首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
《New Astronomy》2002,7(3):113-116
A coincidence of the constants of the Friedmann cosmology is recognized and identified as an epoch-independent symmetry relation between vacuum and matter. A possible physical explanation of the relation is discussed on the basis of the freeze-out process at the electroweak temperatures in the early Universe. The symmetry relation is used to suggest a simple solution to the ‘cosmic coincidence problem’.  相似文献   

2.
Using local morphological measures on the sphere defined through a steerable wavelet analysis, we examine the three-year Wilkinson Microwave Anisotropy Probe WMAP and the NRAO VLA Sky Survey (NVSS) data for correlation induced by the integrated Sachs–Wolfe (ISW) effect. The steerable wavelet constructed from the second derivative of a Gaussian allows one to define three local morphological measures, namely the signed-intensity, orientation and elongation of local features. Detections of correlation between the WMAP and NVSS data are made with each of these morphological measures. The most significant detection is obtained in the correlation of the signed-intensity of local features at a significance of 99.9 per cent. By inspecting signed-intensity sky maps, it is possible for the first time to see the correlation between the WMAP and NVSS data by eye. Foreground contamination and instrumental systematics in the WMAP data are ruled out as the source of all significant detections of correlation. Our results provide new insight on the ISW effect by probing the morphological nature of the correlation induced between the cosmic microwave background and large-scale structure of the Universe. Given the current constraints on the flatness of the Universe, our detection of the ISW effect again provides direct and independent evidence for dark energy. Moreover, this new morphological analysis may be used in future to help us to better understand the nature of dark energy.  相似文献   

3.
An alternative to dark energy as an explanation for the present phase of accelerated expansion of the Universe is that the Friedmann equation is modified, e.g. by extra dimensional gravity, on large scales. We explore a natural parametrization of a general modified Friedmann equation, and find that the present supernova Type Ia and cosmic microwave background data prefer a correction of the form 1/ H to the Friedmann equation over a cosmological constant.  相似文献   

4.
With the increasingly precise measurement of the cosmic microwave background (CMB), cosmology has entered an era where a model's predictions become testable to percent‐level accuracy. In particular, the CMB spectrum has so far provided impressive support for the scenario of inflation, first invented to solve outstanding problems of standard cosmology. While current data (COBE, WMAP etc.) have already constrained cosmological parameters like Ω0 to high precision, next generation instruments such as the PLANCK satellite should give access to specific characteristics of the inflationary mechanism itself. Another tantalizing idea has been discussed in this context: Given the enormous expansion of the Universe during the phase of inflation, could it be that even Planck scale physics has been stretched to observable distances and is therefore within grasp in the CMB observations? In this contribution, I discuss the possibility of carrying through the calculation of the perturbation spectrum from an ansatz for short distance physics right to its imprint in the CMB. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Confronted with microwave background observations by WMAP and with consternating supernova locations in the magnitude–redshift diagram modern cosmology feels enforced to call for cosmic vacuum energy as a necessary cosmological ingredient. Most often this vacuum energy is associated with Einstein’s cosmological constant Λ or with so-called “dark energy”. A positive value of Λ describes an inflationary action on cosmic dynamics which in view of recent cosmological data appears as an absolute need. In this article, however, we question the hypothesis of a constant vacuum energy density since not justifiable on physical grounds. Instead we show that gravitational binding energy of cosmic matter, connected with ongoing structure formation during cosmic expansion, acts similar to vacuum energy, since it reduces the effective gravitating proper mass density. Thus one may be encouraged to believe that actions of cosmic vacuum energy and gravitational binding energy concerning their cosmological effects are closely related to each other, perhaps in some respects even have identical phenomenologies.  相似文献   

6.
We explore the ways in which primordial magnetic fields influence the thermal and ionization history of the post-recombination Universe. After recombination, the Universe becomes mostly neutral, resulting also in a sharp drop in the radiative viscosity. Primordial magnetic fields can then dissipate their energy into the intergalactic medium via ambipolar diffusion and, for small enough scales, by generating decaying magnetohydrodynamics turbulence. These processes can significantly modify the thermal and ionization history of the post-recombination Universe. We show that the dissipation effects of magnetic fields, which redshifts to a present value   B 0= 3 × 10−9 G  smoothed on the magnetic Jeans scale and below, can give rise to Thomson scattering optical depths  τ≳ 0.1  , although not in the range of redshifts needed to explain the recent Wilkinson Microwave Anisotropy Probe ( WMAP ) polarization observations. We also study the possibility that primordial fields could induce the formation of subgalactic structures for   z ≳ 15  . We show that early structure formation induced by nanoGauss magnetic fields is potentially capable of producing the early reionization implied by the WMAP data. Future cosmic microwave background observations will be very useful to probe the modified ionization histories produced by primordial magnetic field evolution and constrain their strength.  相似文献   

