首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
相对蒸散在冬小麦干旱宏观评估中的应用   总被引:5,自引:1,他引:4  
利用最新的Penman-Monteith参考蒸散估算方法,计算了华北各地历年小麦各发育阶段的相对蒸散。根据水分亏缺引起的不同减产程度,确定冬小麦各发育阶段干旱指标,并据此分析了小麦干旱程度及发生概率。建立了冬小麦干旱影响综合评估模式。结果表明,干旱指标农业意义明确,分析评估符合实际。利用综合考虑冬季严寒和生育期内各阶段水分状况的模式进行农业干旱影响评估的尝试取得了较好的效果。  相似文献   

2.
冬小麦农田日蒸散量的计算   总被引:10,自引:0,他引:10  
本文从小气候观测资料着手,采用彭曼法、能量平衡法、波温比法和空气动力学等方法,对处于抽穗至乳熟期的冬小麦农田日蒸散量做了尝试性计算。着重考虑了彭曼公式的修正,并以水量平衡法为标准,对以上各方法的精度做了评价与误差分析。结果表明,订正后的彭曼公式可较为准确地计算各种能量、水分供应条件下有作物覆盖农田的日蒸散量,其它方法则存在较明显的不确定性误差。  相似文献   

3.
利用区域气候模式RIEMS产品分析日蒸散量及其影响   总被引:1,自引:0,他引:1  
利用区域气候模式RIEMS输出的各种气象参数,采用了BEF等4种不同方法计算了沂沭河上游流域的潜在蒸散量,并与该流域6个气象站实测蒸发数据计算的陆面潜在蒸散量进行了比较。结果表明,根据平均偏差、平均绝对偏差、均方根差和相关系数指标的综合判断,该4种方法的估测精度从高到低依次为双线性曲面回归经验函数法(BEF)、Hargreaves-Samani(Harg)法、Pristley-Tayler(P-T)法和Penman-Monteith(P-M)法。在时间序列上,4种方法计算的逐日蒸散量与观测值呈相同的变化趋势,但计算值在蒸散发最强、最弱和降水最多、气温最高的7-9月有较大差异。BEF法估测的精度最高,与观测值最接近,Harg法、P-M法和P-T法都有明显的偏高现象。BEF法只需要较少的参数就能得到较高的估测精度,因此可作为利用区域气候模式RIEMS产品计算沂沭河流域蒸散量的首选方法,进而为RIEMS模式中耦合的陆面水文过程模型TOPX提供满足精度要求的日蒸散量驱动参数。  相似文献   

4.
用Priestley—Taylor公式估算作物农田蒸散量的研究   总被引:2,自引:0,他引:2  
刘绍民  刘志辉 《高原气象》1997,16(2):191-196
利用田间试验资料,综合考虑了影响农田蒸散的气象,作物和土壤因素,并以Priestley-Taylor公式为基础,建立了不同作物(棉花、玉米冬小麦)的农田散估算模型。该模型仅需常规气象和农业气象资料,计算简便,具有一定的实用价值。  相似文献   

5.
辽宁玉米作物系数研究   总被引:4,自引:0,他引:4  
利用1988~1998年10个代表站点的常规农业气象土壤湿度观测资料,对辽宁5个区域的玉米作物系数进行了计算,并对不同区域的玉米作物系数做了对比分析。  相似文献   

6.
利用1971—2012年咸阳市农田土壤水分连续观测资料及各月温度、降水等气候要素资料,计算分析了不同水分条件下的蒸散量变化,为建立合理的节水灌溉制度提供科学依据。  相似文献   

7.
利用 1988~1998年 10个代表站点的常规农业气象土壤湿度观测资料 ,对辽宁 5个区域的玉米作物系数进行了计算 ,并对不同区域的玉米作物系数做了对比分析。  相似文献   

8.
利用时域反射仪测定的土壤水分估算农田蒸散量   总被引:19,自引:0,他引:19       下载免费PDF全文
简要介绍了时域反射仪(TDR)测定土壤含水量的原理和方法,根据TDR实测的土壤水分和农田水量平衡原理,估算了冬小麦生育期内不同供水条件下的农田蒸散量,探讨了TDR探针不同埋设方式对测定土体贮水量以及对估算的农田蒸散量的影响,根据充分供水区测定的最大可能蒸散量、非充分供水区的实际蒸散量,以及用气象资料计算的参考作物蒸散量,分别计算了冬小麦生育期内的作物系物Kc和土壤水分胁迫系数Ks。  相似文献   

9.
根据近40a本溪地区气象资料,利用彭曼综合方法和农田土壤水分平衡原理,计算出土壤可能蒸散量和土壤水分盈亏量,并依据干旱指数分析并揭示了本溪地区干旱发生的规律。  相似文献   

