首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An objective of many ecological restoration projects is to establish resilience to disturbances. Eelgrass (Zostera marina L.) represents a useful model to evaluate resilience because the plant community is dominated by one species and the estuarine environment is dynamic. Our studies of planted and reference plots used shoot density monitoring data from three projects spanning 3 to 12 years. Data show that eelgrass can recover from major shifts in pond position and shape on sandflats, as well as natural disturbances causing >20-fold change in density. However, cumulative effects of multiple stressors on unestablished plantings suggest algal blooms of unusual magnitude can tip normally marginal conditions to unfavorable. Thus, potential resilience appears to depend on landscape conditions. A dynamic equilibrium was evinced in even the deepest, lowest-density plantings, probably associated with light-mediated carrying capacity and vegetative belowground production characteristic of the Pacific Northwest. We recommend eight resilience-related planning elements to reduce uncertainties in eelgrass restoration.  相似文献   

2.
We developed light requirements for eelgrass in the Pacific Northwest, USA, to evaluate the effects of short- and long-term reductions in irradiance reaching eelgrass, especially related to turbidity and overwater structures. Photosynthesis-irradiance experiments and depth distribution field studies indicated that eelgrass productivity was maximum at a photosynthetic photon flux density (PPFD) of about 350–550 μmol quanta m−2 s−1. Winter plants had approximately threefold greater net apparent primary productivity rate at the same irradiance as summer plants. Growth studies using artificial shading as well as field monitoring of light and eelgrass growth indicated that long-term survival required at least 3 mol quanta m−2 day−1 on average during spring and summer (i.e., May-September), and that growth was saturated above about 7 mol quanta m−2 day−1. We conclude that non-light-limited growth of eelgrass in the Pacific Northwest requires an average of at least 7 mol quanta m−2 day−1 during spring and summer and that long-term survival requires a minimum average of 3 mol quanta m−2 day−1.  相似文献   

3.
Eutrophication has caused strong shifts from perennial seagrass to opportunistic macroalgae and phytoplankton in many coastal ecosystems worldwide, yet responses of the primary-producer assemblage can vary with regional environmental and nutrient-loading conditions. The wider consequences of this variable primary-producer response on the associated animal community are little known. We used large-scale field surveys across 12 study sites with low or high eutrophication levels in two geographic provinces in Atlantic Canada to examine region-specific responses of macrofauna associated with eelgrass beds. In both regions, abundances of all groups increased with eutrophication, but species richness of mobile fishes and invertebrates decreased. Generally, filter feeders, epibenthic detritivores and some herbivores increased, while more hypoxia sensitive species declined. Small fishes and invertebrate predators increased with eutrophication mirrored by decreases in their prey. Despite similar general trends, our results show distinct shifts in species composition in each geographic region associated with differences in food availability and predation refuge offered by phytoplankton and opportunistic epiphytic or benthic macroalgae as well as tolerance to an increasingly hostile physico-chemical environment. So far, the continued persistence of eelgrass beds at our “highly” eutrophied sites indicates intermediate eutrophication levels with short-term benefits for some species. However, the loss of sensitive species and decrease in species richness highlight that eutrophication has already changed seagrass ecosystems in Atlantic Canada. Our work suggests that mitigating these changes will require regional-scale management.  相似文献   

4.
Using data from eight autosomal microsatellite loci, we investigated levels of within- and between-site variation in the seagrass Zostera marina L. (eelgrass) from eight locations in the San Juan Archipelago, located in the northwest corner of Washington, USA. Only 117 of the 365 samples collected were unique individuals, and there were large differences in the estimates of clonality among sites. Site-specific genotypic richness ranged from 0.082 to 0.688, and the distribution of ramets and genets varied widely within sites. No multilocus genotypes were shared between sites. We found significant differences in distribution of alleles and variance in allele frequencies among sites, suggesting substantial genetic population substructuring. We detected low levels of genetic diversity in two sites known to have undergone recent declines and a genetic signature of population expansion in a site known to be increasing. Thus, like elsewhere, we find that genetic studies add an important component to monitoring programs in this region.  相似文献   

