首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored, based on the daily average of NCEP/NCAR reanalysis data, the OLR data and the western North Pacific tropical cyclone best-track data from 1979 to 2008. The mechanism of the influences of ISO on TC movement and the corresponding large-scale circulation were discussed by a trajectory model. It was found as follows.(1) During the SCS summer monsoon, the SCS convection exhibits the ISO features with active phases alternating with inactive phases. The monsoon circulation patterns are significantly different during these two phases. When the SCS convection is active(inactive), the SCS-WNP monsoon trough stretches eastward(retreats westward) due to the activity(inactivity) of SCS monsoon, and the WNP subtropical high retreats eastward(stretches westward), which enhances(suppresses) the monsoon circulation.(2) The amount of TC genesis in the active phase is much more than that in the inactive phase. A majority of TCs form west of 135 °E during the active phases but east of 135 °E in the inactive phases.(3) The TCs entering the area west of 135 °E and south of 25 °N would move straight into the SCS in the active phase, or recurve northward in the inactive phase.(4) Simulation results show that the steering flow associated with the active(inactive)phases is in favor of straight-moving(recurving) TCs. Meanwhile, the impacts of the locations of TC genesis on the characteristics of TC track cannot be ignored. TCs that occurred father westward are more likely to move straight into the SCS region.  相似文献   

2.
This study focuses on the decadal variability of tropical cyclones (TC) over the Western North Pacific (WNP) and how these changes are related to the Madden–Julian Oscillation (MJO). It was done with the help of the Real-time Multivariate MJO index from the Australian Government Bureau of Meteorology of the Centre for Australian Weather and Climate Research, TC data from the Joint Typhoon Warming Center best track datasets, and daily and monthly datasets from the NCEP/NCAR reanalysis center. The results show that the TC frequency in the WNP exhibited a statistically significant decrease during 1998–2010 compared to during 1979–1997. The decrease in TC frequency in the WNP mainly occurred during MJO active phases (i.e., phases 4, 5, 6, and 7). Further investigation of the climate background and the propagation differences of the MJO between 1979–1997 and 1998–2010 was performed. The La Ni?a-like tropical sea surface temperature cooling caused stronger Walker circulation and thus induced unfavorable atmosphere conditions for WNP TC genesis including a low-level easterly anomaly, a negative relative vorticity anomaly, an increase in sea-level pressure, and stronger vertical wind shear. Moreover, shortening of the MJO cycle, decline in the duration of the active phases in the WNP, and easterly anomaly and shrinkage of the convection area during MJO active phases may also partly explain the decadal variation of TC.  相似文献   

3.
Previous studies suggest that spring SST anomalies over the northern tropical Atlantic(NTA) affect the tropical cyclone(TC) activity over the western North Pacific(WNP) in the following summer and fall. The present study reveals that the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is not stationary. The influence of spring NTA SST on following summer–fall WNP TC genesis frequency is weak and insignificant before, but strong and significant after, the late 1980 s. Before the late 1980 s, the NTA SST anomaly-induced SST anomalies in the tropical central Pacific are weak, and the response of atmospheric circulation over the WNP is not strong. As a result, the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is insignificant in the former period. In contrast,after the late 1980 s, NTA SST anomalies induce pronounced tropical central Pacific SST anomalies through an Atlantic–Pacific teleconnection. Tropical central Pacific SST anomalies further induce favorable conditions for WNP TC genesis,including vertical motion, mid-level relative humidity, and vertical zonal wind shear. Hence, the connection between NTA SST and WNP TC genesis frequency is significant in the recent period. Further analysis shows that the interdecadal change in the connection between spring NTA SST and following summer–fall WNP TC genesis frequency may be related to the climatological SST change over the NTA region.  相似文献   

4.
Using data of tropical cyclones making landfall in China between May and October each year during the 1951-2015 period from the Shanghai Typhoon Institute, China Meteorological Administration (CMA-STI) Tropical Cyclone (TC) Best Track Dataset, we developed a method of rapid classification of TC tracks based on their average movement velocities and noted three types of tracks: a westward type, a northwestward type, and a northward type. We compared the climate characteristics of the westward and northward types and discuss their corresponding causes. The results show that the westward and northward types account for more than 80% of all TCs making landfall in China. Their climate characteristics, such as the frequency, landfall intensity, duration over land, velocity over land, movement distance over land, and other changes, show both similarities and differences. Both TC types show significant increases in their over-land durations, indicating that the effects of these landfalling TCs are increasing. However, the causes of these two TC types are similar and different in certain respects. The changes in large-scale steering flows have significantly affected the frequencies and over-land velocities of the landfalling TCs of the westward and northward types. In addition, differences between the changes in formation locations of the westward and northward types may lead to significant difference in their landfall intensities.  相似文献   

