首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Estimating purple-soil moisture content using Vis-NIR spectroscopy   总被引:1,自引:0,他引:1  
《山地科学学报》2020,17(9):2214-2223
Soil moisture is essential for plant growth in terrestrial ecosystems. This study investigated the visible-near infrared(Vis-NIR) spectra of three subgroups of purple soils(calcareous, neutral, and acidic) from western Chongqing, China, containing different water contents. The relationship between soil moisture and spectral reflectivity(R) was analyzed using four spectral transformations, and estimation models were established for estimating the soil moisture content(SMC) of purple soil based on stepwise multiple linear regression(SMLR) and partial least squares regression(PLSR). We found that soil spectra were similar for different moisture contents, with reflectivity decreasing with increasing moisture content and following the order neutral calcareous acidic purple soil(at constant moisture content). Three of the four spectral transformations can highlight spectral sensitivity to SMC and significantly improve the correlation between the reflectance spectra and SMC. SMLR and PLSRmethods provide similar prediction accuracy. The PLSR-based model using a first-order reflectivity differential(R ?) is more effective for estimating the SMC, and gave coefficient of determination(v2), root mean square errors of validation(RMSEV), and ratio of performance to inter-quartile distance(RPIQ)values of 0.946, 1.347, and 6.328, respectively, for the calcareous purple soil, and 0.944, 1.818, and 6.569,respectively, for the acidic purple soil. For neutral purple soil, the best prediction was obtained using the SMLR method with R ? transformation, yieldingv2,RMSEV and RPIQ values of 0.973, 0.888 and 8.791,respectively. In general, PLSR is more suitable than SMLR for estimating the SMC of purple soil.  相似文献   

2.
Phosphorus fractions and adsorption-release characteristics of sediments in the Zhujiang(Pearl) River estuary wetland were investigated.Results showed that the total phosphorus(TP) content in surface sediments ranged from 648.9 mg/kg to 1064.0 mg/kg;inorganic phosphorus(IP) was the major fraction of TP and ranged from 422.5 mg/kg to 643.9 mg/kg.Among the inorganic phosphorus,the main fractions were phosphorus bound to Al and Fe(Fe/Al-P),and calcium-bound phosphorus(Ca-P),accounting for 23%–42% and 21%–67% of IP,respectively.The vertical distribution of TP contents were significantly positive correlated with organic phosphorus(Org-P) and Fe/Al-P contents.The bio-available phosphorus contents in vertical sediments varied from 128.6 mg/kg to 442.9 mg/kg,mainly existed in Fe-Al/P fraction,and increased from the bottom to top sediments.The transport of phosphorus in sediment-water interface was controlled by the soil characteristics.The active Fe and Al content was considered as the main factor that determines adsorption capacity in vegetated marsh wetland.The P buffering capacity of the sediments in vegetated marsh wetland was greater than that in mudflat wetland.The potential risk of eutrophication in the study area is high.Reducing terrestrial phosphorus discharge and preventing the sediment Fe/Al-P release to the interstitial water are the possible solutions to reduce the risk of eutrophication in estuary wetlands,and planting vegetation in estuary wetland can also reduce the release of phosphorus in surface sediment.  相似文献   

3.
Soil types, humus types and vegetation as well as their hypsometric variation were analysed in terms of sequences in the northern part of the high mountains of the Pirin National Park at altitudes between looo and 2400 m a.s.1. The study area is characterised by a large variety of natural parameters like petrology (mainly marble and granite), morphology (different slope deposits, exposition) and the orographic climate gradient. Statistical analyses using these parameters provided a basis for the soil group classification of the sites. Based on a Digital Terrain Model (DTM) and a geological map of the Pirin National Park, the results of these statistical analyses were used to generate a "map of potential soil groups" (regionalisation using GIS). Six potential soil groups could be determined. The resulting map exhibits a confidence level of 68 % on 74.4 % of the covered area. Rendzic Leptosols, in combination with Folic Histosols and Histi-lithic Leptosols occur in the alpine and subalpine regions on calcareous substrates. With decreasing altitude they are replaced by a mosaic of Rendzic Leptosols, Phaeozems and an increasing occurrence of Cambic Umbrisols. Umbrisols found on silicatic substrates in the alpine region are replaced by Cambic Umbrisols with decreasing altitude as well. Hence, pedogenesis is characterised by increasing browning and depth of the soil profiles with decreasing altitude. The pH-level is slightly acidic to neutral in lower zones and on calcareous rocky bases. Acidification increases in the subalpine zone. Soil pH decreases down to 4 on silicate subtrates. Typical humic values in mineral topsoils are 10 to 12 %, and in organic layers of the soils above 2000 m a.s.1, they are even more. The C:N ratio closely ranges around 20 (median).  相似文献   