5.
As nearshore ecosystems are increasingly degraded by human activities, active restoration is a critical strategy in ensuring the continued provision of goods and services by coastal habitats. After being absent for nearly six decades, over 1800 ha of the foundational species eelgrass (Zostera marina L.) has been successfully re-established in the coastal bays of the mid-western Atlantic, USA, but nothing is known about the recovery of associated animal communities in this region. Here, we determine the patterns and drivers of functional recovery in epifaunal invertebrates associated with the restored eelgrass habitat from 2001 to 2013. After less than a decade, the invertebrate community in the restored bed was richer, more even, and exhibited greater variation in functional traits than a nearby reference bed. Analysis of a suite of environmental and physical variables using random forests revealed these differences were primarily due to the increasing area and density of eelgrass, a direct consequence of ongoing restoration efforts. Based on analysis of functional traits, we propose that the rapid life histories of constituent organisms may have played a key role in their successful recovery. We also speculate that diverse epifaunal communities may have contributed to the restoration success through a well-described mutualism with eelgrass. Given that restored eelgrass now make up 32 % of total seagrass cover in the mid-Atlantic coastal bays, this restoration may conserve regional biodiversity by providing new and pristine habitat, particularly given the general decline of existing eelgrass in this region.  相似文献   

6.
In 1994, 1995, and 1996, seagrasses in 46 of the 89 coastal embayments and portions of seven open-water near-shore areas in Massachusetts were mapped with a combination of aerial photography, digital imagery, and ground truth verification. In the open-water areas, 9,477.31 ha of seagrass were identified, slightly more than twice the 4,846.2 ha detected in the 46 coastal embayments. A subset of the 46 embayments, including all regions of the state were remapped in 2000, 2001, and 2002 and again in 2006 and 2007. We detected a wide range of changes from increases as high as 29% y−1 in Boston Harbor to declines as large as −33% y−1 in Salem Harbor. One embayment, Waquoit Bay, lost all of its seagrass during the mapping period. For the 12-year change analysis representing all geographic regions of the state, only three embayments exhibited increases in seagrass coverage while 30 of the original 46 embayments showed some indication of decline. For the decadal period, rates of decline in the individual embayments ranged from −0.06% y−1 to as high as −14.81% y−1. The median rate of decline by region ranged from −2.21% y−1 to −3.51% y−1 and was slightly less than the recently reported global rate of decline for seagrasses (−3.7% y−1). Accounting for the gains in three of the embayments, 755.16 ha (20.6%) of seagrass area originally detected was lost during the mapping interval. The results affirm that previously reported losses in a few embayments were symptomatic of more widespread seagrass declines in Massachusetts. State and Federal programs designed to improve environmental quality for conservation and restoration of seagrasses in Massachusetts should continue to be a priority for coastal managers.  相似文献   

7.
While multiple species of macroalgae and seagrass can benefit from elevated CO2 concentrations, competition between such organisms may influence their ultimate responses. This study reports on experiments performed with a Northwest Atlantic species of the macroalgae, Ulva, and the seagrass, Zostera marina, grown under ambient and elevated levels of pCO2, and subjected to competition with each other. When grown individually, elevated pCO2 significantly increased growth rates and productivity of Ulva and Zostera, respectively, beyond control treatments (by threefold and 27%, respectively). For both primary producers, significant declines in tissue δ13C signatures suggested that increased growth and productivity were associated with a shift from use of HCO3? toward CO2 use. When grown under higher pCO2, Zostera experienced significant increases in leaf and rhizome carbon content as well as significant increases in leaf carbon-to-nitrogen ratios, while sediments within which high CO2 Zostera were grown had a significantly higher organic carbon content. When grown in the presence of Ulva; however, above- and below-ground productivity and tissue nitrogen content of Zostera were significantly lower, revealing an antagonistic interaction between elevated CO2 and the presence of Ulva. The presence of Zostera had no significant effect on the growth of Ulva. Collectively, this study demonstrates that while Ulva and Zostera can each individually benefit from elevated pCO2 levels, the ability of Ulva to grow more rapidly and inhibit seagrass productivity under elevated pCO2, coupled with accumulation of organic C in sediments, may offset the potential benefits for Zostera within high CO2 environments.  相似文献   

8.
Eelgrass (Zostera marina) forms extensive beds in temperate coastal and estuarine environments worldwide and provides important ecosystem services, including habitat for a wide range of species as well as nutrient cycling and carbon storage. However, little is known about how eelgrass ecosystem structure and services differ naturally among regions. Using large-scale field surveys, we examined differences in eelgrass bed structure, carbon and nitrogen storage, community composition, and habitat services across three distinct regions in Eastern Canada. We focused on eelgrass beds with low anthropogenic impacts to compare natural differences. In addition, we analyzed the relationships of eelgrass bed structure with environmental conditions, and species composition with bed structure and environmental conditions, to elucidate potential drivers of observed differences. Our results indicate that regional differences in eelgrass bed structure were weakly correlated with water column properties, whereas differences in carbon and nitrogen storage were mainly driven by differences in eelgrass biomass. There were distinct regional differences in species composition and diversity, which were particularly linked to temperature, as well as eelgrass bed structure indicating differences in habitat provision. Our results highlight natural regional differences in ecosystem structure and services which could inform spatial management and conservation strategies for eelgrass beds.  相似文献   

