首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upsurges and downsurges in the Don River mouth are investigated using the observational data of the standard hydrometeorological network. The characteristics ofsurges are determined, andthe catalog of maximum annual dangerous surges is compiled for the observation points in the estuarine offshore zone and mouth reach of the Don River from the beginning of observations till 2014. The series of the maximum annual upsurges and downsurges at marine gaging stations in the Taganrog Bay are formed and statistically processed. The distribution of surges along the Taganrog Bay is analyzed. Catastrophic surges which cause adverse and severe events are identified as well as the qualitative and quaniiiaiive patterns of surge peneiraiion to the Don River mouth. The coefficients of upsurges and downsurges, the intensity of their attenuation, and water levels with the probability of 0.1, 1, and 50% at different river runoff are calculated at all gaging stations in the Don estuary for specific upsurges and downsurges. The results of test computations of surges for the specific point in the Taganrog Bay for 2013-2015 based on the numerical hydrodynamic model of the Sea of Azov are compared with observational data. The possibility was revealed of forecasting downsurges and upsurges based on synoptic conditions over the Sea of Azov with the lead time of three days using hydrodynamic models that allowed developing the prediction scheme of surge transformation calculation.  相似文献   

2.
The Mediterranean region is identified as one of the two main hot-spots of climate change and also known to have the highest concentration of cyclones in the world. These atmospheric features contribute significantly to the regional climate but they are not reproduced by the Atmosphere–Ocean General Circulation Models (AOGCM), due to their coarse horizontal resolution, which have recently been run in the frame of the 5th Climate Model Intercomparison Project. This article investigates the benefit of dynamically downscaling the Institut Pierre Simon Laplace (IPSL) AOGCM (IPSL-CM5) historical simulation by the weather and research forecasting (WRF) for the representation of the Mediterranean surface winds and cyclonic activity. Indeed, when considering IPSL-CM5 atmospheric fields, the dramatic underestimation of the cyclonic activity in the most cyclogenetic region of the world jeopardizes our ability to investigate in-depth the Mediterranean regional climate and trend in the context of global change. The WRF model shows remarkable skill to reproduce regional cyclogenesis. Indeed, cyclones occurrence is quasi-absent in IPSL-CM5 data but when applying dynamical downscaling their spatial–temporal variability is very close to the re-analysis. This is a clear benefit of dynamical downscaling in regions of strong topographic forcing. This “steady” source of forcing allows the production of lee cyclogenesis and the development of strong cyclones, whatever the quality of the large-scale circulation provided at the WRF’s boundaries by IPSL-CM5. However, dynamical downscaling still presents disadvantages as for instance the fact that large-scale inaccurate features of the IPSL-CM5 regional circulation are replicated by WRF due to the boundary controlled (small domain) simulation. The advantages and disadvantages of dynamical downscaling are thoroughly discussed in this paper revealing its importance for climate research, especially in the context of future scenarios and wind impacts.  相似文献   

3.
The characteristics of storm surges obtained from sea level observations at four hydrometeorological stations in the North Caspian Sea for 2003–2017 are presented. The sea level that by 30 cm exceeds the monthly mean value at the analyzed point of the Caspian Sea was considered as a surge. In total, 370 surges were registered, 83% of them occurred during the cold season (September-April). The maximum surge height was 125 cm, the longest duration was 7 days. The most significant surges on Tyulenii Island were simulated with the operational hydrodynamic model of the sea level and currents of the Caspian Sea using atmospheric forcing from the COSMO model. The mean coefficient of correlation between the simulated and observed sea level is equal to 0.94.  相似文献   

4.
5.

Based on the numerical simulation of water circulation in the Sea of Okhotsk in 1986 to 2015, the impact of deep cyclones on the circulation off the northeastern coast of Sakhalin is studied. The circulation in the Sea of Okhotsk is simulated with the COSMO-Ru-INMOM-CICE model configuration, where the COSMO-Ru and INMOM resolve explicitly the mesoscale atmosphere and ocean dynamics and the CICE resolves the ice cover evolution. The extreme atmospheric events associated with the intensive cyclone activity over the Sea of Okhotsk during the cold season are classified. It is found that high velocity is typical of the cyclones coming to the sea from Sakhalin, and wind speed on the periphery is higher for the cyclones coming to the Sea of Okhotsk from the south and southwest. The analysis of water circulation response off the northeastern coast of Sakhalin demonstrates that the meridional current velocity on the shelf increased by several times from the sea surface to the bottom for all types of cyclones. On the edge of the shelf, southern currents intensified in the surface and bottom layers during the passage of cyclones and at the intermediate depths during the passage of fronts. On the continental slope, southern currents intensified in the surface, intermediate, and bottom layers depending on the type of extreme events.

