首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative performance of (i) percent live cover, (ii) colony density, (iii) generic richness, (iv) partial colony mortality, and (v) colony size of hard corals were evaluated to determine which variables best discriminated the coral communities near a small river in Okinawa, Japan. An analysis of their variance was undertaken across a combination of sites at three depths, at increasing distance from a river's influence (Zatsun River). The river provides a periodic and localized input of sediment and fresh water to the adjacent coral reef; the effects of which we assume attenuate at increasing distance from the river mouth. The mean frequency of partially dead coral colonies (i.e., the proportion of live coral colonies that were partially dead) presented the clearest and most reliable response to river affect, and the power to discriminate among sites improved steadily with increasing depth. Spatial examination of the prevalence of partial mortality, regardless of how long ago the infliction occurred, provides a clear window to long-term processes involving population and community change and indeed the reef building capacity of the communities.  相似文献   

2.
The coral reefs in Bermuda's Castle Harbour basin have been subjected to varying anthropogenic stressors for over 100 years. These include restriction of water flow through the construction of a causeway in the late 19th century and an extensive dredging and land reclamation operation during World War II. In the 1970s, disposal of bulk waste commenced at a foreshore reclamation site in Castle Harbour. Since 1996 the waste stream has included blocks of cement-stabilized municipal incinerator ash. This study provides a historical and quantitative ecological review of the Castle Habour reef ecosystem as a case study, assessing the responses of the reef to more than a century of anthropogenic disturbance. Measures of the coral community, flow rates, turbidity and sedimentary regimes suggest the present structure of the coral community largely reflects the impacts of the historic dredge and fill operations prior to the establishment of the foreshore dump site. Recent increases in the abundance of some sediment tolerant, massive reef-building coral species (Diploria strigosa and Montastraea cavernosa) suggest adaptation to chronic sediment stress.  相似文献   

3.
The impact of copper mining along the western coast of Marinduque Island was investigated. Historic input of mine tailings in the coastal region was traced through variations in heavy metal concentrations in Porites growth bands. Five samples were collected from three reefs showing different modes and extent of exposure to mine tailings. Baseline metal concentrations in Porites were established using a coral from a reef that is least exposed to contamination. The lowest mean values of Cu (0.7 microg/g), Mn (0.8 microg/g), and Zn (1.0 microg/g) were calculated from annual skeletal bands representing five years of growth. Conversely, a sample from a reef adjacent to an old tailings stockpile displayed consistently elevated metal values in its growth bands. Mean Cu, Mn, and Zn values for this coral are 3.1, 1.0 and 1.8 microg/g, respectively. Corals from the Ihatub reef showed a distinct metal concentration peak in their 1996 growth ring. These peaks coincide with a documented release of mine tailings in the Ihatub area during that year. Other metal peaks observed in coral samples correlate with years of high precipitation which may have resulted in increased sediment transport in the region. The metals are presumed to be mostly bound to the aragonite lattice of the coral skeleton, however, contribution from incorporated detrital materials to the observed metal signal (mainly of Fe) could not be easily discounted.  相似文献   