7.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

8.
Wilkinson microwave anisotropy probe (WMAP) has provided us with the highest resolution all-sky maps of the cosmic microwave background (CMB). As a result of thermal Sunyaev–Zel’dovich effect, clusters of galaxies are imprinted as tiny, poorly resolved dips on top of primary CMB anisotropies in these maps. Here, I describe different efforts to extract the physics of intracluster medium (ICM) from the sea of primary CMB, through combining WMAP with low-redshift galaxy or X-ray cluster surveys. This finally culminates at a mean (universal) ICM pressure profile, which is for the first time directly constrained from WMAP 3 year maps, and leads to interesting constraints on the ICM baryonic budget.  相似文献   

9.
R. Foot  S. Mitra   《Astroparticle Physics》2003,19(6):739-753
Mirror matter is an entirely new form of matter predicted to exist if mirror symmetry is a fundamental symmetry of nature. Mirror matter has the right broad properties to explain the inferred dark matter of the Universe and might also be responsible for a variety of other puzzles in particle physics, astrophysics, meteoritics and planetary science. It is known that mirror matter can interact with ordinary matter non-gravitationally via photon-mirror photon kinetic mixing. The strength of this possibly fundamental interaction depends on the (theoretically) free parameter ε. We consider various proposed manifestations of mirror matter in our solar system examining in particular how the physics changes for different possible values of ε. We find new evidence for mirror matter in the solar system coming from the observed sharp reduction in crater rates (for craters less than about 100 m in diameter) on the asteroid 433 Eros. We also re-examine various existing ideas including the mirror matter explanation for the anomalous meteorite events, anomalous slow-down of Pioneer spacecraft etc.  相似文献   

10.
Shortly the vacuum component of the Universe from the geometry point of view and from the point of view of the standard model of physics of elementary particles is discussed. Some arguments are given to the calculated value of the cosmological constant (Zel’dovich’s approximation). A new component of space vacuum (the gravitational vacuum condensate) is involved the production of which has fixed time in our Universe. Also the phenomenon of vacuum selforganization must be included in physical consideration of the Universe evolution.  相似文献   

11.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   

12.
With WMAP putting the phenomenological standard model of cosmology on a strong footing, one can look forward to mining the cosmic microwave background (CMB) for fundamental physics with higher sensitivity and on smaller scales. Future CMB observations have the potential to measure absolute neutrino masses, test for cosmic acceleration independent of supernova Ia observations, probe for the presence of dark energy at z2, illuminate the end of the dark ages, measure the scale-dependence of the primordial power spectrum and detect gravitational waves generated by inflation.  相似文献   

13.
The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified “dark energy”, or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (∼5×1015M ) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this “dark repulsor” can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial “explosion” and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.  相似文献   

14.
宇宙线从发现起至今已超过百年。在20世纪上半叶,大型粒子加速器技术成熟以前,对宇宙线的研究引领着基本粒子物理的发展,从宇宙线研究中取得的多项成果斩获诺贝尔奖。21世纪,宇宙线因其与极端高能的物理规律和暗物质等新物理现象联系密切而绽放出新的活力,宇宙线起源、加速、传播等相关的天文学及物理学问题也备受关注。简述了近年来在空间直接观测宇宙线实验方面取得的进展,以及其对理解宇宙线物理问题的推动。最后概述了中国在相关领域的研究历程和现状。  相似文献   

15.
It is well known that the application of Newtonian dynamics to an expanding spherical region leads to the correct relativistic expression (the Friedmann equation) for the evolution of the cosmic scalefactor. Here, the cosmological implications of Milgrom's modified Newtonian dynamics (MOND) are considered by means of a similar procedure. Earlier work by Felten demonstrated that in a region dominated by modified dynamics the expansion cannot be uniform (separations cannot be expressed in terms of a scalefactor) and that any such region will eventually recollapse regardless of the initial expansion velocity and mean density. Here I show that, because of the acceleration threshold for the MOND phenomenology, a region dominated by MOND will have a finite size which, in the earlier Universe ( z >3), is smaller than the horizon scale. Therefore, uniform expansion and homogeneity on the horizon scale are consistent with MOND-dominated non-uniform expansion and the development of inhomogeneities on smaller scales. In the radiation-dominated era, the amplitude of MOND-induced inhomogeneities is much smaller than that implied by observations of the cosmic background radiation, and the thermal and dynamical history of the Universe is identical to that of the standard big bang model. In particular, the standard results for primordial nucleosynthesis are retained. When matter first dominates the energy density of the Universe, the cosmology diverges from that of the standard model. Objects of galaxy mass are the first virialized objects to form (by z =10), and larger structure develops rapidly. At present, the Universe would be inhomogeneous out to a substantial fraction of the Hubble radius.  相似文献   