5.
This study compares the atmosphere-only HighResMIP simulations from FGOALS-f3-H(FGOALS) and MRIAGCM3-2-S(MRI) with respect to tropical cyclone(TC) characteristics over the Western North Pacific(WNP) for the July–October months of 1985–2014. The focus is on investigating the role of the tropical easterly jet over the Western Pacific(WP_TEJ) in modulating the simulation biases in terms of their climatological distribution and interannual variability of WNP TC genesis frequency(TCGF) based on the a...  相似文献   

6.
Tropical cyclone genesis potential index(GPI) is a useful metric for gauging the performance of global climate models in the simulation of tropical cyclone(TC) genesis.The performance of LASG/IAP AGCM GAMIL2.0 in the simulation of GPI over the western North Pacific(WNP) is assessed in this paper.Since GPI depends on large scale environmental factors including low-level vorticity at 850 hPa,relative humidity at 700 hPa,vertical wind shear between 850 and 200 hPa,maximum potential intensity(MPI),and vertical velocity,the bias of GPI simulation is discussed from the perspective of thermal and dynamical factors.The results are compared with the ECMWF reanalysis data(ERA40).The analyses show that both the climatological spatial pattern and seasonal cycle of GPI over the WNP are reasonably simulated by GAMIL2.0,but due to the overestimation of relative humidity,the simulated GPI extends to 170°E,about 10°east to that in the reanalysis data.It is demonstrated that the bias in the simulation of monsoon trough,which is about 5°north to the reanalysis,leads to an overestimation of GPI during May-June and September-October,but an underestimation during July-August.Over the WNP,the response of GPI to ENSO is well captured by GAMIL2.0,including the eastward(westward) shift of TC genesis location during El Nin o(La Nin a) years.However,the anomalous convective center associated with El Nin o shifts westward about 20°in comparison to ERA40,which leads to the biases in both vertical velocity and relative humidity.These eventually result in the westward deflection of the boundary between the positive and negative GPI centers along 20°-30°N.The results from this study provide useful clues for the future improvement of GAMIL2.0.  相似文献   

7.
Tropical cyclone(TC) genesis over the western North Pacific(WNP) is analyzed using 23 CMIP5(Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index(GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets(ERA-Interim, NCEP/NCAR Reanalysis-1, and NCEP/DOE Reanalysis-2). Spatial distributions of July–October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTr ACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982–2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multimodel ensemble(MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20?N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982–1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21 st century, and then starts to decrease at the end of the 21 st century under the representative concentration pathway(RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of20?N, indicating more TCs could possibly be expected over the WNP under future global warming.  相似文献   

8.
This study introduces a new global climate model—the Integrated Climate Model(ICM)—developed for the seasonal prediction of East Asian–western North Pacific(EA–WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics(CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of El Nińo as one of the most important factors on EA–WNP climate. ICM successfully reproduces the distribution of sea surface temperature(SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA–WNP climate—El Nińo and the East Asia–Pacific Pattern—are also well simulated in ICM, with realistic spatial pattern and period. The simulated El Nińo has significant impact on EA–WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA–WNP climate.  相似文献   

9.
Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.  相似文献   

10.
Based on the satellite data from the National Oceanic and Atmospheric Administration and the NCEP/NCAR reanalysis data, the variation of the intensity of convection over the Intertropical Convergence Zone(ITCZ) in summer and its impacts on tropical cyclones are studied. In this paper, an intensity index of the ITCZ is proposed according to Outgoing Longwave Radiation(OLR) in the region of(5°–20°N, 120°–150°E) in the western North Pacific(WNP). Then strong and weak ITCZ years are classified and different variables during the strong/weak ITCZ years are analyzed. The composite results show that the ITCZ anomaly is connected to the general atmospheric circulation and SST distribution. In the strong ITCZ years, the subtropical anticyclone weakens and shifts northward. Besides, there is salient cyclonic anomaly at the low level and anticyclonic anomaly at the high level. SST patterns in the preceding winter resemble to those of La Nina. It could persist into the succeeding summer. However, it is opposite in the weak ITCZ years. The impact of the ITCZ anomaly on the tropical cyclone(TC) formation and track is also discussed. There are more TCs over the WNP(5°–20°N, 120°–150°E) in the strong ITCZ years and there is a significant increase in the northward recurving TCs. In the weak ITCZ years, fewer TCs occur and the frequency of the northwestward track is higher.  相似文献   