4.
Reef-associated landforms are coupled to the health of the reef ecosystem which produces the sediment that forms and maintains these landforms. However, this connection can make reef-fronted coastlines sensitive to the impacts of climate change, given that any decline in ecosystem health (e.g. decreasing sediment supply) or changes to physical processes (e.g. sea level rise, increasing wave energy) could drive the sediment budgets of these systems into a net erosive state. Therefore, knowledge of both the sediment sources and transport mechanisms is required to predict the sensitivity of reef-associated landforms to future climate change. Here, we examine the benthic habitat composition, sediment characteristics (composition, texture, and age), and transport mechanisms and pathways to understand the interconnections between coastal morphology and the reef system at Tantabiddi, Ningaloo Reef, Western Australia. Benthic surveys and sediment composition analysis revealed that although live coral accounts for less than 5% of the benthic cover, coral is the dominant sediment constituent (34% on average). Sediment ages (238U/230Th) were mostly found to be thousands of years old, suggesting that the primary sediment source is relic reef material (e.g. Holocene reef framework). Sediment transport across the lagoon was quantified through measurements of ripple migration rates, which were found to be shoreward migrating and responsible for feeding the large shoreline salient in the lee of the reef. The derived sediment fluxes were comparable with previously measured rates of sediment production by bioerosion. These results suggest that sediment budgets of systems dependent on old (>103 years) source materials may be more resilient to climate change as present-day reef health and community composition (i.e. sources of ‘new’ carbonate production) have limited influence on sediment supply. Therefore, the vulnerability of reef-associated landforms in these systems will be dictated by future changes to mechanisms of sediment generation (e.g. bioerosion) and/or physical processes. © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
Six reef sites were chosen along the west coast of the southern islands of Singapore, at an increasing distance from the densely populated metropolitan area, to study the spatial patterns of coral reef communities on the upper reef slope ( approximately 4m) and the associated environmental conditions. Chronic exposure to high sediment load was the most obvious form of anthropogenic stress. Recruitment rates on ceramic tiles were low (1.4+/-1.0-20+/-14.7 recruits m(-2) yr(-1)) but decreased towards the main island of Singapore as did hard coral cover and coral density. Coral fauna consisted of genera generally found in deeper waters (e.g., fungiids, foliose Oxypora, Leptoseris, and Echinopora) or those well-adapted to turbid waters (e.g., Porites, Pectinia, Leptastrea, Montipora). Light extinction coefficient (K) and % live coral cover (%LCC) showed a strong and inverse curvilinear relationship (%LCC=13.60 *K(-3.40)). Similarly, the rate of sediment deposition (DFSPM) (RR=1.51-0.17 *DFSPM) and water clarity (RR=3.56-2.92 *K) exhibited strong and inverse relationships with recruitment rates (RR). Although measured levels of the downward flux of suspended particulate matter and suspended solids were well within "normal" levels recorded in the literature, it was the proportion of benthic space, generic coral composition, and site history that offered compelling evidence of chronic exposure to increased sediment load. Clearly a reduction in both water clarity and live-coral cover has taken place since monitoring efforts began in the early 1970s, in fact coral cover has more than halved at all sites examined since the 1980s and benthic space was predominantly occupied by dead corals covered with sediment and filamentous algae.  相似文献   

6.
The 184 m cargo ship Bunga Teratai Satu collided with Sudbury Reef, part of the Great Barrier Reef and remained grounded for 12 days. The ship was re-floated only 3 days prior to the November 2000 mass coral spawning. No cargo or fuel was lost but the impact resulted in significant contamination of the reef with anti-foulant paint containing tributyltin (TBT), copper (Cu) and zinc (Zn). Larvae of the reef-building scleractinian coral Acropora microphthalma were exposed to various concentrations of sediment collected from the grounding site in replicated laboratory experiments. Two experiments were performed, both of which used varying ratios of contaminated and control site sediment in seawater as treatments. In the first experiment, the influence of contaminated sediment on larval competency was examined using metamorphosis bioassays. In the second, the effect of contaminated sediment upon larval recruitment on pre-conditioned terracotta tiles was assessed. In both experiments, sediment containing 8.0 mg kg(-1) TBT, 72 mg kg(-1) Cu and 92 mg kg(-1) Zn significantly inhibited larval settlement and metamorphosis. At this level of contamination larvae survived but contracted to a spherical shape and swimming and searching behaviour ceased. At higher contamination levels, 100% mortality was recorded. These results indicate that the contamination of sediment by anti-fouling paint at Sudbury Reef has the potential to significantly reduce coral recruitment in the immediate vicinity of the site and that this contamination may threaten the recovery of the resident coral community unless the paint is removed.  相似文献   

