首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A stochastic prediction model for the sunspot cycle is proposed. The prediction model is based on a modified binary mixture of Laplace distribution functions and a moving-average model over the estimated model parameters. A six-parameter modified binary mixture of Laplace distribution functions is used for the modeling of the shape of a generic sunspot cycle. The model parameters are estimated for 23 sunspot cycles independently, and the primary prediction-model parameters are derived from these estimated model parameters using a moving-average stochastic model. A correction factor (hump factor) is introduced to make an initial prediction. The hump factor is computed for a given sunspot cycle as the ratio of the model estimated after the completion of a sunspot cycle (post-facto model) and the prediction of the moving-average model. The hump factors can be applied one at a time over the moving-average prediction model to get a final prediction of a sunspot cycle. The present model is used to predict the characteristics of Sunspot Cycle 24. The methodology is validated using the previous Sunspot Cycles 21, 22, and 23, which shows the adequacy and the applicability of the prediction model. The statistics of the variations of sunspot numbers at high solar activity are used to provide the lower and upper bound for the predictions using the present model.  相似文献   

2.
三种对流层延迟改正模型精度评估   总被引:9,自引:0,他引:9  
利用36个全球分布的IGS站2003全年GPS实测的对流层天顶延迟数据和气象数据,对目前国内外常用的两个对流层延迟改正模型;Hopfield模型、Saastamoinen模型和最近几年发展起来的EGNOS模型的改正精度和适用范围进行评估,指出Hopfield模型在应用中存在的缺陷,EGNOS模型可用作GNSS实时定位和导航的对流层天顶延迟的改正模型.  相似文献   

3.
It is an objective fact that there exists error in the satellite dynamic model and it will be transferred to satellite orbit determination algorithm, forming a part of the connotative model error. Mixed with the systematic error and random error of the measurements, they form the unitive model error and badly restrict the precision of the orbit determination. We deduce in detail the equations of orbit improvement for a system with dynamic model error, construct the parametric model for the explicit part of the model and nonparametric model for the error that can not be explicitly described. We also construct the partially linear orbit determination model, estimate and fit the model error using a two-stage estimation and a kernel function estimation, and finally make the corresponding compensation in the orbit determination. Beginning from the data depth theory, a data depth weight kernel estimator for model error is proposed for the sake of promoting the steadiness of model error estimation. Simulation experiments of SBSS are performed. The results show clearly that the model error is one of the most important effects that will influence the precision of the orbit determination. The kernel function method can effectively estimate the model error, with the window width as a major restrict parameter. A data depth-weight-kernel estimation, however, can improve largely the robustness of the kernel function and therefore improve the precision of orbit determination.  相似文献   

4.
The polarization characteristics of an astronomical telescope is an important factor that affects polarimetry accuracy. Polarization modeling is an essential means to achieve high precision and efficient polarization measurement of the telescope, especially for the alt-azimuth mount telescope. At present, the polarization model for the telescope(i.e., the physical parametric model) is mainly constructed using the polarization parameters of each optical element. In this paper, an artificial neural network(ANN) is used to model the polarization characteristics of the telescope. The ANN model between the physical parametric model residual and the pointing direction of the telescope is obtained, which reduces the model deviation caused by the incompleteness of the physical parametric model. Compared with the physical parametric model, the model fitting and predictive accuracy of the New Vacuum Solar Telescope(NVST) is improved after adopting the ANN model. After using the ANN model, the polarization cross-talk from I to Q, U, and V can be reduced from 0.011 to 0.007, and the crosstalk among Q, U, and V can be reduced from 0.047 to 0.020, which effectively improves the polarization measurement accuracy of the telescope.  相似文献   

5.
This paper investigates a simplified model for describing the gravitational fields of nonaxisymmetric elongated asteroids. The connection between the simplified model and the target asteroid is built by considering the positions of equilibrium points. To improve the performance of position matching for the equilibrium points associated with these non-axisymmetric asteroids, a nonaxisymmetric triple-particle-linkage model is proposed based on two existing axisymmetric particlelinkage models. The unknown parameters of the simplified model are determined by minimizing the matching error using the nonlinear optimization method. The proposed simplified model is applied for three realistic elongated asteroids, 243 Ida, 433 Eros and(8567) 1996 HW1. The simulation results verify that the current particle-linkage model has better matching accuracy than the two existing particle-linkage models. The comparison, between the simplified model and the polyhedral model, on the topological cases of the equilibrium points and the distribution of gravitational potential further validate the rationality and accuracy of the simplified model.  相似文献   

6.
电离层延迟改正模型综述   总被引:12,自引:0,他引:12  
电离层延迟改正模型通常可以分为广播星历用的预报模型、广域差分用的实时模型、后处理模型3类,不同应用要求需要选择不同的模型。主要比较分析了几种常用的电离层延迟改正模型: 用于广域差分中生成格网模型的三角级数模型、多项式模型、低阶球谐函数模型等都可以获得很好的改正效果,且这3种模型基本上是等价的;电离层延迟谐函数展开模型可以用来分析电离层长时间系列的变化特征;国际电离层参考模型IRI的改正精度一般可以达到60%的效果;而GPS 星历采用的Klobuchar模型的参数设置存在一些不足,对此提出了一些改进措施。  相似文献   