  相似文献   

6.
The results ofnumerical simulation of storm waves near the northeastern coast ofthe Black Sea using different wind forcing (CFSR reanalysis, GFS forecast, and WRF reanalysis and forecast) are presented. The wave modeling is based on the SWAN spectral wave model and the high-resolution unstructured grid for the Tsemes Bay. The quality estimates of wave simulation results for various wind forcing are provided by comparing the model results with the instrumental data on wind waves in the Tsemes Bay. It is shown that the forecast of the maximum wave height for some storms using the WRF wind forcing is more accurate than that based on the GFS forcing.  相似文献   

7.
The Strait of Georgia is a large, semi-enclosed body of water between Vancouver Island and the mainland of British Columbia connected to the Pacific Ocean via Juan de Fuca Strait at the south and Johnstone Strait at the north. During the winter months, coastal communities along the Strait of Georgia are at risk of flooding caused by storm surges, a natural hazard that can occur when a strong storm coincides with high tide. This investigation produces storm surge hindcasts using a three-dimensional numerical ocean model for the Strait of Georgia and the surrounding bodies of water (Juan de Fuca Strait, Puget Sound, and Johnstone Strait) collectively known as the Salish Sea. The numerical model employs the Nucleus for European Modelling of the Ocean architecture in a regional configuration. The model is evaluated through comparisons of tidal elevation harmonics and storm surge with observations. Important forcing factors contributing to storm surges are assessed. It is shown that surges entering the domain from the Pacific Ocean make the most significant contribution to surge amplitude within the Strait of Georgia. Comparisons between simulations and high-resolution and low-resolution atmospheric forcing further emphasize that remote forcing is the dominant factor in surge amplitudes in this region. In addition, local wind patterns caused a slight increase in surge amplitude on the mainland side of the Strait of Georgia compared with Vancouver Island coastal areas during a major wind storm on 15 December 2006. Generally, surge amplitudes are found to be greater within the Strait of Georgia than in Juan de Fuca Strait.  相似文献   

8.
The daily parameters characterizing the field of surface air pressure from 1960 to 2014 are used for assessing the current trends in atmospheric circulation over the Azov–Black Sea region. It was revealed that the decrease in mean air pressure and the weakening of northeastern air trans port which was typical of the atmospheric circulation in this region in the previous period (1960–1990), occurred from 1991–1993 to 2005–2007. In recent 7–8 years, the ongoing air pressure drop is accom panied by the intensification of northeastern air transport.  相似文献   

9.
The study considered two- and three-dimensional models used to compute the Baltic Sea level. It is demonstrated for three floods that the BALT-P three-dimensional hydrodynamic model and the INMOM three-dimensional hydrothermodynamics model successfully simulate extreme sea level fluctuations during the floods in Saint Petersburg. To simulate extreme sea level fluctuations in the Baltic Sea, it is appropriate to use the BALT-P model which requires less input information. The analysis of simulation data for the considered cases reveals that the reason for the occurrence of the second flood maximum is the excitation of the wind-induced fundamental single-node seiche of the Baltic Sea.  相似文献   

10.
Belmadani  Ali  Dalphinet  Alice  Chauvin  Fabrice  Pilon  Romain  Palany  Philippe 《Climate Dynamics》2021,56(11):3687-3708

Tropical cyclones are a major hazard for numerous countries surrounding the tropical-to-subtropical North Atlantic sub-basin including the Caribbean Sea and Gulf of Mexico. Their intense winds, which can exceed 300 km h−1, can cause serious damage, particularly along coastlines where the combined action of waves, currents and low atmospheric pressure leads to storm surge and coastal flooding. This work presents future projections of North Atlantic tropical cyclone-related wave climate. A new configuration of the ARPEGE-Climat global atmospheric model on a stretched grid reaching ~ 14 km resolution to the north-east of the eastern Caribbean is able to reproduce the distribution of tropical cyclone winds, including Category 5 hurricanes. Historical (1984–2013, 5 members) and future (2051–2080, 5 members) simulations with the IPCC RCP8.5 scenario are used to drive the MFWAM (Météo-France Wave Action Model) spectral wave model over the Atlantic basin during the hurricane season. An intermediate 50-km resolution grid is used to propagate mid-latitude swells into a higher 10-km resolution grid over the tropical cyclone main development region. Wave model performance is evaluated over the historical period with the ERA5 reanalysis and satellite altimetry data. Future projections exhibit a modest but widespread reduction in seasonal mean wave heights in response to weakening subtropical anticyclone, yet marked increases in tropical cyclone-related wind sea and extreme wave heights within a large region extending from the African coasts to the North American continent.