4.
Subsurface flow processes in sloping cropland of purple soil   总被引:3,自引:1,他引:2  
Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.  相似文献   

5.
Limited information is available about factors of soil organic carbon(SOC) preservation in soils along a climo-biosequence. The objective of this study was to evaluate the role of soil texture and mineralogy on preservation of SOC in the topsoil and subsoil along a climo-biosequence in the Main Range of Peninsular Malaysia. Soil samples from the A and B-horizons of four representative soil profiles were subjected to particle-size fractionation and mineralogical analyses including X-ray diffraction and selective dissolution. The proportion of SOC in the 250-2000 μm fraction(SOC associated with coarse sand) decreased while the proportion of SOC in the 53 μm fraction(SOC associated with clay and silt)increased with depth. This reflected the importance of the fine mineral fractions of the soil matrix for SOC storage in the subsoil. Close relationships between the content of SOC in the 53 μm fraction and the content of poorly crystalline Fe oxides [oxalate-extractable Fe(Fe_o) – pyrophosphate-extractable Fe(Fe_p)] and poorly crystalline inorganic forms of Al [oxalateextractable Al(Al_o) – pyrophosphate-extractable Al(Al_p)] in the B-horizon indicated the importance of poorly crystalline Fe oxides and poorly crystalline aluminosilicates for the preservation of SOC in the Bhorizon. The increasing trend of Fe_o-Fe_p and Al_o-Al_p over elevation suggest that the importance of poorly crystalline Fe oxides and poorly crystalline aluminosilicates for the preservation of SOC in the Bhorizon increased with increasing elevation. This study demonstrates that regardless of differences in climate and vegetation along the studied climobiosequence, preservation of SOC in the subsoil depends on clay mineralogy.  相似文献   

6.
Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the characteristics of different soil shear strengths, only a few of these works have paid attention to soils containing considerable quantities of rock fragments. To date, most studies on the effects of rock fragments on the shear strength have paid attention to the role of rock fragments with sizes >2 mm. The effects of rock fragments <2 mm in soil are generally ignored. Similar to rock fragments >2 mm, the presence of rock fragments <2 mm could also change the mechanical properties of soils. Thus, in the present study we evaluated the potential influence of <2 mm rock fragments on soil shear strength via an unconsolidated undrained (UU) triaxial compression test. Our results were as follows: (1) A certain quantity of <2 mm rock fragments presented in purple soils developed from clay rocks; and an appropriate quantity of <2 mm rock fragments could improve the shear strength of soils. (2) The different PSDs of soils containing <2 mm rock fragments mainly caused variations in the internal friction angle of soils. (3) The shear strengths of the two mudstone-developed red-brown and gray-brown purple soils was more sensitive to water than that of the shale-developed coarse-dark purple soil. As the soil water content increased from 9% to 23%, the changes in the cohesion, internal friction angle, shear strength, and the maximum principal stress difference were smaller in the coarse dark purple soil than in the two other soils. We therefore concluded that <2 mm rock fragments in purple soils exerted important effects on soil shear strength. A better understanding of the differences among the shear strength features of purple soils could help improve the design of agricultural machinery and equipment.  相似文献   

