首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The importance of phytoplankton cell death is being increasingly recognized,however,there are still no published reports on this in Xiamen Bay.In this study,the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December2012 to December 2013,using a cell digestion assay,which is an effective method to analyze dead/living cells in complex natural phytoplankton communities.The percentages of dead cells(%DC) in the total phytoplankton in summer(16%±6%) were lower than those in winter(27%±16%).Six groups of phytoplankton(G1-G6) were categorized by flow cytometry.These phytoplankton communities with diverse seasonal variations in%DC had different responses to environmental constraints.The main factors affecting mortality were temperature and salinity,while nutrient concentration showed little influence on phytoplankton death.Additionally,our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton%DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters(such as Chl a).Moreover,the lowest mean%DC in total phytoplankton was 16%±6%at our sample site,which is in a subtropical area with high water temperatures,full solar radiation,and rich nutrients.This indicates that phytoplankton cell death is a process that cannot be ignored.In summary,phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.  相似文献   

3.
This study aims to investigate the seasonal variations in copepod community structure and prosome length of dominant species from March 2009 to January 2010 around artificial reefs in Xiaoshi Island,Yellow Sea,Weihai,China.Samples were collected using two types of plankton net(Model I and Model II) for different-sized copepods.The number of taxon was calculated from the data of both the net types,while the copepod abundance was done using the samples from Model II only.Sixteen species of planktonic copepods,including 5 dominant species,were recorded.Results reveal that Oithona similis was the first dominant species from March to June,and was replaced by Paracalanus parvus in September;both dominated the copepod community in January.Acartia hongi was the second dominant species from March to September.Centropages abdominalis was the third dominant species from March to June,and was replaced by O.similis in September and Corycaeus affinis in January.C.affinis was the fourth dominant species in September.Population density of the dominant copepods was compared with that of other similar regions.We found that the dominant species were mostly small copepods(<1 mm) except for adult Centrapages abdominalis.Seasonal variation in prosome length of O.similis,C.abdominalis,and C.affinis,and their copepodites were studied for the first time in China.For P.parvus and A.hongi,seasonal trends in prosome length variation were similar with those in Jiaozhou Bay,Yellow Sea,Qingdao,China,in a similar temperate domain.The results are helpful for future calculation of copepod biomass and production,and for investigation of the relationship between copepods and fish resources.  相似文献   

4.
A total of 348 species belonging to 8 phyla and 125 genera were observed in seasonally sampled phytoplankton of tidal rivers from 13 sampling sites around Luoyuan Bay, and all field samplings were carried out in productive period(March/June/August/December) at ebb tide. Bacillariophyta species were the most abundant species, followed by Chlorophyta, Cyanophytes, Euglenophyta, Cryptophyta, Dinophyta, Xanthophyta and Chrysophytas. Seasonal distribution index(SDI) value ranged from 0.63 to 0.86, which meant that species found at those sites in 4 seasons tended to be largely different. Phytoplankton individuals ranged from 5.939×10~4 ind L~(-1) in winter to 75.31×10~4 ind L~(-1) in autumn. Phytoplankton biomass ranged from 0.620 mg L~(-1) in summer to 2.373 mg L~(-1) in autumn. The grey correlation analysis(GCA) showed that the nutrient variables played an important role in the influence on phytoplankton community in every season. The canonical correspondence analysis(CCA) revealed impact of environmental variables on the different species, most of Bacillariophyta species were negative correlation with nutrients(TP and NH_3-N) in the four seasons, Chlorophyta species and Cyanophyta species did not show obvious correlation with environment variables in every season. The combination of GRA analysis and CCA analysis provided a method to quantitatively reveal the correlation between phytoplankton community and environmental variables in water body of tidal rivers at this region.  相似文献   