7.
《国际泥沙研究》2019,34(6):591-599
Increasing continental suspended sediment influx to coral reefs is an example of land-sea coupling that requires the identification of sources, magnitude of transport, and controlling processes. In Brazil, a small coastal basin (Macaé River) was identified as a source of suspended sediment to a coral reef on the coast of Cape Armação dos Búzios. Biannual suspended sediment loads were measured at the basin as were fluxes within the estuary and towards the coast during eight tidal cycles. Particle load and yield from this basin were typical of small coastal basins, showing high to moderate slopes and transitional land management. However, the magnitude of the river loads was lower than the sediment transport within the estuary, indicating that the estuary amplifies river fluxes and sustains the transference of suspended sediment alongshore to the coral reef. Nonetheless, the estuary displays both suspended particle retention and export capacity and, therefore, fluxes to the coast and the coral reef occur as episodic events.  相似文献   

8.
Reef islands are low‐lying accumulations of unconsolidated sediment formed from the skeletal remains of carbonate‐producing reef organisms and are therefore perceived as highly vulnerable to environmental change. However, basic elements of island composition are not well described and given their high inter‐ and intra‐basinal variability a better understanding of reef and island sedimentary environments (and the connections between them) are needed to predict future morphological response. Here, we use detailed ecological and sedimentological datasets to delineate key sediment production zones and biosedimentary depositional facies across the surface of Vabbinfaru platform, Maldives. Field measurements of platform hydrodynamics are applied to sedimentary deposits to determine the potential mobility of grains and identify transport pathways. Carbonate production was dominated by coral framework (mean: 52%) within a narrow zone on the outer reef rim (22% of platform area) resulting in coral‐rich detrital sediments (reef: 51%, island: 64%) that closely resemble living assemblages. The net transfer of sediment occurred lagoonward by wave‐driven processes leading to a decrease in grain size towards the island (R2 = 0.502) which acts as a major control on depositional facies development within the lagoon. Island sediments were distinct from reefal deposits, comprising a restricted suite of durable sands (mean: 1.34?) throughout long‐term development. Our findings suggest that the production, breakdown and redistribution of coral‐derived sediment by platform currents is fundamental to future island stability at Vabbinfaru, and although alterations away from current ecological states may reduce sediment supply, the timescales over which island morphological response will occur depends upon phase lags between initial coral mortality and the conversion of this material into island‐grade sand. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.  相似文献   

10.
There is a recognized dearth of standard environmental quality data in the wider Caribbean area, especially on coral atolls/small island states. Extensive surveys of sediment contamination (n = 109 samples) in Bermuda revealed a wide spectrum of environmental quality. Zinc and especially copper levels were elevated at some locations, associated with boating (antifouling paints and boatyard discharges). Mercury contamination was surprisingly prevalent, with total levels as high as 12 mg kg−1 DW, although methyl mercury levels were quite low. PAH, PCB and PCDD/PCDF contamination was detected a several hotspots associated with road run-off, a marine landfill, and a former US Naval annexe. NOAA sediment quality guidelines were exceeded at several locations, indicating biological effects are possible, or at some locations probable. Overall, and despite lack of industrialization, anthropogenic chemicals in sediments of the atoll presented a risk to benthic biodiversity at a number of hotspots suggesting a need for sediment management strategies.  相似文献   

11.
The extensive deterioration of coral reefs worldwide highlights the importance of creating efficient monitoring methods to best assess their state of health. At present, several suggested parameters serve such indicators. None of these, however, is well accepted as reliably representing reef community health. In the present study we examine a new approach based on the ratio between mortality and recruitment rates of branching corals, which we term 'Deterioration Index' (DI). It aims at providing a quantitative indication of the state of health of reef-building coral communities. The method was developed and tested on 16 coral communities on artificially laid rocks along the coast of Eilat, Red Sea (Gulf of Aqaba). In contrast to frequently used indices (i.e. mortality rate, abundance and species richness), which did not demonstrate a consistent result in comparing disturbed vs. undisturbed coral communities, the DI revealed significant differences between these communities. Our results suggest that the use of the DI may enable the detection of disturbed coral communities in one instance monitoring, where the other parameters had failed. The DI, therefore, may provide a comparable quantitative assessment of the deterioration process and its intensity in a coral community. We propose the DI approach as an efficient and applicable tool for coral reef monitoring.  相似文献   