10.
盘锦芦苇湿地水热通量计算方法的比较研究   总被引:5,自引:0,他引:5       下载免费PDF全文
利用2005年7月盘锦芦苇湿地生长旺季的小气候梯度系统30 min观测资料和开放式涡动相关系统10Hz原始观测资料,比较并分析了廓线法、波文比能量平衡法与涡动相关法计算的芦苇湿地生态系统水热通量。结果表明:廓线法与波文比能量平衡法计算的芦苇湿地生态系统水热通量与涡动相关法得到的芦苇湿地生态系统水热通量具有较好的相关性,但是涡动相关法存在能量不平衡。分析盘锦芦苇湿地生态系统水热通量的日变化发现,能量平衡各分量基本上以正午为中心,呈倒“U”型分布。用波文比法计算得到的芦苇湿地生态系统日感热通量最大值为164.25 W.m-2,日潜热通量最大值为294.18 W.m-2。降雨之后,芦苇湿地生态系统水热通量都有所增加,尤其是潜热通量增加显著,且峰值出现时间提前。  相似文献   

11.
利用变分法计算西北典型干旱区地表通量的研究   总被引:6,自引:0,他引:6  
利用2000年5~6月在敦煌进行的陆面过程野外观测试验加强期的观测资料,采用变分法计算了西北干旱区荒漠戈壁的地表感热通量和潜热通量,并与Bowen比能量平衡方法(简称BREB法)的结果进行了对比.结果表明:变分法由于同时应用了地表能量平衡方程和相似性廓线方程,充分利用了边界层观测资料的信息,避免了BREB法中出现在Bowen比接近于-1时产生的计算不稳定和虚假的峰值,使计算的通量结果更趋合理和稳定.同时也计算了动量和感热的总体输送系数,与已有结果比较表明也具有合理性.  相似文献   

12.
Sensible and latent heat flux densities (H and E) were measured above a mature, 18 m deciduous forest during July and August, 1988, using the Bowen ratio-energy balance (BREB) and eddy correlation (EC) methods. EC estimates ofH and E underestimated day-time surface available energy by 11%. EC also partitioned available energy differently than BREB. for/L<0.0, EC favouredH and BREB favoured E. Practical and theoretical limitations of the BREB and EC methods above forests are discussed. The most plausible causes for the failure of EC to close the surface energy balance are a low frequency loss of flux and the failure of a single point measurement to account for the spatial dispersive flux. The most plausible causes of the EC-BREB energy partitioning anomaly are the invalidity of the BREB similarity assumption and the violation of flux-gradient diffusion assumptions in the near-field diffusion region.  相似文献   

13.
Summary Energy balance components over a grassland surface were compared to those obtained above an adjacent, uniform Scots pine plantation during a five-day period of fine, sunny, spring weather. Soils were judged to contain ample water. Shortwave and total radiation flux densities were measured at both sites with pyranometers and total pyrradiometers. Soil heat flux densities were measured with heat flux plates at both sites, and additional storage changes were estimated for air and canopy at the forest site. The forest gained more shortwave energy than the grassland during daytime because of its lower albedo, but it lost more longwave radiation at night. The turbulent fluxes of sensible and latent energy were evaluated with the Bowen ratio energy balance (BREB) method at both sites. Temperature and humidity gradients were measured with fixed psychrometers at the grassland site, and with interchanging psychrometers at the forest site. Mean daily evapotranspiration (ET) averaged 2.26 mm over the five days for the Scots pine, or only 57 percent of the 3.94 mm measured at the grassland site. The mean Bowen ratios were 2.6 and 0.8, respectively.An error analysis was carried out for the BREB estimates of latent heat flux at the two sites. For a given error in latent heat flux and at a specified Bowen ratio the demands on accuracy of dry- and wet-bulb temperature gradients above the rough forest canopy was found to be 10 times higher than above the smoother grassland. If additionally the observed differences in transpiration rates between the two sites were taken into account, the precision for temperature gradient measurements above the slowly transpiring forest becomes fortyfold greater than required above the rapidly transpiring grass. At present, BREB precision requirements for gradients above rougher, drier canopies appear achievable only through use of specialized instrumentation, such as measurement systems that incorporate interchangeable psychrometers into their design.With 9 Figures  相似文献   