11.
This study investigates the influences of tropical Indian Ocean(TIO) warming on tropical cyclone(TC)genesis in different regions of the western North Pacific(WNP) from July to October(JASO) during the decaying El Nio. The results show significant negative TC frequency anomalies localized in the southeastern WNP. Correlation analysis indicates that a warm sea surface temperature anomaly(SSTA) in the TIO strongly suppresses TC genesis south of 21°N and east of 140°E in JASO. Reduced TC genesis over the southeastern WNP results from a weak monsoon trough and divergence and subsidence anomalies associated with an equatorial baroclinic Kelvin wave. Moreover,suppressed convection in response to a cold local SSTA, induced by the increased northeasterly connected by the wind-evaporation-SST positive feedback mechanism, is found unfavorable for TC genesis. Positive TC genesis anomalies are observed over higher latitudinal regions(at around 21°N, 140°E) and the western WNP because of enhanced convection along the northern flank of the WNP anomalous anticyclone and low-level convergence,respectively. Although local modulation(e.g., local SST) could have greater dominance over TC activity at higher latitudes in certain anomalous years(e.g., 1988), a warm TIO SSTA can still suppress TC genesis in lower latitudinal regions of the WNP. A better understanding of the contributions of TIO warming could help improve seasonal TC predictions over different regions of the WNP in years of decaying El Nio.  相似文献   

12.
In summer 2018, a total of 18 tropical cyclones(TCs) formed in the western North Pacific(WNP) and South China Sea(SCS), among which 8 TCs landed in China, ranking respectively the second and the first highest since 1951.Most of these TCs travelled northwest to northward, bringing in heavy rainfall and strong winds in eastern China and Japan. The present study investigates the impacts of decaying La Ni?a and intraseasonal oscillation(ISO) on the extremely active TCs over the WNP and SCS in summer 2018 by use of correlation and composite analyses. It is found that the La Ni?a episode from October 2017 to March 2018 led to above-normal sea surface temperature(SST) over central–western Pacific, lower sea level pressure and 500-hPa geopotential height over WNP, and abnormally strong convective activities over the western Pacific in summer 2018. These preceding oceanic thermal conditions and their effects on circulation anomalies are favorable to TC genesis in summer. Detailed examination reveals that the monsoon trough was located further north and east, inducing more TCs in northern and eastern WNP; and the more eastward WNP subtropical high as well as the significant wave train with a "-+-+" height anomaly pattern over the midlatitude Eurasia–North Pacific region facilitated the northwest to northward TC tracks. Further analyses reveal that two successively active periods of Madden–Julian Oscillation(MJO) occurred in summer 2018 and the boreal summer intraseasonal oscillation(BSISO) was also active over WNP, propagating northward significantly, corresponding to the more northward TC tracks. The MJO was stagnant over the Maritime Continent to western Pacific,leading to notably enhanced convection in the lower troposphere and divergence in the upper troposphere, conducive to TC occurrences. In a word, the extremely active TC activities over the WNP and SCS in summer 2018 are closely linked with the decaying La Ni?a, and the MJO and BSISO; their joint effects result in increased TC occurrences and the TC tracks being shifted more northwest to northward than normal.  相似文献   

13.
The relationship between the interannual variation in tropical cyclone (TC) activity over the western North Pacific (WNP) and the thermal state over the warm pool (WP) is examined in this paper. The results show that the subsurface temperature in the WP is well correlated with TC geographical distribution and track type. Their relation is linked by the East Asian monsoon trough. During the warm years, the westward-retreating monsoon trough creates convergence and vorticity fields that are favorable for tropical cyclogenesis in the northwest of the WNP, whereas more TCs concentrating in the southeast result from eastward penetration of the monsoon trough during the cold years. The steering flows at 500 hPa lead to a westward displacement track in the warm years and recurving prevailing track in the cold years.
The two types of distinct processes in the monsoon environment triggering tropical cyclogenesis are hypothesized by composites centered for TC genesis location corresponding to two kinds of thermal states of the WP. During the warm years, low-frequency intraseasonal oscillation is active in the west of the WNP such that eastward-propagating westerlies cluster TC genesis in that region. In contrast, during the cold years, the increased cyclogenesis in the southeast of the WNP is mainly associated with tropical depression type disturbances transiting from equatorially trapped mixed Rossby gravity waves. Both of the processes may be fundamental mechanisms for the inherent interannual variation in TC activity over the WNP.  相似文献   