5.
Macrobenthos samples were collected from the Yellow and East China Seas in four seasons during 2011 to 2012. The seasonal distribution of macrobenthos and its relationship with environmental factors were analyzed. A total of 562 macrobenthic species were identified, with polychaetes and mollusks accounting for 67% of the total number of species. A similarity percentage(SIMPER) analysis showed that the dominant species were bivalve mollusks in the Yellow Sea and small-sized polychaetes in the East China Sea. A two-factor analysis of variance showed significant seasonal variations in species number, density and diversity index, and significant regional differences of biomass and density. Two-factor community similarity analysis also showed significant seasonal and regional differences in macrobenthic communities. Canonical correspondence analysis indicated that the main environmental factors af fecting the macrobenthic communities were water depth, temperature, dissolved oxygen, and inorganic nitrogen. The results demonstrate significant regional differences and seasonal variations in macrobenthos in the two seas. Sediment properties and water mass characteristics are speculated to be the causes of regional differences.  相似文献   

6.
The seasonal dynamics of a crustacean zooplankton community in Erhai Lake was investigated from May 2010 to April 2011. In total, 11 species were recorded, including six (6 genera) cladoceran and five (5 genera) copepod species. The crustacean zooplankton densities ranged from 24.3 to 155.4 ind./L. In winter and spring, the large-bodied cladoceran Daphnia galeata dominated the crustacean plankton community. In summer and autumn, when the colonial or filamentous algae dominated the phytoplankton communities, the small-bodied species (e.g. Bosminafatalis, Ceriodaphnia quadrangular, and Mesocyclops leuckarti) replaced the large-bodied ones. One-way ANOVA and redundancy analysis revealed that community structure was dependent upon total nitrogen, total phosphorus, water temperature, transparency, and the biomass of small algae. The variation in both phytoplankton structure and environmental variables were important factors in the seasonal succession of crustacean zooplankton structure in Erhai Lake.  相似文献   

7.
To understand the responses of a freshwater ecosystem to the impoundment of the Three Gorges Reservoir (TGR), phytoplankton was monitored in the tributaries of the TGR area. From August 2010 to July 2011, algal species composition, abundance, chlorophyll a and other environmental parameters were investigated in the Gaolan River, which is a tributary of Xiangxi River. Thirty-one algal genera from seven phyla were identified. Results show that the lowest concentrations of total phosphorus (TP) and total nitrogen (TN) were 0.06 mg/L and 1.08 mg/L, respectively. The values of TP and TN exceeded the threshold concentration of the eutrophic state suggested for freshwater bodies. In the Gaolan River, the succession of phytoplankton showed clear seasonal characteristics. Different dominant species were observed among seasons under the control of environment factors. In spring and summer, the dominant species were Nitzschia sp. and Aphanizomenon flos-aquae (L.) Ralfs, the limiting nutrient was NO 3 ? -N, and the key environmental factor for phytoplankton population succession was water temperature (WT). In autumn and winter, the dominant species were A. flos-aquae and Chlorella sp., the limiting nutrient was PO 4 3? -P, and the key environmental factors were transparency and WT. This study illustrates the influence of physical and chemical factors on phytoplankton seasonal succession in a tributary of TGR since the downstream regions of Xiangxi River and Gaolan River became reservoirs after impoundment of the Three Gorges Dam. We suggest that this activity has significantly affected water quality in the dam area.  相似文献   

8.
Differences among species in prosome length and in species’ response to environmental factors do exist. Therefore, it is useful to examine prosome length for different copepod species in variable environments. Seasonal variations in prosome length of four small copepods and their copepodite stages in the Jiaozhou Bay were compared and the relative influence of temperature, salinity, and chlorophyll concentration were examined. Two peaks were found in the mean prosome length of Paracalanus parvus (in early winter and May). For Acartia bifilosa, the maximum values of all copepodites occurred mainly from February to April, and decreased to the bottom in July. Prosome length of Acartia pacifica peaked when it first appeared in June, then reached to the minimum in July. Parvocalanus crassirostris only appeared from late summer to autumn and the mean prosome length showed no clear changes. Correlations of adult prosome length with environmental factors were evaluated. For the four species, temperature was negatively correlated to prosome length except for P. crassirostris. But the different species varied markedly in their responds to temperature. A. bifilosa showed a more definite trend of size variation with temperature than P. parvus and A. pacifica. Correlations of prosome length with salinity were significantly positive for almost all the small copepods. The relationship between chlorophyll concentration and prosome length was complicated for these copepods, but for P. parvus, chlorophyll concentration was also an important affecting factor. Furthermore, investigation needs to be done on food quality for some copepod. These results are essential to estimate the biomass and the production, and to understand these small copepods’ population dynamics in this human-affected bay.  相似文献   