14.
内蒙古半干旱草原能量物质交换的微气象方法估算   总被引:15,自引:1,他引:14  
根据1998年5~8月和1999年8月在中国科学院内蒙古草原生态系统定位试验站进行微气象观测的资料,作者分析了该地区能量平衡及其各分量的基本特征.结果表明:(1)净辐射通量的转化形式有明显的季节性变化,5~6月份,净辐射能大部分用于感热交换,而后期则多用于潜热交换,5~8月份的日波文比值分别为1.26,1.42,0 41和0.20.(2)观测期间,波文比的日变化特征表现为,早晚变化大不稳定,而白天则相对稳定.(3)用涡度相关方法观测的感热和潜热通量之和与同期的净辐射相比较,前者的结果偏小1 5%左右,两种方法观测到的潜热通量的差异达平均35%左右.(4)半干旱草原CO2通量有明显的日变化,在生长旺期,白天CO2通量强度可达到1.5 mg s-1m-2以上,但在生长后期,1998年和1999年8月份的白天CO2通量强度分别为0.38 mg s-1m-2和0.2 mg s-1m-2左右;其差异与草地土壤水分和植物长势有关.  相似文献   

15.
Nasser Lake is located in a hyper-arid region in the south of Egypt. Evaporation is by far the most important factor in explaining the water losses from the lake. To obtain better management scenarios for Nasser Lake, an accurate estimation of the lake evaporation losses thus is essential. This paper presents an update of previous evaporation estimates, making use of local meteorological and hydrological data collected from instrumented platforms (floating weather stations) at three locations on the lake: at Raft, Allaqi, and Abusembel (respectively at 2, 75, and 280 km upstream of the Aswan High Dam). Results from six conventional evaporation quantification methods were compared with the values obtained by the Bowen ratio energy budget method (BREB). The results of the BREB method showed that there is no significant difference between the evaporation rates at Allaqi and Abusembel. At Raft, higher evaporation rates were obtained, which were assumed to be overestimated due to the high uncertainty of the Bowen ratio (BR) parameter. The average BR value at Allaqi and Abusembel was used to eliminate this overestimates evaporation. Variance-based sensitivity and uncertainty analyses on the BREB results were conducted based on quasi-Monte Carlo sequences (Latin Hypercube sampling). The standard deviation of the total uncertainty on the BREB evaporation rate was found to be 0.62 mm day?1. The parameter controlling the change in stored energy, followed by the BR parameter, was found to be the most sensitive parameters. Several of the six conventional methods showed substantial bias when compared with the BREB method. These were modified to eliminate the bias. When compared to the BREB-based values, the Penman method showed most favorably for the daily time scale, while for the monthly scale, the Priestley–Taylor and the deBruin–Keijman methods showed best agreement. Differences in mean evaporation estimates of these methods (against the BREB method) were found to be in the range 0.14 and 0.36 mm day?1. All estimates were based calculations at the daily time scale covering a 10-year period (1995–2004).  相似文献   

16.
Summary The Bowen ratio-energy balance (BREB) and the stability-corrected aerodynamic method were used to estimate turbulent fluxes of sensible and latent heat at an irrigated alfalfa site in a semi-arid valley in northern Utah, U.S.A., during August and September of 1991. Despite inclusion of a generalized stability factor, the aerodynamic method underestimated the daytime (sunrise-sunset) sensible and latent heat fluxes by approximately 30% in comparison with the BREB method. The sum of the aerodynamic estimates of sensible and latent heat seldom balanced the energy avaiable from net radiation and change in storage. Wind speed was low during the experiment (averaging 1.6 m s–1), and so a second analysis was run for data from daytime, non-rainy, turbulent conditions (wind > 1.5 m s–1). This showed that sensible and latent heat were still underestimated by approximately 30% in comparison with the BREB approach. This suggests that underestimation of sensible and latent heat fluxes by the aerodynamic method was not related to the wind speed conditions during the experiment. These results show that the stability-corrected aerodynamic model did not agree with the Bowen ratio method in this experiment. It appears unlikely that the discrepancies resulted from measurement errors. Perhaps the theoretical foundation of the similarity parameters (stability functions) in the aerodynamic model are not sufficiently generalized. The discrepancies found here confirm the necessity of calibration checks on the validity of aerodynamic estimates of the turbulent fluxes.With 7 Figures  相似文献   