  相似文献   

11.
为了评估二十面体网格全球模式MPAS和经纬网格全球模式WRF在中国区域的模拟效果,对比了两模式对2010年10月23—28日中国区域的涡度场、降水场、高度场和温度场的模拟效果,结果表明:在30和60 km准均匀模拟下,MPAS和WRF模式对中国区域500 hPa高度处涡度场的模拟效果都比较好,但都难以模拟出局地的涡度极值中心,两模式模拟效果相当;从第3天的日累积降水的模拟结果来看,两模式基本都能模拟出降水分布情况,MPAS模式模拟结果整体要优于WRF,WRF对降水中心的模拟要优于MPAS;MPAS对高层高度场和温度场的模拟较好,WRF对中、低层的模拟较好,且WRF的预报时效性比MPAS长;网格分辨率的提高对MPAS模式模拟效果的改善不大,而WRF模式的模拟效果得到了提高.  相似文献   

12.
地表作为大气模块的下垫面,为大气模块提供边界条件,地形对于模式结果的准确性起到至关重要的作用。现有的陆面过程模式在陆面同一网格内的次网格单元采用相同的大气强迫量,没有考虑次网格地形对网格内大气强迫量的影响,这关系到模式对气象要素和陆气交换量的模拟水平。本文在陆面模式NOAH处理次网格单元的同时,将输入的大气强迫量根据其与地形高度的关系进行修订,提出新的次网格地形的参数化方案,并引入到WRF(Weather Research and Forecasting)模式中进行数值试验,通过3组数值模拟试验,与未改进的方案和细网格方案分析比较,探讨新参数化方案对WRF 模式模拟结果的影响。结果表明:地形越复杂区域,次网格地形的影响越大。本文引入的新陆面次网格地形方案对天山山脉和昆仑山脉以及青藏高原南部的地表气温的模拟有较大改善,模拟的地表气温在大范围区域内都更贴近细网格方案。虽然新陆面次网格地形方案和细网格试验都对温度的模拟结果都有改善,但新陆面次网格地形方案对降水的模拟改善甚微,而细网格试验对降水模拟却有改进,这是由于细网格试验在陆面和大气网格都进行了细化,而新陆面次网格地形方案只考虑了陆面次网格的影响。具体来说,新陆面次网格地形方案对温度的模拟结果改进是通过改变地表向上长波和地表感热实现的。而细网格试验由于同时细化了大气和陆面的空间网格,对降水和温模拟的改进是通过综合改变地表能量平衡实现的。  相似文献   

13.
本文利用复杂地形条件下的热带有限区数值预报模式和ECMWF格点资料,较好地模拟了1981年1月上旬的一次南海冷涌过程,分析了冷涌的基本特征,并初步研究了冷涌的中纬度激发条件和低纬环流对冷涌的可能影响。   相似文献   

14.
The atmospheric conditions during an observed case of open cellular convection over the North Sea were simulated using the Weather Research and Forecasting (WRF) numerical model. Wind, temperature and water vapour mixing ratio profiles from the WRF simulation were used to initialize an idealized version of the model, which excluded the effects of topography, surface inhomogeneities and large-scale weather forcing. Cells with an average diameter of 17.4 km developed. Simulations both with and without a capping inversion were made, and the cell-scale kinetic energy budget was calculated for each case. By considering all sources of explicit diffusion in the model, the budgets were balanced. In comparison with previous work based on observational studies, the use of three-dimensional, gridded model data afforded the possibility of calculating all terms in the budgets, which showed that the important terms in the budgets were buoyancy, pressure balance and inter-scale transfer to subgrid scales. Cells were also composited to calculate the average cell-scale flow and each of the budget terms on two-dimensional cross-sections through the cells, parallel and perpendicular to the mean wind direction.  相似文献   

15.
The analysis of surges in the Sea of Azov is carried out on the basis of three-dimensional nonlinear model using the prognostic fields of near-water wind and atmospheric pressure. Carried out is the comparison of the results of numerical computations with the data of direct measurements of the sea level at a number of coastal stations. Studied is an effect of atmospheric impact intensity variations on the maximum values of sea level deviations and current velocities, as well as on the admixture transformation features. The analysis of results of numeric computations enabled to make a conclusion on the dependence of the pollution dissipation time on the wind speed and on the location of pollution areas.  相似文献   