12.
The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management.  相似文献   

13.
The fringing reef of southern Moloka’i is perceived to be in decline because of land-based pollution. In the absence of historical records of sediment pollution, ratios of coral Ba/Ca were used to test the hypothesis that sedimentation has increased over time. Baseline Ba/Ca ratios co-vary with the abundance of red, terrigenous sediment visible in recent imagery. The highest values at One Ali’i are near one of the muddiest parts of the reef. This co-varies with the lowest growth rate of all the sites, perhaps because the upstream Kawela watershed was historically leveed all the way to the nearshore, providing a fast-path for sediment delivery. Sites adjacent to small, steep watersheds have ∼decadal periodicities whereas sites adjacent to mangrove forests have shorter-period fluctuations that correspond to the periodicity of sediment transport in the nearshore, rather than the watershed. All four sites show a statistically significant upward trend in Ba/Ca.  相似文献   

14.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL(-1) in pristine offshore reef areas to >100mgL(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL(-1) while others show mortality after exposure (weeks) to concentrations as low as 30mgL(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm(-2)d(-1) to >400mgcm(-2)d(-1). The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.  相似文献   

15.
A spatial risk assessment model is developed for the Great Barrier Reef (GBR, Australia) that helps identify reef locations at higher or lower risk of coral bleaching in summer heat-wave conditions. The model confirms the considerable benefit of discriminating nutrient-enriched areas that contain corals with enlarged (suboptimal) symbiont densities for the purpose of identifying bleaching-sensitive reef locations. The benefit of the new system-level understanding is showcased in terms of: (i) improving early-warning forecasts of summer bleaching risk, (ii) explaining historical bleaching patterns, (iii) testing the bleaching-resistant quality of the current marine protected area (MPA) network (iv) identifying routinely monitored coral health attributes, such as the tissue energy reserves and skeletal growth characteristics (viz. density and extension rates) that correlate with bleaching resistant reef locations, and (v) targeting region-specific water quality improvement strategies that may increase reef-scale coral health and bleaching resistance.  相似文献   

16.
Abstract Coral reefs are tropic to subtropic, coastal ecosystems comprising very diverse organisms. Late Quaternary reef deposits are fossil archives of environmental, tectonic and eustatic variations that can be used to reconstruct the paleoclimatic and paleoceanographic history of the tropic surface oceans. Reefs located at the latitudinal limits of coral‐reef ecosystems (i.e. those at coral‐reef fronts) are particularly sensitive to environmental changes – especially those associated with glacial–interglacial changes in climate and sealevel. We propose a land and ocean scientific drilling campaign in the Ryukyu Islands (the Ryukyus) in the northwestern Pacific Ocean to investigate the dynamic response of the corals and coral‐reef ecosystems in this region to Late Quaternary climate and sealevel change. Such a drilling campaign, which we call the COREF (coral‐reef front) Project, will allow the following three major questions to be evaluated: (i) What are the nature, magnitude and driving mechanisms of coral‐reef front migration in the Ryukyus? (ii) What is the ecosystem response of coral reefs in the Ryukyus to Quaternary climate changes? (iii) What is the role of coral reefs in the global carbon cycle? Subsidiary objectives include (i) the timing of coral‐reef initiation in the Ryukyus and its causes; (ii) the position of the Kuroshio current during glacial periods and its effects on coral‐reef formation; and (iii) early carbonate diagenetic responses as a function of compounded variations in climate, eustacy and depositional mineralogies (subtropic aragonitic to warm‐temperate calcitic). The geographic, climatic and oceanographic settings of the Ryukyu Islands provide an ideal natural laboratory to address each of these research questions.  相似文献   