7.
Investigation of phosphorus (P) sorption-desorption characteristics of drainage ditch sediments is important for better understanding on sediment P transport behaviors in ditches. Surface ditch sediment samples were collected from headwater sub-catchment of forestland, sloping cropland, paddy field, and residential area in a representative catchment in the central Sichuan Basin. These sediment samples were used for determination of P sorption-desorption characteristics by a batch equilibrium technique. Results showed that the maximum P sorption capacities (Qm) in the sediments ranged from 159.7 to 263.7 mg/kg, while higher Qm were observed in the ditch sediments from the paddy fields. The Qm was significantly and positively correlated with oxalate-extractable Fe and Al oxides (r=0.97 and 0.98, p < 0.01), clay fraction (r = 0.78, p < 0.05) and organic matter (r = 0.95, p < 0.01). Sediment pH, clay and organic matter influenced the P sorption through amorphous Fe and Al oxides. CaCO3 content was negatively correlated with the Qm (r = -0.83, p < 0.05), implying that saturated CaCO3 (> 50 g/kg) would not increase P sorption capacity in the ditch sediments. The ditch sediments featured a linear desorption curve, suggesting that P release risk would be enhanced with the increase of the P adsorption. The P desorption rate was positively correlated with Olsen P (r = 0.94, p < 0.01), but negatively related to the fine particle-size fractions (r = -0.92, p < 0.01), the sum of the amorphous Fe and Al oxides (r = -0.67, p < 0.05) and the P sorption capacity (r = -0.59, p < 0.05). The ditch sediments from residential area had a higher P release risk than that from the other ditches of forestland, sloping cropland and paddy field. The P sorption index (PSI) derived from single-point measurement was significantly correlated with the P sorption capacity (r = 0.99, p < 0.01), and could be used for estimating Qm as 1.64 times PSI plus 24.0 (Qm = 1.64 PSI + 24.0) for similar sediments with highly calcareous soils and sediments. Ditch cleaning and sediment removal for the ditch in residential area were recommended in this area to reduce the P release risk.  相似文献   

8.
1IN T R O D U C T IO N With therapiddevelopment of urbanizatio,nurban land was exploitedand utilizetdoform differendtomains be- ing subjectto many potentialpollutionsourcessuch as vehicleemission, industrialactivitieasnd household garbage.Particularl, yur…  相似文献   

9.
Soft types, humus types and vegetation as well as their hypsometric variation were analysed in terms of sequences in the northern part of the high mountains of the Pirin National Park at altitudes between 1000 and 2400 m a.s.l. The study area is characterised by a large variety of natural parameters like petrology (mainly marble and granite), morphology (different slope deposits, exposition) and the orographic climate gradient. Statistical analyses using these parameters provided a basis for the soil group classification of the sites. Based on a Digital Terrain Model (DTM) and a geological map of the Pirin National Park, the results of these statistical analyses were used to generate a "map of potential soft groups" (regionalisation using GIS). Six potential soil groups could be determined. The resulting map exhibits a confidence level of 68% on 74.4% of the covered area. Rendzic Leptosols, in combination with Folio Histosols and Histi-lithic Leptosols occur in the alpine and subalpine regions on calcareous substrates. With decreasing altitude they are replaced by a mosaic of Rendzic Leptosols, Phaeozems and an increasing occurrence of Cambic Umbrisols. Umbrisols found on silicatic substrates in the alpine region are replaced by Cambic Umbrisols with decreasing altitude as well. Hence, pedogenesis is characterised by increasing browning and depth of the soil profiles with decreasing altitude. The pH-level is slightly acidic to neutral in lower zones and on calcareous rocky bases. Acidification increases in the subalpine zone. Soft pH decreases down to 4 on silicate subtrates. Typical humic values in mineral topsoils are 10 to 12%, and in organic layers of the softs above 2000 m a.s.l, they are even more. The C:N ratio closely ranges around 20 (median).  相似文献   