14.
The monsoon trough(MT) is one of the large-scale patterns favorable for tropical cyclone(TC) formation over the western North Pacific(WNP). This study re-examines TC formation by treating the MT as a large-scale background for TC activity during May–October. Over an 11-year(2000–10) period, 8.3 TC formation events on average per year are identified to occur within MTs, accounting for 43.1% of the total TC formation events in the WNP basin. This percentage is much lower than those reported in previous studies. Further analysis indicates that TC formation events in monsoon gyres were included at least in some previous studies. The MT includes a monsoon confluence zone where westerlies meet easterlies and a monsoon shear line where the trade easterlies lie north of the monsoon westerlies. In this study, the large-scale flow pattern associated with TC formation in the MT is composited based on the reference point in the confluence zone where both the zonal and meridional wind components are zero with positive vorticity. While previous studies have found that many TCs form in the confluence zone, the composite analysis indicates that nearly all of the TCs formed in the shear region, since the shear region is associated with stronger low-level relative vorticity than the confluence zone. The prevailing easterly vertical shear of zonal wind and barotropic instability may also be conducive to TC formation in the shear region, through the development of synoptic-scale tropical disturbances in the MT that are necessary for TC formation.  相似文献   

15.
An observational study focusing on the contribution of tropical cyclones(TCs)that form over the western North Pacific(WNP)to the synoptic-scale transient eddy activity(STEA)over the North Pacific during the boreal autumn and early winter in the period 1979–2019 is presented in this paper.Statistical results show that WNP TCs entering the midlatitudinal North Pacific provide significant positive effects on the pentad mean strength of STEA,which is primarily concentrated over the Kuroshio/Oyashio Extensions(KOE)and regions from east of Japan to 160°W in the lower and midto-upper troposphere,respectively.TC intensity is highly indicative of the subsequent STEA with a correlation coefficient of 0.37/0.33/0.45 at 300 hPa/500 hPa/850 hPa exceeding the 99%confidence level for the period 1979–2019.The strength of STEA in the upper troposphere associated with TCs presents a more significant linear growth with TC intensity than that at the mid-to-lower levels after the cyclones enter the KOE region,suggesting that the impact of TCs on STEA gradually increases with height.Further analyses reveal that the contribution of TCs accounts for 4%–6%of the total STEA change over the KOE region during the late autumn and early winter.In addition,the influence of TCs on STEA experienced an interdecadal decrease from the early 2000 s through the early 2010 s.  相似文献   

16.
Recent publications have investigated the interactions between the extratropical transitions (ETs) of tropical cyclones (TCs) and midlatitude circulations; however, studies of ET events have rarely considered the relationship between the storm and the nearby subtropical high. The TC best-track data provided by the Regional Specialized Meteorological Center-Tokyo Typhoon Center of the Japan Meteorology Agency are used in conjunction with the NCEP/NCAR reanalysis data to discuss the potential effects of the subtropical high on ETs over the western North Pacific basin. When the western Pacific subtropical high (WPSH) is weakened and withdrawn toward the east, more TCs follow recurving paths and the midlatitude trough activity is intensified. These changes lead to enhanced ET activity. By contrast, when the WPSH strengthens and extends westward, the number of TCs that follow direct westward paths increases and the midlatitude trough is relatively inactive. These conditions lead to reduced occurrences of ET cases. Abnormal activity of the WPSH should be considered as an important factor in determining ET activity.  相似文献   