9.
During the first Chinese Scientific Expedition to the Arctic in July - September 1999, cyanobacteria in the Bering Sea were measured by epifluorescence microscopy. Cyanobacterial abundance varied from 0 to 7. 93 × 103 cell/ml and decreased along a northerly directed latitudinal gradient in horizontal distribution. Cyanobacteria did not occur at station Bl - 12 (north of 60 °N). Vertically, high cya-nobacterial abundance appeared in the upper 25 - 50 m and decreased rapidly below 50 m. There were no cyanobacteria at the 150 m. Seawater temperature and NH4+ -N are suggested to affect the distribution of cyanobacteria.  相似文献   

10.
Phytoplankton and environmental variables were measured monthly from July 2009 to August 2011 in the Maixi River from the estuary to Baihua Reservoir in the Maotiao River catchment,southwestern China,to understand phytoplankton community structure and environmental factors.The relationship between phytoplankton community structure and environmental factors including hydrological,meteorological,physical,and chemical variables were explored using multivariate analysis.A total of 81 taxa of phytoplankton were identified,which were mainly composed of chlorophyta,bacillariophyta,and cyanobacteria.The phytoplankton community was dominated by Pseudanabaena limnetica during summer and fall and by Cyclotella meneghiniana during winter and spring.The abundance of phytoplankton ranged from 0.24×104 cells/L to 33.45×106 cells/L,with the minimum occurring during February 2010 and the maximum during July 2009.The phytoplankton community was dominated mainly by cyanobacteria from April to September,and by bacillariophyta and pyrrophyta from October to March.Canonical correspondence analysis showed that temperature,pH values,and orthophosphate were the most important driving factors regulating the composition and dynamics of the phytoplankton community in the estuary.Cyanobacteria and euglenophyta abundance and biomass were affected mainly by temperature and pH values,while most chlorophyta and bacillariophyta were influenced by the concentrations of nutrients.  相似文献   

11.
In spring and summer 2011,the macro-and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables.The total number of species increased slightly from spring(131 species)to summer(133)whereas the percentage of Mollusca decreased signifi cantly.The index of relative importance(IRI)indicated that the top fi ve important species changed completely from spring to summer.Species number,abundance and biomass in summer were signifi cantly higher than in spring,but no signifi cant dif ference was observed among areas(coastal,transitional and oceanic areas,divided basically from inshore to of fshore).Species richness(d),diversity(H′)and evenness(J′)showed no signifi cant seasonal or spatial variations.Cluster analysis and n MDS ordination identifi ed three benthic communities from inshore to of fshore,corresponding to the three areas.Analysis of Similarity(ANOSIM)indicated the overall signifi cant dif ference in community structure between seasons and among areas.K-dominance curves revealed the high intrinsic diversity in the off shore area.Canonical correspondence analysis showed that the coastal community was positively correlated to total nitrogen and total organic carbon in spring,but negatively in summer;oceanic community was positively correlated to total nitrogen and total organic carbon in both seasons.Species such as Coelorhynchus multispinulosus,Neobythites sivicola,Lepidotrigla alata,Solenocera melantho,Parapenaeus fi ssuroides,Oratosquilla gonypetes and Spiropagurus spiriger occurred exclusively in the of fshore oceanic area and their presence may refl ect the infl uence of the off shore Kuroshio Current.  相似文献   

