集中分布在南海东北部、越南东部和黑潮流轴附近海域.涡动能、海面高度距平均方根以及涡度均方根的空间分布大致与涡旋个数分布一致,但在西北太平洋的低纬海区和黑潮延伸体区域则不甚吻合.在相同的涡旋判别标准下,西北太平洋低纬海区(5°~15°N)观测到的中尺度涡个数比中高纬海区要少得多.  相似文献   

17.
Numerical simulations of eddies in the Gulf of Lion   总被引:4,自引:0,他引:4  
We present realistic simulations of mesoscale anticyclonic eddies, present in the western side of the Gulf of Lion and generally observed in satellite imagery during July and August. A nested model of 1-km resolution covering the Gulf of Lion is implemented from a coarse model of 3-km resolution. The models use an upwind-type advection–diffusion scheme, in which the numerical diffusion term is adjusted by an attenuation coefficient. Sensitivity tests have been carried out, varying the model spatial resolution and the attenuation coefficient to reproduce the (sub)mesoscale structures. A wavelet technique is applied to analyze the modelled horizontal relative vorticity in order to define the area, position and tracking duration of the eddy structures. Comparisons between the modelled eddies and those observed by satellite have allowed us to choose the best model setup. With this setup, the studied anticyclonic eddy lasted for 60 days.  相似文献   

18.
Mesoscale eddies play vital roles in ocean processes. Although previous studies focused on eddy surface features and individual three-dimensional (3D) eddy cases in the northwestern Pacific Ocean, the analysis of unique eddy 3D regional characteristics is still lacking. A 3D eddy detection scheme is applied to 9 years (2000–2008) of eddy-resolving Regional Ocean Modeling System (ROMS) output to obtain a 3D eddy dataset from the surface to a depth of 1 000 m in the northwestern Pacific Ocean (15°–35°N, 120°–145°E). The 3D characteristics of mesoscale eddies are analyzed in two regions, namely, Box1 (Subtropical Countercurrent, 15°–25°N, 120°–145°E) and Box2 (Southern Kuroshio Extension, 25°–35°N, 120°–145°E). In Box1, the current is characterized by strong vertical shear and weak horizontal shear. In Box2, the current is characterized by the strong Kuroshio, topographic effect, and the westward propagation of Rossby waves. The results indicate the importance of baroclinic instability in Box1, whereas in Box2, both the barotropic and baroclinic instability are important. Moreover, the mesoscale eddies’ properties in Box1 and Box2 are distinct. The eddies in Box1 have larger number and radius but a shorter lifetime. By contrast, Box2 has fewer eddies, which have smaller radius but longer lifetime. Vertically, more eddies are detected at the subsurface than at the surface in both regions; the depth of 650 m is the turning point in Box1. Above this depth, the number of cyclonic eddies (CEs) is larger than that of anticyclonic eddies (AEs). In Box2, the number of CEs is dominant vertically. Eddy kinetic energy (EKE) and mean normalized relative vorticity in Box2 are significantly higher than those in Box1. With increasing depth, the attenuation trend of EKE and relative vorticity of Box1 become greater than those of Box2. Furthermore, the upper ocean (about 300 m in depth) contains 68.6% of the eddies (instantaneous eddy). Only 16.6% of the eddies extend to 1 000 m. In addition, about 87% of the eddies are bowl-shaped eddies in the two regions. Only about 3% are cone-shaped eddies. With increasing depth of the eddies, the proportion of bowl-shaped eddies gradually decreases. Conversely, the cone- and lens-shaped eddies are equal in number at 700–1 000 m, accounting for about 30% each. Studying the 3D characteristics of eddies in two different regions of the northwestern Pacific Ocean is an important stepping stone for discussing the different eddy generation mechanisms.  相似文献   

19.
1 Introduction T aking the average riverbed elevation ofthe riverm outh from its upstream side to its dow nstream sidew ithin a m outh area as a base line, there is usually asand sw ell standing higher than the base line. If thesw ellis form ed in the distributary channel,itis consid-ered as “a longitudinalbar”;ifitis offornearthe riverm outh,itis called “m outh bar”(Jiand H uang,1995a),such as the cases in the C hangjiang R iver andQ iantang R iverm outh areas(see Figs 1 and 2). Fig. …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号