7.
The generalized Chaplygin gas (GCG) model in spatially flat universe is investigated. The cosmological consequences led by GCG model including the evolution of EoS parameter, deceleration parameter and dimensionless Hubble parameter are calculated. We show that the GCG model behaves as a general quintessence model. The GCG model can also represent the pressureless CDM model at the early time and cosmological constant model at the late time. The dependency of transition from decelerated expansion to accelerated expansion on the parameters of model is investigated. The statefinder parameters r and s in this model are derived and the evolutionary trajectories in sr plane are plotted. Finally, based on current observational data, we plot the evolutionary trajectories in sr and qr planes for best fit values of the parameters of GCG model. It has been shown that although, there are similarities between GCG model and other forms of Chaplygin gas in statefinder plane, but the distance of this model from the ΛCDM fixed point in sr diagram is shorter compare with standard Chaplygin gas model.  相似文献   

8.
In this work, we present a new model for the heat conductivity of porous dust layers in vacuum, based on an existing solution of the heat transfer equation of single spheres in contact. This model is capable of distinguishing between two different types of dust layers: dust layers composed of single particles (simple model) and dust layers consisting of individual aggregates (complex model). Additionally, we describe laboratory experiments, which were used to measure the heat conductivity of porous dust layers, in order to test the model. We found that the model predictions are in an excellent agreement with the experimental results, if we include radiative heat transport in the model. This implies that radiation plays an important role for the heat transport in porous materials. Furthermore, the influence of this new model on the Hertz factor are demonstrated and the implications of this new model on the modeling of cometary activity are discussed. Finally, the limitations of this new model are critically reviewed.  相似文献   

9.
Mukhanov and Vikman have studied inflation model with the non-linear (NL) scalar field. We discuss the dark energy model with the Lagrangian in the presence of the square potential. We analyse the sufficient condition for the existence of an attractor solution, and compare the equation of state parameter, the present age of universe and the transition redshift with the quintessence model. We also use the Gold dataset of 157 SN-Ia to finally constrain the parameter of the models. We find that the considered model is consistent with the observation and a little inferior to the quintessence model. The above Lagrangian is similar to the non-linear Born–Infeld (NLBI) scalar field model, while which is superior to the quintessence model.  相似文献   

10.
In this paper interacting chameleon-tachyon model with agegraphic dark energy is revisited. The model in two cases of matter and radiation dominated universe is best fitted with the observational data for distance modulus. Stability of the model is investigated. The model then tested against observational data for Hubble parameter. With respect to the best fitted model parameters, our results show that while both scenarios are in good match with the observational data in low redshifts, the model in radiation dominated case better fits the data in high redshifts.  相似文献   

11.
We have investigated two stiff-fluid models in which the material distribution is that of viscous fluid. In the first model, the coefficient of shear viscosity is assumed to be constant while in the second model the coefficient of shear viscosity is proportional to the rate of expansion in the model. The paper also discusses some physical and geometrical aspects of the model. The behaviour of the model in absence of viscosity is also discussed.  相似文献   

12.
吴连大 《天文学进展》2001,19(2):277-278
利用12万组大气阻力资料,对DTM-1994模式进行改造,获得了一个新的大气模式,该模式的特点是:1.利用2阶周日峰效应,代替了原来模式中的复杂的周日效应表达式,减少了模式参数(少于50个),并使模式参数均具有明确的物理意义,2.分清了模式的主要参数和次要参数,在主要参数中,又分清了利用了阻力资料可以改进的参数和可能改不好的参数.3.与MSIS-1990和DTM-1994模式相比,其互差可以被接受,说明使用卫星阻力资料可以进行大气模式动态改正,不仅能测定大气总密度,并且能测定大气的分密度,4.与卫星轨道相比较,改进有显优于MSIS-1990模式,在120km轨道附近,改进模式密度比MSIS-1990模式大10%,同时我们在卫星陨落期预报中发现,MSIS-1990模式密度比实际大气密度小9%,这说明改进模式的密度与实际大气的密度基本接近。  相似文献   

13.
We discuss the morphology, photometry and kinematics of the bars which have formed in three N -body simulations. These have initially the same disc and the same halo-to-disc mass ratio, but their haloes have very different central concentrations. The third model includes a bulge. The bar in the model with the centrally concentrated halo (model MH) is much stronger, longer and thinner than the bar in the model with the less centrally concentrated halo (model MD). Its shape, when viewed side-on, evolves from boxy to peanut and then to 'X'-shaped, as opposed to that of model MD, which stays boxy. The projected density profiles obtained from cuts along the bar major axis, for both the face-on and the edge-on views, show a flat part, as opposed to those of model MD which are falling rapidly. A Fourier analysis of the face-on density distribution of model MH shows very large  m=2  , 4, 6 and 8 components. Contrary to this, for model MD the components  m=6  and 8 are negligible. The velocity field of model MH shows strong deviations from axial symmetry, and in particular has wavy isovelocities near the end of the bar when viewed along the bar minor axis. When viewed edge-on, it shows cylindrical rotation, which the MD model does not. The properties of the bar of the model with a bulge and a non-centrally concentrated halo (MDB) are intermediate between those of the bars of the other two models. All three models exhibit a lot of inflow of the disc material during their evolution, so that by the end of the simulations the disc dominates over the halo in the inner parts, even for model MH, for which the halo and disc contributions were initially comparable in that region.  相似文献   