17.
Summary This paper describes a Bowen ratio/energy balance (BREB) system which, in conjunction with an infra-red gas analyzer (IRGA), is referred to as BREB+ and is used to estimate evapotranspiration (ET) and net CO2 flux (NCF) over crop canopies. The system is composed of a net radiometer, soil heat flux plates, two psychrometers based on platinum resistance thermometers (PRT), bridge circuits to measure resistances, an IRGA, air pumps and switching valves, and a data logger. The psychrometers are triple shielded and aspirated, and with aspiration also between the two inner shields. High resistance (1 000 ohm) PRT's are used for dry and wet bulbs to minimize errors due to wiring and connector resistances. A high (55 K ohm) fixed resistance serves as one arm of the resistance bridge to ensure linearity in output signals. To minimize gaps in data, to allow measurements at short (e.g., 5 min) intervals, and to simplify operation, the psychrometers were fixed at their upper and lower position over the crop and not alternated. Instead, the PRT's, connected to the bridge circuit and the data logger, were carefully calibrated together. Field tests using a common air source showed appartent effects of the local environment around each psychrometer on the temperatures measured. ET rates estimated with the BREB system were compared to those measured with large lysimeters. Daily totals agreed within 5%. There was a tendency, however, for the lysimeter measurements to lag behind the BREB measurements. Daily patterns ofNCF estimated with the BREB+ system are consistent with expectations from theories and data in the literature. Side-by-side comparisons with a stirred Mylar canopy chamber showed similarNCF patterns. On the other hand, discrepancies between the results of the two methods were quite marked in the morning or afternoon on certain dates. Part of the discrepancies may be attributed to inaccuracies in the psychrometric temperature measurements. Other possible causes include the highly artificial air turbulence in the canopy chamber and possible associated stomatal response. More work is necessary to identify conclusively the causes. In spite of these uncertainties, the BREB+ technique appears well suited for the automated and simultaneous tracking of photosynthetic performance and water economy of crops in their virtually undisturbed natural environment.To whom reprint requests should be sent.With 7 Figures  相似文献   

18.
Summary  The Bowen Ratio-Energy Balance (BREB) and the aerodynamic method were used to estimate turbulent fluxes of sensible and latent heat flux over an irrigated agricultural area (IAA) and over two dry agricultural areas (DAA1 and DAA2). These turbulent fluxes were analysed and particular attention paid to two specific areas. First, a quantitative analysis of sensible and latent heat fluxes obtained by the BREB method was carried out, taking into account different soil type, vegetation and surface conditions. The results showed that in IAA latent heat flux was higher than sensible heat flux, except in summer months, while in DAA1 and DAA2, sensible heat flux was higher except in the months when the vegetation was at the stage of maximum development. Second, sensible and latent heat fluxes estimates from the BREB method were compared with those obtained from the aerodynamic method. In this comparison factors such as soil type, soil vegetation cover, homogeneity or inhomogeneity of terrain and mesoscale effects such as orography and wind patterns were taken into account. The results show that in conditions of light wind, the two methods only concur if the condition of horizontal homogeniety is fulfilled. The influence of inhomogeneity seems to decrease and agreement between methods improves, if the wind is stronger and the effects of meso and synoptic scales are predominant. Received May 18, 1999/Revised March 15, 2000  相似文献   

19.
Summary The surface energy exchange of 12m high Scots pine plantation at Hartheim, Germany, was measured with a variety of methods during a 11-day period of fine weather in mid-May 1992. Net radiation and rate of thermal storage were measured with conventional net radiometers, soil heat flux discs and temperature-based storage models. The turbulent fluxes discussed in this report were obtained with an interchanging Bowen ratio energy budget system (BREB, at 14 m), two one-propeller eddy correlation systems (OPEC systems 1 and 2 at 17m), a 1-dimensional sonic eddy correlation system (SEC system 3) at 15 m, all on one low tower, and a 3-dimensional sonic eddy correlation system (SEC system 22) at 22 m on the high tower that was about 46 m distant. All systems measured sensible and latent heat (H and LE) directly, except for OPEC systems 1 and 2 which estimated LE as a residual term in the surface energy balance. Closure of turbulent fluxes from the two SEC systems was around 80% for daytime and 30% for night, with closure of 1-dimensional SEC system 3 exceeding that of 3-dimensional SEC system 22. The night measurements of turbulent fluxes contained considerable uncertainty, especially with the BREB system where measured gradients often yielded erroneous fluxes due to problems inherent in the method (i.e., computational instability as Bowen's ratio approaches –1). Also, both eddy correlation system designs (OPEC and SEC) appeared to underestimate |H| during stable conditions at night. In addition, both sonic systems (1- and 3-dimensional) underestimated |LE| during stable conditions. The underestimate of |H| at night generated residual estimates of OPEC LE containing a phantom dew error that erroneously decreased daily LE totals by about 10 percent. These special night problems are circumvented here by comparing results for daytime periods only, rather than for full days. To summarize, turbulent fluxes on the low tower from OPEC system 2 and the adjacent SEC system 3 were in reasonable agreement, while the BREB system appeared to overestimate H and underestimate LE; H and LE measured by SEC system 22 on the high tower were lower than from OPEC and SEC3 on the low tower. The turbulent flux measurements tended to converge, but the data exhibit unexplained differences between days, between systems, and between locations.With 7 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号