12.
Based on the field survey data of four cruises in 2011, all phytoplankton communities in the southern Yellow Sea (SYS) were investigated for the species composition, dominant species, abundance and diversity indices. A total of 379 species belonging to 9 phyla were identified, of which the most abundant group was Bacillariophyta (60.9%), followed by Pyrrophyta (23.7%) and Haptophyta (6.9%). The seasonal distribution of abundance was: summer (4137.1×103 ind m?3) > spring (3940.4×103 ind m?3) > winter (3010.6×103 ind m?3) > autumn (340.8 ×103 ind m?3), while the horizontal distribution showed a decreasing tendency from inshore to offshore regions. The dominant species of phytoplankton varied in different seasons. The dominant species were Thalassiosira pacifica, Skeletoema spp. and Chaetoceros cinctus in spring, Chaetoceros debbilis, Chaetoceros pseudocurvisetus and Chaetoceros curvisetus in summer, Thalassiosira curviseriata, Alexandrium catenella and Ceratium fusus in autumn, Paralia sulcata, Phaeocystis sp. and Bacillaria paradoxa in winter, respectively. In SYS, the group of temperate coastal species was the major ecotype, and the groups of the central SYS species and oceanic species were also important constituents. The average values of Shannon-Weaver diversity index (H’) and Pielou evenness index (J) were 2.37 and 0.65 respectively. The indices H’ and J in the open sea were higher than those in coastal waters. Obvious co-variation tendencies between H’ and J were observed in all but the summer cruise of this survey.  相似文献   

13.
With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010–July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1, 256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H′) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H′ value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagellates was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.  相似文献   

14.
15.
Both nitrate (NO3) and soluble reactive phosphate (PO43−) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s. Within the same period in the sea area, with surface salinity>30, NO3 concentration has shown an obvious increase, PO43− has not changed greatly and dissolved reactive silica (SiO32−) has deceased dramatically. An examination of the elemental ratio of NO3 to PO43− at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously. In comparison, the elemental ratio of dissolved inorganic nitrogen (DIN) to PO43− in surface seawater, with salinity>22, has shown a clearly increasing trend. Furthermore, an overall historical change of the SiO32−:PO43− ratio has undergone a reverse trend in this area. Based on the changes of SiO32−:PO43− and DIN:PO43− ratios, we can conclude that an overall historical change of SiO32−:DIN ratio has decreased in this area from the 1950–1960s to 2000s. The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results. A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made. The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985–1986 to 69.8% during 2004–2005. Furthermore, the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period, while the abundance of dinoflagellates has increased dramatically, from 0.7% to 25.4%.  相似文献   

16.
In tropical waters where temperatures are relatively stable,we investigated whether the relationship between phytoplankton growth and grazing loss rate acros s different habitats around Peninsular Malaysia can be attributed to its eutrophication states.We measured phytoplankton growth(μ) and grazing loss(g) rates in waters off Bachok Marine Research Station(BMRS),located northeast of Peninsular Malaysia.Chlorophyll-a(chl-a) concentration ranged from 2.90 to 15.78 μg/L and was dominated by nanoand micro-phytoplankton(2 μm in size).Using the Landry and Hassett dilution method,μ at BMRS ranged from 1.02 to 1.58/d whereas g varied from 0.07 to 0.88/d.Grazing accounted for 35% of the primary production at BMRS.A systematic review of available data in waters around Peninsular Malaysia,revealed how μ fluctuated over a wide range(0.01-1.80/d) and correlated with chl a distribution(R2=0.181,P0.001).However,the relationship was only significant at 9 μg/L chl a for mesotrophic waters and 16 μg/L chl a for eutrophic waters.In contrast,g ranged from 0.00 to 1.01/d,and correlated with μ at all locations.The g/μslope ranged from 19% to 84%,and was generally similar for waters around Peninsular Malaysia.However,all the g/μ slopes had a positive y-intercept except for BMRS,and this seemed to suggest the availability of alternative prey supporting grazing at the other stations.  相似文献   

17.
To better understand the spatial-temporal variation in phytoplankton community structure and its controlling factors in Jiaozhou Bay,Qingdao,North China,four seasonal sampling were carried out in 2017.The phytoplankton community structure and various environmental parameters were examined.The phytoplankton community in the bay was composed of mainly diatoms and dinoflagellates,and several other species of Chrysophyta were also observed.Diatoms were the most dominant phytoplankton group throughout the year,except in spring and winter,when Noctiluca scintillans was co-dominant.High Si/N ratios in summer and fall reflect the high dominance of diatoms in the two seasons.Temporally,the phytoplankton cell abundance peaked in summer,due mainly to the high temperatures and nutrient concentrations in summer.Spatially,the phytoplankton cell abundance was higher in the northern part of the bay than in the other parts of the bay in four seasons.The diatom cell abundances show significant positive correlations with the nutrient concentrations,while the dinoflagellate cell abundances show no correlation or a negative correlation with the nutrient concentrations but a significant positive correlation with the stratification index.This discrepancy was mainly due to the different survival strategies between diatoms and dinoflagellates.The Shannon-Wiener diversity index(H')values in the bay ranged from 0.08 to 4.18,which fell in the range reported in historical studies.The distribution pattern of H' values was quite different from that of chlorophyll a,indicating that the phytoplankton community structure might have high biomass with a low diversity index.Compared with historical studies,we believe that the dominant phytoplankton species have been changed in recent years due mainly to the changing environment in the Jiaozhou Bay in recent 30 years.  相似文献   