14.
15.
A numerical model is presented to simulate the influence function of deformable mirror actuators. The numerical model is formed by Bessel Fourier orthogonal functions, which are constituted of Bessel orthogonal functions and a Fourier basis. A detailed comparison is presented between the new Bessel Fourier model, the Zernike model, the Gaussian influence function and the modified Gaussian influence function. Numerical experiments indicate that the new numerical model is easy to use and more accurate compared with other numerical models. The new numerical model can be used for describing deformable mirror performances and numerical simulations of adaptive optics systems.  相似文献   

16.
We consider an extended Chaplygin gas equation of state which is driven from D-brane action and construct a cosmological model based on this equation of state. In this regard, we compute the scale factor of the model under a certain approximation. The conservation equation of this case is a non-linear differential equation which should solve using the special conditions. We also analyze the stability of the model by using sound speed as well as adiabatic index and discuss certain special cases of the model. We find special equation of state in this model which yields to dynamical and thermodynamical stability. Furthermore, we study the cosmological consequences of this model under certain conditions.  相似文献   

17.
This paper describes the establishment and verification of an accurate pointing model for a1.2 m aperture slant-axis terahertz antenna. A new analytical pointing model for the slant-axis antenna is presented based on an analogy to that of the alt-azimuth antennas. Furthermore, extra error terms are added to the pointing model based on the structure and mechanical analysis of the slant-axis antenna. To verify the pointing model experimentally, a pointing error measurement method based on photogrammetric techniques is proposed. Using this method, pointing behaviors of the antenna are accurately measured without the aid of astronomical observations, and major sources of the pointing errors are measured individually by photogrammetry and their respective coefficients are compared with those in the analytical pointing model.The results show that an extended pointing model consisting 21 error terms can significantly reduce the residual systematic errors compared with the traditional model, more details are given in the following sections.  相似文献   

18.
A preliminary model of the internal magnetic field of the Moon is developed using a novel, correlative technique on the low-altitude Lunar Prospector magnetic field observations. Subsequent to the removal of a simple model of the external field, an internal dipole model is developed for each pole-to-pole half-orbit. This internal dipole model exploits Lunar Prospector's orbit geometry and incorporates radial and theta vector component data from immediately adjacent passes into the model. These adjacent passes are closely separated in space and time and are thus characteristic of a particular lunar regime (wake, solar wind, magnetotail, magnetosheath) or regimes. Each dipole model thus represents the correlative parts of three adjacent passes, and provides an analytic means of continuing the data to a constant surface of 30 km above the mean lunar radius. The altitude-normalized radial field from the wake and tail regimes is used to build a model in which 99.2% of the 360 by 360 bins covering the lunar surface are filled. This global model of the radial magnetic field is used to construct a degree 178 spherical harmonic model of the field via the Driscoll and Healy sampling theorem. Terms below about degree 150 are robust, and polar regions are considered to be the least reliable. The model resolves additional detail in the low magnetic field regions of the Imbrium and Orientale basins, and also in the four anomaly clusters antipodal to the large lunar basins. The model will be of use in understanding the sources of the internal field, and as a first step in modeling the interaction of the internal field with the solar wind.  相似文献   

19.
Using the annual GPS observational tropospheric zenith delay data and meteorological data obtained at 36 globally distributed IGS stations in 2003, we have estimated the accuracy and range of application of two often-used models of tropospheric delay correction (the Hopfield and Saastamoinen models), and of a more recent model (the EGNOS model). We point out some defects in the Hopfield model and show that the EGNOS model can be used as the correction model of the tropospheric zenith delay for the GNSS real-time positioning and navigation.  相似文献   

20.
This paper presents a new model for improving the pointing accuracy of a telescope. The Denavit–Hartenberg (D–H) convention was used to perform an error analysis of the telescope's kinematics. A kinematic model was used to relate pointing errors to mechanical errors and the parameters of the kinematic model were estimated with a statistical model fit using data from two large astronomical telescopes. The model illustrates the geometric errors caused by imprecision in manufacturing and assembly processes and their effects on the pointing accuracy of the telescope. A kinematic model relates pointing error to axis position when certain geometric errors are assumed to be present in a telescope. In the parameter estimation portion, the semi-parametric regression model was introduced to compensate for remaining nonlinear errors. The experimental results indicate that the proposed semi-parametric regression model eliminates both geometric and nonlinear errors, and that the telescope's pointing accuracy significantly improves after this calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号