首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments   总被引:17,自引:0,他引:17  
This investigation represents the first extensive study of the spatial distribution and sources of aliphatic (n-alkanes and unresolved complex mixture of fossil hydrocarbons) and polycyclic aromatic hydrocarbons (PAHs) in coastal sediments from the Caspian Sea. PAH concentrations, n-alkanes and biomarker profiles all suggested that there was limited petrogenic contamination in the shallow North Caspian Sea sediments, which are coarse with a low total organic carbon content. In contrast, moderate to high petrogenic contamination was found in the South Caspian Sea, in particular in the offshore oil fields near Baku, Azerbaijan. Contaminant patterns indicated that the PAHs were mainly from fossil sources, with higher contributions of pyrolytic only near industrialized and urban areas. A high contribution of perylene, a geochemically derived PAH, to the total PAHs was found in the west and south at sites influenced by the Kura, Safid Rud, Terek, Sulak and Samur Rivers.  相似文献   

2.
The distribution and fate of polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments (0...2 cm) and fluffy layer material of the internal and external coastal waters of the Odra river estuary (north-eastern Germany). The area includes the Odra Lagoon (Oderhaff), the Greifswalder Bodden, the Pomeranian Bight, and the Arkona Basin. Elevated concentrations were observed in the surface sediments of the internal coastal waters with highest concentrations in the Odra Lagoon. This indicates a significant contribution of river discharge to the contamination of sediments with PAHs. During the exceptional Odra flood in the summer of 1997 significantly higher concentrations of PAHs were found in the fluffy layer material of the Odra Estuary. The distribution of the individual PAH compounds varies widely depending on their structure and molecular weight. A concentration gradient of the lower molecular weight PAHs was found from the Odra Lagoon to the open sea areas. The concentrations decreased rapidly from the Oder Haff to the Arkona Basin. These results were found in both sediments and fluffy layer material. This is attributed to the degradation of the lower molecular weight PAHs during transport from the urban regions to the sedimentation basins. A decrease of this magnitude was not found for the higher molecular weight PAHs (i.e. benzo(a)pyrene) due to their higher persistence. An enrichment of these compounds was measured in the Arkona Basin.  相似文献   

3.
To assess the contamination of polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean coastal environment of Egypt, 26 sediment samples from the coastline, harbours, estuaries and coastal lakes were collected and analyzed. The sediment PAH concentrations of thirty-nine 2-6 ring PAHs ranged from 13.5 to 22,600 ng/g. PAH profiles varied according to the nature of the site and its proximity to sources. Industrialized and urbanized region showed high level of PAHs contamination. In general, the contamination levels of PAHs were similar to those observed in contaminated and slightly contaminated sediments of the Mediterranean Sea. Molecular indices based on ratios of selected PAH concentrations were used to differentiate PAHs from pyrogenic and petrogenic and mixed origins. Good correlations were observed between the petrogenic index, MP/P, A-PAHs/P-PAHs and HMW/LMW. Finally, PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL) for evaluation of probable toxic effects on organism.  相似文献   

4.
A field operable surface enhanced Raman scattering (SERS) sensor system was applied for the first time under real conditions for the detection of polycyclic aromatic hydrocarbons (PAHs) as markers for petroleum hydrocarbons in the Gulf of Gdańsk (Baltic Sea). At six stations, seawater samples were taken, and the sensor system was applied in situ simultaneously. These measurements were compared to the results of conventional GC/MS laboratory analysis of the PAH concentrations in the seawater samples. For a PAH concentration above 150 ng(12PAH)l(-1), there was agreement between the SERS sensor and the GC/MS determinations. A standard addition experiment yielded a PAH concentration of 900 ng l(-1) at the Gdańsk Harbor, which was of the same order as the GC/MS determinations of 12PAHs (200 ng(12PAH)l(-1)). The high SERS detection limit for seawater samples is explained by the competition for PAHs between the sensor membrane and particulate matter surfaces. Thus, the SERS sensor can be applied, e.g., as a non-quantitative alarm sensor for relatively high PAH concentrations in heavily polluted waters. The spectral unmixing procedure applied for Gdańsk Harbor water confirmed the presence of phenanthrene at the highest concentration ([Phe]=140 ngl(-1)) and of Chr (2.7 ng l(-1)), but it did not detect the other PAHs present in the Gdańsk Harbor water, as determined by GC/MS. When compared to the past literature and databases, the SERS spectra indicated the presence of a mixture of molecules consisting of carotenoids, n-alkanes, amines or fatty acids, and benzimidazoles at the coastal station ZN2. The spectra in the offshore direction indicated carboxylic acids. Interpretation of the farthest offshore in situ SERS measurements is difficult, principally due to the limited availability of reference spectra. The detection of the lower PAH concentrations commonly found in Baltic coastal water needs further research and development to obtain better sensitivity of the SERS sensor. However, the high analytical specificity of the SERS sensor also allows the detection of other chemical species that require the development of a SERS/Raman library for specific in situ spectral interpretation.  相似文献   