10.
In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, including Quercus natural forest; Pinus artificial forest; Cupressus artificial forest and a cultivated land, were studied. Results showed that MWD was significantly different in the studied land uses, and it varied between 1.6 mm in Quercus natural forest and o.31 mm in cultivated land use. The lowest CEC, microbial respiration rate and organic carbon were 28.4 cmol·kg^1, 177 μgCO2·g^-1·day^-1 and 1.32 % found in cultivated land use, respectively. The organic matter was considerably higher content in the forest areas than that of cultivated land use. The studies on soil profile development revealed that the natural forest soils were highly developed. The soils of the Quercus natural forest were classified as Calcic Haploxeralfs with a well developed argillie horizon unlike the cultivated soils which showed the minimum development and classified as Typic Xerorthents. The soils of the artificial forests had both mollic epipedons and were classified as Typic Calcixerolls with moderate profile development. Micromorphological studies revealed that argillic horizons had speckled and partly crystallitic b-fabric in the natural forest indicating the high landscape stability. In contrast, the crystallitic b-fabric of other land uses shows the absence of enough leaching of carbonate and the subsequent migration of clay particles indicating the unstable conditions and high soil erosion. Intense erosion of the surface horizons of cultivated land use has resulted in the outcropping of the subsurface carbonate rich horizons preventing soil development.  相似文献   

11.
The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Southern Loess Plateau, China. The soil at this site is loess with loose and silty structure, and contains macropores. The results showed that the OC concentrations in sediments and in the particle-size fractions of sediments were higher than those in soils and in the particle-size fractions of soils. The OC concentration was highest in the clay particles and was lowest in the sand particles. Clay particles possessed higher OC enrichment ability than silt and sand particles. The proportions of OC in the silt fractions of soil and sediment were the highest (mean value of 53.87% and 58.48%, respectively), and the total proportion of OC in the clay and silt fractions accounted for 96% and 98% of the total OC in the soil and sediment, respectively. The loss of OC was highest in silt particles, with an average value of 0.16 Mg ha^-1 y^-1, and was lowest in the sand (0.003 Mg ha^-1 y^-l). This result suggests that the fine particle-size fraction in the removed sediment may be an important indicator to assess soil OC losses.  相似文献   

12.
Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon (SOC) fractions in forest ecosystems. This study had two aims: (1) to evaluate the effects of altitude and vegetation on the content of labile and stabile forms of organic carbon in the mountain soils; and (2) to assess the impact of the properties of soil organic matter on the SOC pools under changing environmental conditions. The studies were conducted in the Karkonosze Mountains (SW Poland, Central Europe). The content of the most labile fraction of carbon (dissolved organic carbon, DOC) decreases with altitude, but the content of fulvic acids (FA), clearly increases in the zone above 1000 m asl, while the stabile fraction (humins, non-hydrolyzing carbon) significantly decreases. A higher contribution of stabile forms was found in soils under coniferous forests (Norway spruce), while a smaller - under deciduous forests (European beech) and on grasslands. The expected climate change and the ongoing land use transformations in the zone above 1000 m asl may lead to a substantial increase in the stable humus fraction (mainly of a non-hydrolyzing carbon) and an increase in the SOC pools, even if humus acids are characterized by a lower maturity and greater mobility favorable to soil podzolization. In the lower zone (below 1000 m asl), a decrease in the most stable humus forms can be expected, accompanied by an increase of DOC contribution, which will result in a reduction in SOC pools. Overall, the expected prevailing (spatial) effect is a decreasing contribution of the most stable humus fractions, which will be associated with a reduction in the SOC pools in medium-high mountains of temperate zone of Central Europe.  相似文献   