9.
In nearshore ecosystems, habitats with emergent structure are often assumed to have higher ecosystem functioning than habitats lacking structure. However, such habitat-specific differences may depend on the surrounding environment. In this study, I examine the robustness of habitat-specific differences in ecosystem functioning for seagrass (Zostera marina) and adjacent bare soft sediments across varying environmental conditions on the Atlantic Coast of Nova Scotia, Canada, using secondary production as a metric. I also examine relationships of community secondary production and faunal structure with measured environmental variables (water depth, temperature, exposure, sediment, and plant properties). Benthic secondary production (invertebrates ≥500 μm) was higher in seagrass compared to bare sediments only at exposed sites with sandy sediments low in organic content, deep and cool water, and high belowground plant biomass. A regression relating community secondary production to the environmental variables explained 56% of the variance, while a constrained ordination explained 16% of the community structure. Important environmental determinants of community production were shoot density, temperature, depth, exposure, sediment organic content, and belowground plant biomass. Community structure was influenced by these variables plus sediment sand content and canopy height. This study shows that habitat-specific differences in secondary production may not be consistent across varying environmental conditions. Furthermore, seagrass beds are not always associated with higher ecosystem functioning than adjacent bare sediment. Both the surrounding environmental conditions and the presence of habitat structure should be considered for optimal management of nearshore ecosystems.  相似文献   

10.
Seagrass populations are in decline worldwide. Eelgrass (Zostera marina L.), one of California’s native seagrasses, is no exception to this trend. In the last 8 years, the estuary in Morro Bay, California, has lost 95% of its eelgrass. Population bottlenecks like this one often result in severe reductions in genetic diversity; however, this is not always the case. The decline of eelgrass in Morro Bay provides an opportunity to better understand the effects of population decline on population genetics. Furthermore, the failure of recent restoration efforts necessitates a better understanding of the genetic underpinnings of the population. Previous research on eelgrass in California has demonstrated a link between population genetic diversity and eelgrass bed health, ecosystem functioning, and resilience to disturbance and extreme climatic events. The genetic diversity and population structure of Morro Bay eelgrass have not been assessed until this study. We also compare Morro Bay eelgrass to Bodega Bay eelgrass in Northern California. We conducted fragment length analysis of nine microsatellite loci on 133 Morro Bay samples, and 20 Bodega Bay samples. We found no population differentiation between the remaining beds in Morro Bay and no difference among samples growing at different tidal depths. Comparisons with Bodega Bay revealed that Morro Bay eelgrass contains three first-generation migrants from the north, but Morro Bay remains considerably genetically differentiated from Bodega Bay. Despite the precipitous loss of eelgrass in Morro Bay between 2008 and 2017, genetic diversity remains relatively high and comparable to other populations on the west coast.  相似文献   

11.
12.
From a watershed perspective, Boston Harbor, MA, USA is an ideal site for eelgrass restoration due to major wastewater improvements. Therefore, by focusing on site selection and transplant methods, high survival and expansion rates were recorded at four large eelgrass-restoration sites planted in Boston Harbor as partial mitigation for a pipeline construction project. Transplanted sites met and exceeded reference and donor bed habitat function after 2 years. Hand planting and seeding in checkerboard-patterned transplant plots were efficient and effective methods for jump-starting eelgrass growth over large areas. Although restoration through planting can be successful, it is highly site specific. Even using a published site-selection model, intensive fieldwork was required to identify sites at fine enough scale to ensure successful planting. Given the effort required to identify scarce potential sites, we recommend that future focus includes alternative mitigation strategies that can more adequately prevent eelgrass loss and address water quality degradation which is the leading cause of dieback, site unsuitability for planting, and lack of natural re-colonization.  相似文献   