5.
Seawater samples (including surface water and bottom water) were collected from the Western Taiwan Strait (WTS) during June 24-25, 2009; polycyclic aromatic hydrocarbons (PAHs) in dissolved phase and particulate phase were analyzed, respectively. The results showed that the total concentrations of PAHs in the dissolved phase and particulate phase were ranged from 12.3 to 58.0 ng L(-1), and 10.3-45.5 ng L(-1), which showed a low-middle contamination level in the China Seas. The spatial variability of PAHs may be related to the complicated currents of WTS, especially the Min-Zhe coastal current. PAHs diagnostic ratios suggested that PAHs mainly originated from the inputs of pyrolytic (combustion) sources, which might be contributed to land-based atmospheric deposition. The particle-water partition coefficients of individual PAH showed that partitions were not correlated with suspended particulate matter content, dissolved organic carbon or salinity, similar to the Yangtze coastal area.  相似文献   

6.
Segara Anakan, a mangrove-fringed coastal lagoon in Indonesia, has a high diversity of macrobenthic invertebrates and is increasingly affected by human activities. We found >50 organic contaminants in water, sediment and macrobenthic invertebrates from the lagoon most of which were polycyclic aromatic compounds (PACs). Composition of PACs pointed to petrogenic contamination in the eastern lagoon. PACs mainly consisted of alkylated PAHs, which are more abundant in crude oil than parent PAHs. Highest total PAC concentration in sediment was above reported toxicity thresholds for aquatic invertebrates. Other identified compounds derived from municipal sewage and also included novel contaminants like triphenylphosphine oxide. Numbers of stored contaminants varied between species which is probably related to differences in microhabitat and feeding mode. Most contaminants were detected in Telescopium telescopium and Polymesoda erosa. Our findings suggest that more attention should be paid to the risk potential of alkylated PAHs, which has hardly been addressed previously.  相似文献   

7.
Polychlorinated biphenyls (PCBs) and 17 parent polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from nine stations in the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Total PAH concentrations ranged from 380 to 12,750 microg/kg d.w., while total PCB levels ranged from 2 to 1684 microg/kg d.w.; this values were higher than those found in others marine coastal areas of the Mediterranean Sea. For PAHs, low molecular weight/high molecular weight, phenanthrene/anthracene and fluoranthene/pyrene ratio were used for discriminating between pyrolitic and petroleum origin. Results showed that PAHs were mainly of pyrolitic origin. PCB and PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL, TEL-PEL indexes) for evaluation probable toxic effects on marine organism. Finally, ERM and PEL quotients were used to evaluate the degree to which chemicals exceed guidelines. Results suggest an ecotoxicological risk for benthic organisms mainly in the first inlet, where high concentrations of PCBs were found in sediments influenced by harbour activities.  相似文献   

8.
This study measured concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the East China Sea (ECS) to investigate possible sources and fate of PAHs. Total concentration of PAHs in the sediments of the ECS ranged from 22 to 244 ng g(-1), with the highest levels in the coastal area and outer shelf. The observed PAH results showed elevated levels in both inner and outer shelf areas, a finding that is different from predictions by an ocean circulation model, suggesting that terrestrial sources are important for PAH contaminations in the ECS, while sediment resuspension, tidal changes and lateral transport may be important in affecting the distribution of PAHs in the outer shelf. The distribution of PAHs in the surface sediments of the ECS is similar to the distribution of carbonaceous materials (e.g., particulate organic carbon and black carbon), suggesting that carbonaceous materials may strongly affect the distribution of PAHs.  相似文献   