13.
《山地科学学报》2020,17(9):2179-2202
Residual soils are weathering products of rocks that are commonly found under unsaturated conditions. The properties of residual soils are a function of the degree of weathering. A series of index properties, engineering properties and geophysics survey examinations were performed on residual soils from two major geological formations in Iran. In the present research, the index properties of residual soils in the south of Mashhad city in Iran are investigated.Natural and artificial trenches were analyzed for evaluating the weathering profiles and collecting soil samples. Disturbed and undisturbed samples were obtained from each of the soil profile horizons resulting from weathering of different parent rocks.Subsequently, physical properties and mechanical properties of the soil samples were determined in accordance with ASTM standards. Also, the mineralogical composition, chemistry, and texture of the soil were evaluated in 51 profiles. The field observations showed the difference in the weathering profile of residual soils deposited on various rocks(igneous, sedimentary, and metamorphic). These profiles mainly consisted of two horizons includingresidual soil on top and saprolite at the bottom. The results of laboratory tests and geotechnical data showed that the properties of residual soil samples change by depth. Moreover, depending on the type of origin rock, the properties are different in various types of residual soils. In most of the samples, the moisture content of soil horizons was also increased by depth. Based on the unified soil classification(USCS), the soils of the upper horizons appeared to be classified as ML(Lean silt) and CL(Lean clay) while the soils of the lower horizons(saprolite zone) fall in SC(clayey sand), SM(silty sand), and SW(wellgraded sand) classes. Moreover, the results demonstrated that the particle size of the soil was increased by depth. Comparison of results of the geotechnical tests showed that properties of residual soils are changed by variations of depth, weathering level, and type of parent rock. Considering the concentration of the number of lines and the concentration of the points of intersection, the length and dimension fractal of lineaments in the southeastern part of the study area, it is evident that this zone possesses weathering severity and soil thickness. Fieldwork data from this zone have also verified the severity of weathering conditions. The analysis of lineaments trends in different parts of the study area indicated that the lineaments with the NW-SE trend have a strong effect on weathering development. The weathering depth depends on the orientation of bedding joints with respect to the slope in the study area. Slope inclination and soil thickness are controlled by weathering and erosion processes.  相似文献   

14.
Tillage pedogenesis of purple soils in southwestern China   总被引:5,自引:2,他引:3  
Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.  相似文献   

15.
Alfisols are important soils in China. They occupy about 1.25 million km3, or about 13% of the land area. In the current Chinese system of soil classification, burozem, yellow-brown earths, Baijiang (Planosol) soils and parts of drab soils. They are mostly forested soils with an estimated 5-13 t / ha · yr of organic matter returned to the soils from temperate mixed conifer and broad-leaved forest. In terms of elemental bio-cycling, Ca is prominent.In a comparison of 30 profiles the average ratio of clay (B/ A) was 1.47 for Cryoboralfs and Eutroboralfs; 1.88 for Hapludaifs and 2.53 for Paleudalfs. From Eutroboralfs to Paleudalfs the average gain (or loss) in clay during soil development is about a factor of seven.The moisture regimes vary considerably between Hapludaifs, Cryoboralfs, and associated Cryaquepts, but the amount of water is always enough to cause significant leaching. In the weathering, and pedogenesis processes TiO2, MgO and Fe2O3 are accumulated, respectively, in both A and BA horizons; b  相似文献   

16.
Purple soil is highly susceptible for overland flow and surface erosion, therefore understanding surface runoff and soil erosion processes in the purple soil region are important to mitigate flooding and erosion hazards. Slope angle is an important parameter that affects the magnitude of runoff and thus surface erosion in hilly landscapes or bare land area. However, the effect of slope on runoff generation remains unclear in many different soils including Chinese purple soil. The aim of this study was to investigate the relationship between different slope gradients and surface runoff for bare-fallow purple soil, using 5 m × 1.5 m experimental plots under natural rainfall conditions. Four experimental plots(10°, 16°, 20° and 26°) were established in theYanting Agro-ecological Experimental Station of Chinese Academy of Science in central Sichuan Basin. The plot was equipped with water storage tank to monitor water level change. Field monitoring from July 1 to October 31, 2012 observed 42 rainfall events which produced surface runoff from the experimental plots. These water level changes were converted to runoff. The representative eight rainfall events were selected for further analysis, the relationship between slope and runoff coefficient were determined using ANOVA, F-test, and z-score analysis. The results indicated a strong correlation between rainfall and runoff in cumulative amount basis. The mean value of the measured runoff coefficient for four experimental plots was around 0.1. However, no statistically significant relationship was found between slope and runoff coefficient. We reviewed the relationship between slope and runoff in many previous studiesand calculated z-score to compare with our experimental results. The results of z-score analysis indicated that both positive and negative effects of slope on runoff coefficient were obtained, however a moderate gradient(16°-20° in this study) could be a threshold of runoff generation for many different soils including the Chinese purple soil.  相似文献   