16.
Climate changes over China from the present (1996–2005) to the future (2046–2055) under Representative Concentration Pathways 4.5 (RCP4.5) and Representative Concentration Pathways 8.5 (RCP8.5) scenarios are projected using the Weather Research and Forecasting (WRF) model, version 3.7.1. The WRF model was driven by the Global 6-Hourly Bias-corrected Coupled Model Intercomparison Project, Phase 5 (CMIP5), Community Earth System Model dataset over China with a resolution of 30?km. The results demonstrate that WRF downscaling generally simulates more reliable spatial distributions of surface air temperature and precipitation in China with higher spatial pattern correlations and closer in magnitude to the Community Climate System Model, version 4.0, simulation results, especially near mountain ranges. The WRF projections for temperature and precipitation for the future under the two emission scenarios are compared with the present simulation. Generally stronger warming, both in mean temperature and extreme statistics, is produced by WRF-RCP8.5 than by WRF-RCP4.5. The projections for precipitation changes are more varied with season and region for both scenarios.  相似文献   

17.
Storm surges in the Western Baltic Sea: the present and a possible future   总被引:3,自引:1,他引:2  
Globally-coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature or mean sea level. However, the global models do not perform as well on regional/local scales. Here, we present results from four 100-year ocean model experiments for the Western Baltic Sea. In order to simulate storm surges in this region, we have used the General Estuarine Transport Model (GETM) as a high-resolution local model (spatial resolution ≈ 1?km), nested into a regional atmospheric and regional oceanic model in a fully baroclinic downscaling approach. The downscaling is based on the global model ECHAM5/MPI-OM. The projections are imbedded into two greenhouse-gas emission scenarios, A1B and B1, for the period 2000–2100, each with two realisations. Two control runs from 1960 to 2000 are used for validation. We use this modelling system to statistically reproduce the present distribution of surge extremes. The usage of the high-resolution local model leads to an improvement in surge heights of at least 10% compared to the driving model. To quantify uncertainties associated with climate projections, we investigate the impact of enhanced wind velocities and changes in mean sea levels. The analysis revealed a linear dependence of surge height and mean sea level, although the slope parameter is spatially varying. Furthermore, the modelling system is used to project possible changes within the next century. The results show that the sea level rise has greater potential to increase surge levels than does increased wind speed. The simulations further indicate that the changes in storm surge height in the scenarios can be consistently explained by the increase in mean sea level and variation in wind speed.  相似文献   

18.
Abstract

Changes to the Beaufort Sea shoreline occur due to the impact of storms and rising relative sea level. During the open‐water season (June to October), storm winds predominantly from the north‐west generate waves and storm surges which are effective in eroding thawing ice‐rich cliffs and causing overwash of gravel beaches. Climate change is expected to be enhanced in Arctic regions relative to the global mean and include accelerated sea‐level rise, more frequent extreme storm winds, more frequent and extreme storm surge flooding, decreased sea‐ice extent, more frequent and higher waves, and increased temperatures. We investigate historical records of wind speeds and directions, water levels, sea‐ice extent and temperature to identify variability in past forcing and use the Canadian Global Coupled Model ensembles 1 and 2 (CGCM1 and CGCM2) climate modelling results to develop a scenario forcing future change of Beaufort Sea shorelines. This scenario and future return periods of peak storm wind speeds and water levels likely indicate increased forcing of coastal change during the next century resulting in increased rates of cliff erosion and beach migration, and more extreme flooding.  相似文献   

19.
Simulations of the East Asian summer monsoon for the period of 1979–2001 were carried out using the Weather Research and Forecast (WRF) model forced by three reanalysis datasets (NCEP-R2, ERA-40, and JRA-25). The experiments forced by different reanalysis data exhibited remarkable differences, primarily caused by uncertainties in the lateral boundary (LB) moisture fluxes over the Bay of Bengal and the Philippine Sea. The climatological mean water vapor convergence into the model domain computed from ERA-40 was about 24% higher than that from the NCEP-R2 reanalysis. We demonstrate that using the ensemble mean of NCEP-R2, ERA-40, and JRA-25 as LB forcing considerably reduced the biases in the model simulation. The use of ensemble forcing improved the performance in simulated mean circulation and precipitation, inter-annual variation in seasonal precipitation, and daily precipitation. The model simulated precipitation was superior to that in the reanalysis in both climatology and year-to-year variations, indicating the added value of dynamic downscaling. The results suggest that models having better performance under one set of LB forcing might worsen when another set of reanalysis data is used as LB forcing. Use of ensemble mean LB forcing for assessing regional climate model performance is recommended.  相似文献   

20.
Storm surges and wind waves in the Taganrog Bay (the Sea of Azov) are simulated with the ADCIRC+SWAN numerical model, and the mechanisms of the Don River delta flooding are analyzed. It is demonstrated that the most intensive flooding of the Don River delta occurs in case of southwestern wind with the speed of not less than 15 m/s. A storm surge leads to the intensification of wind waves in the whole Taganrog Bay due to the general sea level rise. As a result, the significant wave height near the Don River delta increases by 0.5–0.6 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号