9.
Surface sediments were collected from sixteen locations in order to assess levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Qatar exclusive economic zone (EEZ). Samples were analyzed for 16 parent PAHs, 18 alkyl homologs and for dibenzothiophenes. Total PAHs concentration (∑PAHs) ranged from 2.6 ng g−1 to 1025 ng g−1. The highest PAHs concentrations were in sediments in and adjacent to harbors. Alkylated PAHs predominated most of the sampling locations reaching up to 80% in offshore locations. Parent PAHs and parent high molecular weight PAHs dominated location adjacent to industrial activities and urban areas. The origin of PAHs sources to the sediments was elucidated using ternary plot, indices, and molecular ratios of specific compounds such as (Ant/Phe + Ant), (Flt/Flt + Pyr). PAHs inputs to most coastal sites consisted of mixture of petroleum and combustion derived sources. However, inputs to the offshore sediments were mainly of petroleum origin.  相似文献   

10.
Atmospheric wet deposition of PAHs to the sea-surface microlayer   总被引:1,自引:1,他引:0  
Sea-surface microlayer (SML) and subsurface seawater samples (SSW) collected from Singapore's coastal environment were analyzed for 14 polycyclic aromatic hydrocarbons (PAHs) in the dissolved (DP) and suspended particulate phase (SPM). Samples were collected prior to and after rainfall events to ascertain the contribution of wet atmospheric deposition of PAH enrichment to the SML. The concentration ranges of summation operatorPAHs in the SML before rain and after wet deposition were 2.6-46.2 ngL(-1) and 4.3-278.0 ngL(-1), respectively, for the DP and 3.8-31.4 ngL(-1) and 12.8-1280 ngL(-1), respectively, for the SPM. Load factors (i.e. concentration after wet deposition relative to before wet deposition) of the atmospheric wet deposition for DP and SPM ranged from 1.4 to 42.9 and 1.2 to 337, respectively. This study provides the first data on PAH concentration, enrichment (i.e. concentration of PAHs in SML relative to subsurface water) and load factors in the SML before and after wet deposition to the ocean surface.  相似文献   

11.
Thirty-three sediment samples from Hsin-ta Harbour and neighboring coastal areas were analyzed by GC-MS for polycyclic aromatic hydrocarbons (PAHs). Total concentrations of 30 analyzed parental and alkylated PAHs ( summation operator PAH) varied from 98.1 to 3382 ng/g dry weight. MP/P (methylphenanthrenes/phenanthrene) values larger than 2 coincided with very low P/A (phenanthrene/anthracene) values at inner harbour stations, revealing that a significant portion of low molecular weight PAHs are probably from petrogenic pollution sources, specifically, illegal disposal of used motor oil. The 4,6-dimethyldibenzothiophene/3,6-dimethylphenanthrene (4,6-C(2)D/3,6-C(2)P) ratio is found to be more useful than the MP/P ratio in tracing petrogenic PAHs from the inner harbour area to the adjacent coastal environment. In addition, according to hierarchical cluster analysis, collected sediments cluster in three major groups, Off-shore Group, Near-shore Group and Inner Harbour Group. Three diagnostic ratios, 4,6-C(2)D/3,6-C(2)P, PER/ summation operator PAH (perylene to summation operator PAH) and BaA/CHR (benzo(a)anthracene/chrysene), representing petrogenic, biogenic and pyrogenic origins, are found to be effective in differentiating and characterizing sediments among the groups in this study. Enrichment of pyrogenic and petrogenic PAHs in sediments collected exhibits mixing or dilution, spatially, by biogenic (or natural) PAHs.  相似文献   

12.
《Marine pollution bulletin》2012,64(5-12):459-463
Seawater samples (including surface water and bottom water) were collected from the Western Taiwan Strait (WTS) during June 24–25, 2009; polycyclic aromatic hydrocarbons (PAHs) in dissolved phase and particulate phase were analyzed, respectively. The results showed that the total concentrations of PAHs in the dissolved phase and particulate phase were ranged from 12.3 to 58.0 ng L−1, and 10.3–45.5 ng L−1, which showed a low-middle contamination level in the China Seas. The spatial variability of PAHs may be related to the complicated currents of WTS, especially the Min-Zhe coastal current. PAHs diagnostic ratios suggested that PAHs mainly originated from the inputs of pyrolytic (combustion) sources, which might be contributed to land-based atmospheric deposition. The particle-water partition coefficients of individual PAH showed that partitions were not correlated with suspended particulate matter content, dissolved organic carbon or salinity, similar to the Yangtze coastal area.  相似文献   