17.
The influence of the interannual variation of cross-equatorial flow(CEF) on tropical cyclogenesis over the western North Pacific(WNP) is examined in this paper by using the tropical cyclone(TC) best track data from the Joint Typhoon Warning Center and the JRA-25 reanalysis dataset. The results showed that the number of TCs forming to the east of 140°E over the southeastern part of the western North Pacific(WNP) is in highly positive correlation with the variation of the CEF near 125° E and 150° E, i.e., the number of tropical cyclogeneses increases when the cross-equatorial flows are strong. Composite analyses showed that during the years of strong CEF, the variations of OLR, vertical wind shear between 200-850 h Pa, 850 h Pa relative vorticity and 200 h Pa divergence are favorable for tropical cyclogenesis to the east of 140°E over the tropical WNP, and vice versa. Moreover, it is also discussed from the view of barotropic energy conversion that during the years of strong CEF, an eastward-extended monsoon trough leads to the rapid growth of eddy kinetic energy over the eastern part of WNP, which is favorable for tropical cyclogenesis;but during the years of weak CEF, the monsoon trough is located westward in the western part of the WNP, consistent with the growth area of eddy kinetic energy. As a result, there are fewer TC geneses over the eastern part of WNP.Besides, the abrupt strengthening of a close-by CEF 2-4 days before tropical cyclogenesis may be the one of its triggers.  相似文献   

18.
Using tropical cyclone (TC) observations over a 58-yr period (1949-2006) from the China Meteorological Administration, the 40-year ECMWF Reanalysis (ERA-40), NCEP-NCAR reanalysis, and the Hadley Centre sea ice and sea surface temperature (HadISST) datasets, the authors have examined the behaviors of tropical cyclones (TCs) in the western north Pacific (WNP) in boreal winter (November-December-January-February). The results demonstrate that the occurrences of wintertime TCs, including super typhoons, have decreased over the 58 years. More TCs are found to move westward than northeastward, and the annual total number of parabolic-track-type TCs is found to be decreasing. It is shown that negative sea surface temperature anomalies (SSTAs) related to La Nifia events in the equatorial central Pacific facilitate more TC genesis in the WNP region. Large-scale anomalous cyclonic circulations in the tropical WNP in the lower troposphere are observed to be favorable for cyclogenesis in this area. On the contrary, the positive SSTAs and anomalous anticyclonic circulations that related to E1 Nifio events responsible for fewer TC genesis. Under the background of global warming, the western Pacific subtropical high tends to intensify and to expand more westward in the WNP, and the SSTAs display an increasing trend in the equatorial eastern-central Pacific. These climate trends of both atmospheric circulation and SSTAs affect wintertime TCs, inducing fewer TC occurrences and causing more TCs to move westward.  相似文献   

19.
This paper reviews the recent progress and research on the variability of tropical cyclones(TCs) at different time scales. Specific focus is placed on how different types of external forcings or climatic oscillations contribute to TC variability in the western North Pacific(WNP). At the intraseasonal scale, recent advances on the distinctive impacts of the Madden–Julian Oscillation(MJO), the Quasi-biweekly Oscillation, and the asymmetric MJO modulation under different El Ni?o–Southern Oscillation(ENSO) states, as well as the influences of the Pacific–Japan teleconnection, are highlighted. Interannually, recent progress on the influences of the ENSO cycle, different flavors of ENSO, and impacts of Indian Ocean warming is presented. In addition, the uncertainty concerning interdecadal TC variations is discussed, along with the recently proposed modulation mechanisms related to the zonal sea surface temperature gradient, the North Pacific Gyre Oscillation, and the Pacific Decadal Oscillation(PDO). It is hoped that this study can deepen our understanding and provide information that the scientific community can use to improve the seasonal forecasting of TCs in the WNP.  相似文献   

20.
The contribution of tropical cyclones(TCs)to the East Asia–Pacific(EAP)teleconnection pattern during summer was investigated using the best track data of the Joint Typhoon Warning Center and NCEP-2 reanalysis datasets from 1979 to2018.The results showed that the TCs over the western North Pacific(WNP)correspond to a strengthened EAP pattern:During the summers of strong convection over the tropical WNP,TC days correspond to a stronger cyclonic circulation anomaly over the WNP in the lower troposphere,an enhanced seesaw pattern of negative and positive geopotential height anomalies over the subtropical WNP and midlatitude East Asia in the middle troposphere,and a more northward shift of the East Asian westerly jet in the upper troposphere.Further analyses indicated that two types of TCs with distinctly different tracks,i.e.,westward-moving TCs and northward-moving TCs,both favor the EAP pattern.The present results imply that TCs over the WNP,as extreme weather,can contribute significantly to summer-mean climate anomalies over the WNP and East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号