13.
Decreases in seagrass abundance reported from numerous locations around the world suggest that seagrass are facing a global crisis. Declining water quality has been identified as the leading cause for most losses. Increased public awareness is leading to expanded efforts for conservation and restoration. Here, we report on abundance patterns and environmental issues facing eelgrass (Zostera marina), the dominant seagrass species in the Chesapeake Bay region in the mid-Atlantic coast of the USA, and describe efforts to promote its protection and restoration. Eelgrass beds in Chesapeake Bay and Chincoteague Bay, which had started to recover from earlier diebacks, have shown a downward trend in the last 5–10 years, while eelgrass beds in the Virginia coastal bays have substantially increased in abundance during this same time period. Declining water quality appears to be the primary reason for the decreased abundance, but a recent baywide dieback in 2005 was associated with higher than usual summer water temperatures along with poor water clarity. The success of eelgrass in the Virginia coastal bays has been attributed, in part, to slightly cooler water due to their proximity to the Atlantic Ocean. A number of policies and regulations have been adopted in this region since 1983 aimed at protecting and restoring both habitat and water quality. Eelgrass abundance is now one of the criteria for assessing attainment of water clarity goals in this region. Numerous transplant projects have been aimed at restoring eelgrass but most have not succeeded beyond 1 to 2 years. A notable exception is the large-scale restoration effort in the Virginia coastal bays, where seeds distributed beginning in 2001 has initiated an expanding recovery process. Our research on eelgrass abundance patterns in the Chesapeake Bay region and the processes contributing to these patterns have provided a scientific background for management strategies for the protection and restoration of eelgrass and insights into the causes of success and failure of restoration efforts that may have applications to other seagrass systems.  相似文献   

14.
The Asian shore crab, Hemigrapsus sanguineus, is a recent and particularly successful introduction to the east coast of the USA. Little research has been done on the utilization of Asian shore crabs for food by native species, a potential form of biocontrol. Over a 4-year period, we examined the gut contents of cogeners, Fundulus heteroclitus and Fundulus majalis, collected from two embayments in western Long Island Sound for the presence of juvenile H. sanguineus. Frequency (percent) of occurrence of food items in the guts of both species varied over year and study site. Asian shore crabs were consumed more often by F. heteroclitus than by F. majalis, but predation pressure by both species was low. Only 13% of F. heteroclitus and 7.7% of F. majalis found with food in their guts had ingested Asian shore crab remains. Of those, 1/3 had consumed whole crabs; the rest had only autotomized appendages in their guts. The mean carapace width of juvenile Asian shore crabs ingested by F. heteroclitus was 3.59 ± 2.22 mm (N = 33). Results of our study on killifish predation support the hypothesis that H. sanguienus abundance is partly explained by reduced impact of native predators (i.e., the “enemy release hypothesis”). Predation pressure of other potential enemies on both planktonic and benthic stages of the Asian shore crab must be investigated, however, to understand the full impact of predation on H. sanguineus population dynamics.  相似文献   

15.
The Deepwater Horizon oil spill was the largest marine oil spill in US waters to date and one of the largest worldwide. Impacts of this spill on salt marsh vegetation have been well documented, although impacts on marsh macroinvertebrates have received less attention. To examine impacts of the oil spill on an important marsh invertebrate and ecosystem engineer, we conducted a meta-analysis on fiddler crabs (Uca spp.) using published sources and newly available Natural Resources Damage Assessment (NRDA) and Gulf of Mexico Research Initiative (GoMRI) data. Fiddler crabs influence marsh ecosystem structure and function through their burrowing and feeding activities and are key prey for a number of marsh and estuarine predators. We tested the hypothesis that the spill affected fiddler crab burrow density (crab abundance), burrow diameter (crab size), and crab species composition. Averaged across multiple studies, sites, and years, our synthesis revealed a negative effect of oiling on all three metrics. Burrow densities were reduced by 39 % in oiled sites, with impacts and incomplete recovery observed over 2010–2014. Burrow diameters were reduced from 2010 to 2011, but appeared to have recovered by 2012. Fiddler crab species composition was altered through at least 2013 and only returned to reference conditions where marsh vegetation recovered, via restoration planting in one case. Given the spatial and temporal extent of data analyzed, this synthesis provides compelling evidence that the Deepwater Horizon spill suppressed populations of fiddler crabs in oiled marshes, likely affecting other ecosystem attributes, including marsh productivity, marsh soil characteristics, and associated predators.  相似文献   

