共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Andrew J. Barber Peter A. Thomas H. M. P. Couchman 《Monthly notices of the Royal Astronomical Society》1999,310(2):453-464
We investigate the effects of weak gravitational lensing in the standard cold dark matter cosmology, using an algorithm that evaluates the shear in three dimensions. The algorithm has the advantage of variable softening for the particles, and our method allows the appropriate angular diameter distances to be applied to every evaluation location within each three-dimensional simulation box. We investigate the importance of shear in the distance–redshift relation, and find it to be very small. We also establish clearly defined values for the smoothness parameter in the relation, finding its value to be at least 0.83 at all redshifts in our simulations. From our results, obtained by linking the simulation boxes back to source redshifts of 4, we are able to observe the formation of structure in terms of the computed shear, and also note that the major contributions to the shear come from a very broad range of redshifts. We show the probability distributions for the magnification, source ellipticity and convergence, and also describe the relationships amongst these quantities for a range of source redshifts. We find a broad range of magnifications and ellipticities; for sources at a redshift of 4, 97.5 per cent of all lines of sight show magnifications up to 1.39 and ellipticities up to 0.23. There is clear evidence that the magnification is not linear in the convergence, as might be expected for weak lensing, but contains contributions from higher order terms in both the convergence and the shear. Our results for the one-point distribution functions are generally different from those obtained by other authors using two-dimensional (planar) approaches, and we suggest reasons for the differences. Our magnification distributions for sources at redshifts of 1 and 0.5 are also very different from the results used by other authors to assess the effect on the perceived value of the deceleration parameter, and we briefly address this question. 相似文献
3.
4.
5.
6.
7.
8.
9.
10.
11.
Stefan Hilbert R. Benton Metcalf S. D. M. White 《Monthly notices of the Royal Astronomical Society》2007,382(4):1494-1502
21-cm emission from neutral hydrogen during and before the epoch of cosmic reionization is gravitationally lensed by material at all lower redshifts. Low-frequency radio observations of this emission can be used to reconstruct the projected mass distribution of foreground material, both light and dark. We compare the potential imaging capabilities of such 21-cm lensing with those of future galaxy lensing surveys. We use the Millennium Simulation to simulate large-area maps of the lensing convergence with the noise, resolution and redshift-weighting achievable with a variety of idealized observation programmes. We find that the signal-to-noise ratio of 21-cm lens maps can far exceed that of any map made using galaxy lensing. If the irreducible noise limit can be reached with a sufficiently large radio telescope, the projected convergence map provides a high-fidelity image of the true matter distribution, allowing the dark matter haloes of individual galaxies to be viewed directly, and giving a wealth of statistical and morphological information about the relative distributions of mass and light. For instrumental designs like that planned for the Square Kilometre Array, high-fidelity mass imaging may be possible near the resolution limit of the core array of the telescope. 相似文献
12.
S. Camera D. Bertacca A. Diaferio N. Bartolo S. Matarrese 《Monthly notices of the Royal Astronomical Society》2009,399(4):1995-2003
This paper is an extension of the work done by Pierens & Nelson in which they investigated the behaviour of a two-planet system embedded in a protoplanetary disc. They put a Jupiter mass gas giant on the internal orbit and a lower mass planet on the external one. We consider here a similar problem taking into account a gas giant with mass in the range 0.5 to 1 M J and a Super-Earth (i.e. a planet with mass ≤10 M ⊕ ) as the outermost planet. By changing disc parameters and planet masses, we have succeeded in getting the convergent migration of the planets which allows for the possibility of their resonant locking. However, in the case in which the gas giant has the mass of Jupiter, before any mean-motion first-order commensurability could be achieved, the Super-Earth is caught in a trap when it is very close to the edge of the gap opened by the giant planet. This confirms the result obtained by Pierens & Nelson in their simulations. Additionally, we have found that, in a very thin disc, an apsidal resonance is observed in the system if the Super-Earth is captured in the trap. Moreover, the eccentricity of the small planet remains low, while the eccentricity of the gas giant increases slightly due to the imbalance between Lindblad and corotational resonances. We have also extended the work of Pierens & Nelson by studying analogous systems in which the gas giant is allowed to take sub-Jupiter masses. In this case, after conducting an extensive survey over all possible parameters, we have succeeded in getting the 1:2 mean-motion resonant configuration only in a disc with low aspect ratio and low surface density. However, the resonance is maintained just for a few thousand orbits. Thus, we conclude that for typical protoplanetary discs the mean-motion commensurabilities are rare if the Super-Earth is located on the external orbit relative to the gas giant. 相似文献
13.
Arising from gravitational deflections of light rays by large-scale structures in the Universe, weak-lensing effects have been recognized as one of the most important probes in cosmological studies. In this paper, we review the main progress in weak-lensing analyses, and discuss the challenges in future investigations aiming to understand the dark side of the Universe with unprecedented precisions. 相似文献
14.