18.
Most urban rivers play an important role in urban flood control and drainage in China, but pollution is fast becoming an issue of greater importance in water management. In this study, 63 zooplankton species were recorded in four downtown rivers in Shanghai between November 2007 and October 2008. Of these, 44 species belonged to the Rotifera, 13 to Cladocera, and six to Copepoda. The three most frequently occurring zooplankton (Brachionus calyciflorus, Microcyclops Ieuckarti, and Asplanchna priodonta) accounted for 80.00%, 76.84%, and 53.68%, respectively. Rotifera were found to be dominant, comprising 86.26% of total zooplankton, while cladoceran and copepod abundance amounted to 5.08% and 8.67%, respectively. Water temperature, salinity, electrical conductivity, and total nitrogen were of the greatest significance in the occurrence of zooplankton. Two species (Schmackeria forbesi and Lepadella ovalis) were notably more sensitive to environmental factors such as salinity and electrical conductivity than other species. The population size and community were inversely correlated with the increasing nutrient levels of the four rivers, suggesting that the water quality of the four rivers had been gradually recovering from a severe eutrophic state and that water conditions of the rivers had been gradually improved.  相似文献   

19.
The ecological environment in the East China Sea (ECS) and the Yellow Sea (YS) has changed significantly due to sea-level rising and the Kuroshio incursion since the last deglaciation. In this study, biomarker records of core F10B from the mud area southwest off Cheju Island (MSWCI) were generated to evaluate phytoplankton productivity and community structure changes in response to environmental evolution during the last 14 kyr. The contents of diatom, dinoflagellate and haptophyte biomarkers (brassicasterol, dinosterol and C37 alkenones) display similar trends, with increasing phytoplankton productivity during the last 14 kyr due to the increased influences of the Kuroshio, and especially due to the eddy-induced upwelling during the late Holocene. On the other hand, the contents of terrestrial biomarkers (C28 +C30 +C32 n-alkanols) and terrestrial organic matter (TOM) proxies (TMBR’ and BIT) all reveal decreasing TOM input into the area around the sampling site for the 14 kyr, mostly due to sea-level rising. Phytoplankton biomarker ratios reveal a shift from a haptophyte-dominated community at 6.2–2.5 kyr BP to a diatom-dominated community at 2.5–1.45 kyr BP, likely caused by a stronger cold eddy circulation system at 2.5–1.45 kyr BP in the MSWCI.  相似文献   

20.
We present a GIS-based habitat suitability index(HSI) model to identify suitable areas for Zostera marina L. restoration in the subtidal zone of Xiaoheishan Island. The controlling factors in the model,in order of importance,are Secchi depth,sediment composition,water temperature,salinity,current velocity,water depth and nutrient quality. Specific factor piecewise functions have been used to transform parameter values into normalized quality indexes. The weight of each factor was defined using expert knowledge and the analytic hierarchy process(AHP) method. All of the data thus obtained were interpolated using the inverse distance weighted(IDW) interpolation method to create maps for the entire region. In this study,the analysis of habitat suitability in the subtidal zone of Xiaoheishan Island was conducted for four seasons. According to the GIS-based HSI model,the optimal habitat of Z ostera marina L. appears in spring,although habitat remains suitable all year round. On the whole,the optimum site for eelgrass restoration is located in the eastern region,followed by the western and southern regions. We believe that the GIS-based HSI model could be a promising tool to select sites for Z ostera marina L. restoration and could also be applicable in other types of habitat evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号