13.
《Marine pollution bulletin》2012,65(12):2834-2838
Polycyclic aromatic hydrocarbons (PAHs) were determined in water samples collected in two streams and a lake located at Niteroi City, Rio de Janeiro State, Brazil between October 2008 and September 2009. Samples were extracted using liquid–liquid extraction and analyzed using high performance liquid chromatography with fluorescence detection. The limits of quantification were sufficiently low to accomplish PAH determination below the maximum concentration levels established by the Brazilian (50 ng/L) and USEPA legislations, with recoveries larger than 81.6%. Phenanthrene, fluoranthene, pyrene and benz[a]anthracene predominated among PAHs. Total concentrations of PAHs were well correlated with rainfall indicating a possible role of runoff to local pollution of water by PAHs and showed a seasonal variation in wet and dry seasons. Our results highlight the contribution of the widespread streams located around Guanabara Bay to the PAH burden found in its waters.  相似文献   

14.
Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea   总被引:10,自引:0,他引:10  
Between 1992 and 1994, the distribution of 15 polycyclic aromatic hydrocarbons (PAHs) was investigated in seawater and surface sediments of the Baltic Sea. The analysis of PAHs in seawater is very difficult due to the low concentration. High separation capability is required. A method for analysing very low concentrations of PAHs is presented. The method is based on the high-performance liquid chromatography (HPLC) with fluorescence detection. The concentrations of PAHs in seawater are discussed in relation to water depth. A seasonal variation of PAHs in seawater was observed, with lowest concentrations occurring in summer and generally higher concentrations occurring in November. According to the regional distribution, elevated concentrations of PAHs were found in coastal regions of the Baltic Sea. The regional distribution of PAHs in surface sediments of the Belt Sea and the Arkona Basin were also investigated. The relationship between the content of PAHs and the percentage of total organic carbon in sediments is discussed.  相似文献   

15.
The polycyclic aromatic hydrocarbons (PAHs) pollution in the Sarno River and its environmental impact on the Gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea) were estimated. The 16 PAHs identified by the USEPA as priority pollutants and perylene were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediments. Total PAHs concentrations ranged from 23.1 to 2670.4 ng L(-1) in water (sum of DP and SPM) and from 5.3 to 678.6 ng g(-1) in sediment samples. Source analysis revealed that PAHs mainly came from combustion process. Contaminant discharges of PAHs into the sea were calculated in about 8530 gd(-1) showing that this river should account as one of the main contribution sources of PAHs to the Tyrrhenian Sea.  相似文献   

16.
To assess the status of polycyclic aromatic hydrocarbon (PAH) contamination in coastal and riverine environments in Thailand, we collected 42 surface sediment samples from canals, a river, an estuary, and coastal areas in Thailand in 2003 and analyzed them for PAHs with 3-7 benzene rings by gas chromatography-mass spectrometry (GC-MS). The total concentration of PAHs ranged from 6 to 8399 ng/g dry weight. The average total PAH concentrations were 2290+/-2556 ng/g dry weight (n=8) in canals, 263+/-174 (n=11) in the river, 179+/-222 (n=9) in the estuary, and 50+/-56 (n=14) in coastal areas. Comparison of the concentration range with a worldwide survey of sedimentary PAH concentrations ranked PAH contamination in Thai sediments as low to moderate. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P ratio) allows discrimination of PAH sources between petrogenic (>2) and pyrogenic (<0.5) origins. Sediments from urban canals in Bangkok showed the highest PAH concentrations and petrogenic signatures (MP/P=1.84+/-0.98 [n=6] in canal sediments) with abundant alkylated PAHs, indicating major sources of petrogenic PAHs in the city. To identify the sources of the petrogenic inputs in Thailand, we analyzed triterpanes, biomarkers of petroleum pollution, in the sediment samples and in potential source materials. Hopane profiles were remarkably uniform throughout the nation, suggesting a diffuse single source (e.g. automobiles). Molecular profiles of hopanes and PAHs in sediments from the urban canals were similar to those in street dust, indicating that street dust is one of the major sources of petrogenic PAHs in the urban area. On the other hand, low levels of PAHs (approximately 50 ng/g) with a pyrogenic signature (MP/P ratio approximately 0.5) were widely recorded in remote areas of the coast and the Chao Phraya River. These pyrogenic PAHs may be atmospherically transported throughout the nation. Middle and lower reaches of the Chao Phraya River, the river mouth, and the upper Gulf of Thailand showed intermediate concentrations and profiles of PAHs, indicating mixtures of petrogenic and pyrogenic origins. Perylene was abundant in sediments, representing up to approximately 60% of total identified PAHs. High inputs of soil due to frequent heavy rains could contribute to the high perylene abundance in the sediments. Sedimentary PAH concentrations decreased offshore with a half distance of approximately 10 km in the upper Gulf off the mouth of the Chao Phraya River. This is probably due to active deposition of laterally transported riverborne particles.  相似文献   