16.
Particle acceleration at plasma shocks appears to be ubiquitous in the universe, spanning systems in the heliosphere, supernova remnants, and relativistic jets in distant active galaxies and gamma-ray bursts. This review addresses some of the key issues for shock acceleration theory that require resolution in order to propel our understanding of particle energization in astrophysical environments. These include magnetic field amplification in shock ramps, the non-linear hydrodynamic interplay between thermal ions and their extremely energetic counterparts possessing ultrarelativistic energies, and the ability to inject and accelerate electrons in both non-relativistic and relativistic shocks. Recent observational developments that impact these issues are summarized. While these topics are currently being probed by astrophysicists using numerical simulations, they are also ripe for investigation in laboratory experiments, which potentially can provide valuable insights into the physics of cosmic shocks.  相似文献   

17.
The presence of a significant population of relic relativistic electrons - created at an early epoch of the Universe - has been invoked to explain the diffuse EUV emission excess observed in a number of galaxy clusters. While the postulated inverse Compton scattering of the 3° K background radiation by cosmic ray electrons might indeed be utilized as an important diagnostic tool for the physical nature of the intracluster cosmic rays, it is shown here that continuous generation plus reacceleration would be necessary if the conditions on the observed energy spectral distribution and energy supply rate are to be met in the case of clusters with large radio halos. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The Wilkinson Microwave Anisotropy Probe (WMAP) science team has released results from the first year of operation at the Earth–Sun L2 Lagrange point. The maps are consistent with previous observations but have much better sensitivity and angular resolution than the COBE DMR maps, and much better calibration accuracy and sky coverage than ground-based and balloon-borne experiments. The angular power spectra from these ground-based and balloon-borne experiments are consistent within their systematic and statistical uncertainties with the WMAP results. WMAP detected the large angular-scale correlation between the temperature and polarization anisotropies of the CMB caused by electron scattering since the Universe became reionized after the “Dark Ages”, giving a value for the electron scattering optical depth of 0.17 ± 0.04. The simplest ΛCDM model with n=1 and Ωtot=1 fixed provides an adequate fit to the WMAP data and gives parameters which are consistent with determinations of the Hubble constant and observations of the accelerating Universe using supernovae. The time-ordered data, maps, and power spectra from WMAP can be found at http://lambda.gsfc.nasa.gov along with 13 papers by the WMAP science team describing the results in detail.  相似文献   

19.
The effect of time dependent bulk viscosity on the evolution of Friedmann models with zero curvature in Brans-Dicke theory is studied. The solutions of the field equations with ‘gamma-law’ equation of state p = (γ-1) ρ, where γ varies continuously as the Universe expands, are obtained by using the power-law relation φ = bR n , which lead to models with constant deceleration parameter. We obtain solutions for the inflationary period and radiation dominated era of the universe. The physical properties of cosmological solutions are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The nearby radio galaxy Centaurus A is poorly studied at high frequencies with conventional radio telescopes because of its very large angular size, but is one of a very few extragalactic objects to be detected and resolved by the Wilkinson Microwave Anisotropy Probe ( WMAP ). We have used the five-year WMAP data for Cen A to constrain the high-frequency radio spectra of the 10° giant lobes and to search for spectral changes as a function of position along the lobes. We show that the high-frequency radio spectra of the northern and southern giant lobes are significantly different: the spectrum of the southern lobe steepens monotonically (and is steeper further from the active nucleus) whereas the spectrum of the northern lobe remains consistent with a power law. The inferred differences in the northern and southern giant lobes may be the result of real differences in their high-energy particle acceleration histories, perhaps due to the influence of the northern middle lobe, an intermediate-scale feature which has no detectable southern counterpart. In light of these results, we discuss the prospects for Fermi Gamma-ray Space Telescope detections of inverse-Compton emission from the giant lobes and the lobes' possible role in the production of the ultra-high-energy cosmic rays (UHECR) detected by the Pierre Auger Observatory. We show that the possibility of a Fermi detection depends sensitively on the physical conditions in the giant lobes, with the northern lobe more likely to be detected, and that any emission observed by Fermi is likely to be dominated by photons at the soft end of the Fermi energy band. On the other hand, we argue that the estimated conditions in the giant lobes imply that UHECRs can be accelerated there, with a potentially detectable γ-ray signature at TeV energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号