16.
We present a comparative analysis of lower depth limits for growth of eelgrass, large brown algae and other macroalgae measured by SCUBA-diving along 162 transects in 27 Danish fjords and coastal waters, coupled to 1,400 data series of water chemistry (especially nitrogen) and Secchi depth transparency collected between March and October. Danish coastal waters are heavily eutrophied and characterized by high particle concentrations, turbid water and lack of macrophyte growth in deep water. Median values are 3.6 m for Secchi depth and median lower-depth limits are 4.0 m for eelgrass, 5.3 m for brown algae and 5.0 m for other macroalgae. Depth limits for growth of eelgrass and macroalgae increase linearly with transparency in the coastal waters. The relationships are highly significant (p<10−6) and transparency accounts for about 60% of the variability of depth limits. Eelgrass extends approximately to half the maximum depth of macroalgae, presumably because of greater respiratory costs to maintain the below-ground rhizomes and roots of eelgrass, which often constitutes half the plant weight. As a reflection of the importance of total nitrogen (TN) in controlling phytoplankton biomass and thus Secchi depth in coastal marine waters, we found that TN could explain 48–73% of the variation in depth limits of eelgrass and macroalgae, according to a multiplicative model (Y=aXb). As with Secchi depth, the relationship to eelgrass showed a lower slope, reflecting the higher respiratory costs of eelgrass. The models show great sensitivity and a profound quantitative response with proportional effects on Secchi depth and depth limits when total-N concentrations are reduced.  相似文献   

17.
To evaluate the impact of invading seagrass on biogeochemical processes associated with sulfur cycles, we investigated the geochemical properties and sulfate reduction rates (SRRs) in sediments inhabited by invasive warm affinity Halophila nipponica and indigenous cold affinity Zostera marina. A more positive relationship between SRR and below-ground biomass (BGB) was observed at the H. nipponica bed (SRR = 0.6809 × BGB ? 4.3162, r 2 = 0.9878, p = 0.0006) than at the Z. marina bed (SRR = 0.3470 × BGB ? 4.0341, r 2 = 0.7082, p = 0.0357). These results suggested that SR was more stimulated by the dissolved organic carbon (DOC) exuded from the roots of H. nipponica than by the DOC released from the roots of Z. marina. Despite the enhanced SR in spring-summer, the relatively lower proportion (average, 20%) of acid-volatile sulfur (AVS) in total reduced sulfur and the strong correlation between total oxalate-extractable Fe (Fe(oxal)) and chromium-reducible sulfur (CRS = 0.2321 × total Fe(oxal) + 1.8180, r 2 = 0.3344, p = 0.0076) in the sediments suggested the rapid re-oxidation of sulfide and precipitation of sulfide with Fe. The turnover rate of the AVS at the H. nipponica bed (0.13 day?1) was 2.5 times lower than that at the Z. marina bed (0.33 day?1). Together with lower AVS turnover, the stronger correlation of SRR to BGB in the H. nipponica bed suggests that the extension of H. nipponica resulting from the warming of seawater might provoke more sulfide accumulation in coastal sediments.  相似文献   

18.
19.
To offer an insight into the toxicity of nanomaterials (NM) on the growth of bacteria, Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Agrobacterium tumefaciens (A. tumefaciens) were exposed to nano-Au, nano-Ag, nano-Fe and fullerene (C60) in this study. As an effective bactericide, nano-Ag induced high toxicity on these three bacteria; C60 could inhibit their growth; however, B. subtilis and E. coli could recover as exposure time extended. Nano-Au and nano-Fe had hardly any effect on three bacteria. A. tumefaciens showed the lowest resistance and slowest growth rate during exposure. Images obtained by scanning electron microscope (SEM) revealed that nano-Ag could cause damage to the cell structure of three bacteria at 1 μg/mL. Slight damage on E. coli was found when exposed to C60, whereas no obvious physical damage was found after exposure to nano-Au or nano-Fe. It is assumed that surface activities of NM might be responsible for the different toxic effects on these bacteria.  相似文献   

20.
The morphology of the small stalkless Saccocoma tenella is unique among crinoids. It is characterized by an extremely light skeleton with dish-like lateral wings on the proximal brachials and peculiar paired vertical processes flanking the food grooves of more distal brachials. The arms are heavily branched. The lateral wings obviously were involved in vertical movement. For the vertical processes a “baffle rail” function for arm curling and “snap swimming” has been postulated, with muscles between the processes. However, there is no evidence that the processes were connected by muscles. For food collection a “pulsating funnel” model in the water column is advocated, with the processes serving to collect plankton during upward movement of the arms. The resulting mouth-up position is supported by the biostratinomy. Saccocoma tenella is considered to have been pelagic, a benthic lifestyle is rejected on ecologic and taphonomic grounds. Adorally-curled arms are considered a reaction to hostile environment before death, not a taphonomic artefact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号