17.
《Marine pollution bulletin》2012,64(5-12):464-470
This study measured concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the East China Sea (ECS) to investigate possible sources and fate of PAHs. Total concentration of PAHs in the sediments of the ECS ranged from 22 to 244 ng g−1, with the highest levels in the coastal area and outer shelf. The observed PAH results showed elevated levels in both inner and outer shelf areas, a finding that is different from predictions by an ocean circulation model, suggesting that terrestrial sources are important for PAH contaminations in the ECS, while sediment resuspension, tidal changes and lateral transport may be important in affecting the distribution of PAHs in the outer shelf. The distribution of PAHs in the surface sediments of the ECS is similar to the distribution of carbonaceous materials (e.g., particulate organic carbon and black carbon), suggesting that carbonaceous materials may strongly affect the distribution of PAHs.  相似文献   

18.
《Marine pollution bulletin》2008,56(10-12):451-458
Polychlorinated biphenyls (PCBs) and 17 parent polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from nine stations in the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Total PAH concentrations ranged from 380 to 12,750 μg/kg d.w., while total PCB levels ranged from 2 to 1684 μg/kg d.w.; this values were higher than those found in others marine coastal areas of the Mediterranean Sea. For PAHs, low molecular weight/high molecular weight, phenanthrene/anthracene and fluoranthene/pyrene ratio were used for discriminating between pyrolitic and petroleum origin. Results showed that PAHs were mainly of pyrolitic origin. PCB and PAH levels in sediments were compared with Sediments Quality Guidelines (ERM–ERL, TEL–PEL indexes) for evaluation probable toxic effects on marine organism. Finally, ERM and PEL quotients were used to evaluate the degree to which chemicals exceed guidelines. Results suggest an ecotoxicological risk for benthic organisms mainly in the first inlet, where high concentrations of PCBs were found in sediments influenced by harbour activities.  相似文献   

19.
The composition and spatial distribution of aliphatic and polycyclic aromatic hydrocarbons (PAHs) were investigated in biota and coastal sediments from four countries surrounding the Gulf (Bahrain, Qatar, United Arab Emirates and Oman). The levels of total petroleum hydrocarbons (TPH), aliphatic unresolved mixture and PAHs in sediments and biota were relatively low compared to world-wide locations reported to be chronically contaminated by oil. Only in the case of the sediments collected near the BAPCO oil refinery in Bahrain, having concentrations of 779 μg g−1 total petroleum hydrocarbon equivalents and 6.6 μg g−1 ∑PAHs, can they be categorized as chronically contaminated. Some evidence of oil contamination was also apparent in sediments and bivalves around Akkah Head and Abu Dhabi in the UAE, and near Mirbat in Oman. Contaminant patterns in sediments and biota indicated that the PAHs were mainly from fossil sources, with the exception of the high PAH concentrations in sediments near the BAPCO refinery that contained substantial concentrations of carcinogenic PAH combustion products.  相似文献   

20.
Reports of the occurrence and accumulation patterns of polycyclic aromatic hydrocarbons (PAHs) and synthetic musk compounds (SMCs) in marine mammals are scarce. In this study, the concentrations and accumulation profiles of PAHs and SMCs were determined in blubber from finless porpoises in Korean coastal waters. Total concentrations of PAHs and SMCs ranged from 6.0 to 432 (mean: 160) ng/g lipid weight and from 17 to 144 (mean: 52) ng/g lipid weight, respectively. Residue levels of PAHs were lower than those reported from other studies, while residue levels of SMCs were relatively higher than those reported in other studies. Naphthalene was the most abundant PAH and HHCB was the dominant SMC observed in finless porpoises. The concentrations of PAHs and SMCs were not correlated with each other, but were significantly correlated within the same chemical groups. No correlations were found between body size and residue levels of PAHs and SMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号