D. J. Bacon A. N. Taylor M. L. Brown M. E. Gray C. Wolf K. Meisenheimer S. Dye L. Wisotzki A. Borch M. Kleinheinrich 《Monthly notices of the Royal Astronomical Society》2005,363(3):723-733
We present a direct detection of the growth of large-scale structure, using weak gravitational lensing and photometric redshift data from the COMBO-17 survey. We use deep R -band imaging of two 0.5 × 0.5 deg2 fields, affording shear estimates for over 52 000 galaxies; we combine these with photometric redshift estimates from our 17-band survey, in order to obtain a 3D shear field. We find theoretical models for evolving matter power spectra and correlation functions, and fit the corresponding shear correlation functions to the data as a function of redshift. We detect the evolution of the power at the 4.7σ level given reasonable priors, and measure the rate of evolution for 0 < z < 1 . We also fit correlation functions to our 3D data as a function of cosmological parameters σ8 and ΩΛ . We find joint constraints on ΩΛ and σ8 , demonstrating an improvement in accuracy by ≃40 per cent over that available from 2D weak lensing for the same area. 相似文献
15.
Lindsay J. King 《Monthly notices of the Royal Astronomical Society》2007,382(1):308-314
The recent detection by Limousin et al. of five new strong lensing events dominated by galaxy cluster members in Abell 1689, and outside the critical regime of the cluster itself, offers a way to obtain constraints on the cluster mass distribution in a region inaccessible to standard lensing analysis. In addition, modelling such systems will provide another window on the dark matter haloes of galaxies in very dense environments. Here, it is shown that the boost in image separation due to the external shear and convergence from a smooth cluster component means that more numerous, less massive galaxies have the potential to create multiple images with detectable separations, relative to isolated field galaxies. This comes in addition to a potential increase in their lensing (source plane) cross-section. To gain insight into the factors involved and as a precursor to a numerical study using N -body simulations, a simple analytic model of a cluster at z = 0.3 lensing background galaxies at z = 2 is considered here. The fiducial model has cluster members with isothermal density profiles and luminosities L , distributed in a Schechter function (faint-end slope ν=−1.25 ), related to their velocity dispersions σ via the Faber–Jackson scaling L ∝σ4 . Just outside the critical regime of the cluster, the scale of galaxy-dominated image separations is significantly increased. Folding in the fact that less massive galaxies present a lower lensing cross-section, and that the cross-section can itself be enhanced in an external field leads to a factor of a few times more detected events relative to field galaxies. These values will be higher closer to the critical curve. Given that the events in Abell 1689 were detected over a very small region of the cluster where ACS data were available, this motivates the search for such events in other clusters. 相似文献
16.
17.
F. Perrotta C. Baccigalupi M. Bartelmann G. De Zotti G.L. Granato 《Monthly notices of the Royal Astronomical Society》2002,329(2):445-455
High-redshift galaxies and quasi-stellar objects (QSOs) are most likely to be strongly lensed by intervening haloes between the source and the observer. In addition, a large fraction of lensed sources is expected to be seen in the submillimetre region, as a result of the enhanced magnification bias on the steep intrinsic number counts. We extend in three directions Blain's earlier study of this effect.
First, we use a modification of the Press–Schechter mass function and detailed lens models to compute the magnification probability distribution. We compare the magnification cross-sections of populations of singular isothermal spheres and Navarro, Frenk & White (NFW) haloes and find that they are very similar, in contrast to the image-splitting statistics which were recently investigated in other studies. The distinction between the two types of density profile is therefore irrelevant for our purposes.
Secondly, we discuss quantitatively the maximum magnification, μmax , that can be achieved for extended sources (galaxies) with realistic luminosity profiles, taking into account the possible ellipticity of the lensing potential. We find that μ max plausibly falls into the range for sources of effective radius at redshifts within .
Thirdly, we apply our model for the lensing magnification to a class of sources following the luminosity evolution typical for a unified scheme of QSO formation. As a result of the peculiar steepness of their intrinsic number counts, we find that the lensed source counts at a fiducial wave length of 850 μm can exceed the unlensed counts by several orders of magnitude at flux densities ≳100 mJy, even with a conservative choice of the maximum magnification. 相似文献
First, we use a modification of the Press–Schechter mass function and detailed lens models to compute the magnification probability distribution. We compare the magnification cross-sections of populations of singular isothermal spheres and Navarro, Frenk & White (NFW) haloes and find that they are very similar, in contrast to the image-splitting statistics which were recently investigated in other studies. The distinction between the two types of density profile is therefore irrelevant for our purposes.
Secondly, we discuss quantitatively the maximum magnification, μ
Thirdly, we apply our model for the lensing magnification to a class of sources following the luminosity evolution typical for a unified scheme of QSO formation. As a result of the peculiar steepness of their intrinsic number counts, we find that the lensed source counts at a fiducial wave length of 850 μm can exceed the unlensed counts by several orders of magnitude at flux densities ≳100 mJy, even with a conservative choice of the maximum magnification. 相似文献
18.
19.
20.
We consider small-scale spheroidal clusters of weakly interacting massive particles in our Galaxy as non-compact gravitational microlenses and predict the appearance of caustics in the plane of a lensed source. The crossing of these caustics by a lensed star can produce a large variety of light curves, including some observed in actual microlensing events that have been interpreted as manifestations of binary gravitational lenses. We consider also observable effects during the gravitational microlensing of stars of non-zero angular size with a given brightness distribution across their disks by such an exotic objects as natural wormholes and objects whose space-time environment is described with the NUT metric. We demonstrate that, under certain conditions, the microlensing light curves, chromatic and polarizational effects due to the properties of the lens and the star disk brightness distributions can differ considerably from those observed for a Schwarzschild gravitational lens, so that their analysis can facilitate the identification of such objects. 相似文献