17.
Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.  相似文献   

18.
Six reef sites were chosen along the west coasts of Singapore's southern islands, to: (1) quantitatively assess and compare coral community composition and structure, and recruitment rates, (2) assess the relationship between the aforementioned patterns and the environmental conditions, and (3) provide insights on potential processes that incorporate history at these study sites. Chronic exposure to high sediment load was the most obvious form of anthropogenic stress. Recruitment rates on ceramic tiles were low (1.4+/-1.0-20+/-14.7 recruits m(-2)year(-1)) but decreased towards the main island of Singapore as did hard coral cover and coral density. Coral fauna consisted of genera generally found in deeper waters (e.g., fungiids, foliose Oxypora, Leptoseris, and Echinopora) or those well adapted to turbid waters (e.g., Porites, Pectinia, Leptastrea, Montipora). Light extinction coefficient (K) and % live coral cover (%LCC) showed a strong and inverse curvilinear relationship (%LCC=13.60 *K(-3.40)). Similarly, the rate of sediment deposition (DFSPM) (Recruitment rate, RR=1.51-0.17 *DFSPM) and water clarity (RR=3.56-2.92 *K) exhibited strong and inverse relationships with recruitment rates. Although measured levels of the down-ward flux of suspended particulate matter and suspended solids were well within "normal" levels recorded in the literature, it was the proportion of benthic space, generic coral composition, and site history that offered compelling evidence of chronic exposure to increased sediment load. Clearly a reduction in both water clarity and live-coral cover has taken place since monitoring efforts began in the early 1970s, in fact coral cover has more than halved at all sites examined since the 1980s and benthic space was predominantly occupied by dead corals covered with sediment and filamentous algae.  相似文献   

19.
Field experiments were conducted to investigate the refraction and propagation of ocean waves across two coral reef platforms in the Maldives, central Indian Ocean. A total of seven pressure sensors were deployed on each reef to quantify temporal and spatial variations in wave characteristics across the platform surfaces. Directional wave properties were calculated from high frequency (2 Hz) wave and current records obtained at two locations on each reef and corroborate theoretically predicted propagation pathways derived from an analytical wave refraction model. Results demonstrate that reef geometry critically controls the refraction and propagation behaviour of incident swell across the reef structures. Differences in the magnitude of refraction (approximately 57° and 14°) observed on each reef can be attributed to variations in platform shape and orientation to incident waves. Results demonstrate that reef flat wave patterns define the segmentation of platform surfaces into distinctive high and low wave energy zones. Furthermore, wave focussing has been identified as a major mechanism controlling the transformation of wave energy across the reefs. Results provide the first field‐based validation of wave refraction and convergence on coral reefs and have significant implications for sedimentation processes and the formation of platform deposits. Reef configurations which promote marked wave convergence are more likely to retain sediment on the reef surface, whereas platforms that induce less refraction and changes in the direction of incident waves have a higher potential for the off‐reef evacuation of sediment over leeward reef margins. Results of wave measurements substantiate such projections and provide a first order explanation for the existence and absence of a coral cay on the two study reefs. The study presents empirical evidence of wave refraction and convergence on coral reefs and establishes a baseline for future investigations of hydrodynamic process controls on platform sedimentation and island formation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
《Marine pollution bulletin》2012,65(12):2725-2733
We examine the abundance and species composition variability of benthic infauna from tropical coastal lagoons in relation to environmental factors and organic pollutants. Sediment samples were collected at 40 sites in four lagoons in the northern Yucatan Peninsula. A total of 7985 individuals belonging to 173 species were sampled. While the eastern lagoons were dominated by polychaetes, the western ones were dominated by crustaceans. Overall, polychaetes had the highest abundance (48%), followed by crustaceans (42%). According to canonical correspondence analysis, species attributes were correlated with water salinity, pH and temperature, but also with sediment pentachlorobenzene, trichlorobenzene, and low molecular weight polycyclic aromatic hydrocarbons. Some pollutants exceeded sediment quality guidelines, representing a potential environmental risk to benthic infauna. Together, environmental factors and pollutants explained 52% of the variance in abundance and species composition among sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号