17.
Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon(DOC), microbial biomass carbon(MBC), readily oxidized carbon(ROC) and readily mineralized carbon(RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates( 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.  相似文献   

18.
The distribution of Al and F contents and the relationship between Al and F in tea plants and soils of 12 tea gardens in Central and Southwest China were investigated from October 31 to November 14, 2006. The results show that there were differences in pH, CEC, the contents of organic matter (OM), Al and F in the different soils of the tea gardens. The Al content ranged from 1196 to 7976mg/kg for old leaf, 370 to 2681mg/kg for young leaf and 285 to 525mg/kg for stem, whereas the content of F ranged from 221 to 1504mg/kg for old leaf, 49 to 602mg/kg for young leaf and 13.5 to 77.5mg/kg for stem. The concentrations of labile Al varied obviously in the different soils, but the distribution law of labile Al content for the same garden was Alexchangeable≈AlFe-Mn oxide>Alorganic>Alwater-soluble. The contents of different labile F fractions varied slightly in the different soils and the different soil layers, though the exchangeable F content was lowest among the labile F in the soils. The concentrations of Al and F in tea plants increased with increasing amount of water-soluble Al or F, especially the amount of water-soluble fractions in the soil layer of 0-20cm.The correlation between Al content and F content in the tea leaf was more significant than that in the tea stem. Furthermore, the correlation between Al content and F content in whole tea plant was strongly significant (r=0.8763, p<0.01, n=36). There were evident tendency that Al concentration increased with the increase of F concentration in different soil layers. The correlation of water-soluble Al with water-soluble F in all soils was also strongly significant (r=0.7029, p<0.01, n=34). The results may provide a proof that Al and F are jointly taken up by tea plants to some extent in natural tea gardens.  相似文献   

19.
Research on the effects of soil erosion on soil productivity has attracted increasing attention.Purple soil is one of the main soil types in China and plays an important role in the national economy.However,the relationship between erosion and the productivity of purple soils has not been well studied.The purpose of this research was to determine if soil depth,which is dependent on the rate of erosion,has an influence on crop yield and growth.Plot and pot experiments at different soil depths were performed.Results indicate that soils from different parental materials had different growth features and crop yields due to the differential fertility of the derived soils.The yield reduction rate increases exponentially with the depth of eroded soil(level of erosion).The yield reduction rate per unit eroded soil horizon(10 cm) is approximately 10.5% for maize and wheat.  相似文献   

20.
An understanding of the physical,chemical,and biological properties of a soil provides a basis for soil use and management.This paper reports the major physico-chemical properties and enzyme activities of the soils of Lhasa’s main arable lands and the factors that influence these soil properties.Composite and core samples were taken from the three main arable soil types(alluvial soil,subalpine arable steppe soil,and subalpine arable meadow soil) and were analysed using standard methods.The bulk density and the ventilation porosity ratio of the soils were close to the recommended values for arable lands,and the dominant soil texture was sandy.The soil moisture release rates were arable steppe soil > alluvial soil > arable meadow soil.Soil organic matter content,Cation-Exchange Capacity(CEC),total and available nitrogen content,and catalase activity of the arable meadow soil were higher than those of the alluvial and the arable steppe soils,while soil pH in the arable meadow was lower.Most of the measured properties did not show a significant variance among these three soils.However,the measured indices(apart from the total potassium) indicate that there are notable differences among the three types of soil.The results implied that the utilisation patterns of the arable soil or human activities,such as tillage practices and fertiliser applications,have a substantialeffect on the soil properties in this region.Our results suggest that the cultivation practices in the region have apparently positive impact on the soil organic matter,nutrient contents and bulk density probably due to the sound fertiliser management such as the applications of farmyard manure and chemical fertilisers.However,intense cultivation practices lowered the activity of most soil enzymes.The results demonstrate that the choice of soil management strategy had a significant impact on the soil physicochemical and biological properties in the region studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号