首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hypoxia/anoxia in bottom waters of the Rappahannock River, a tributary estuary of Chesapeake Bay, was observed to persist throughout the summer in the deep basin near the river mouth; periodic reoxygenation of bottom water occurred on the shallower sill at the river mouth. The reoxygenation events were closely related to spring tide mixing. The dissolved oxygen (DO) in surface waters was always near or at the saturation level, while that of bottom waters exhibited a characteristic spatial pattern. The bottom DO decreased upriver from river mouth, reaching a minimum upriver of the deepest point of the river and increasing as the water becaume shallower further upriver. A model was formulated to describe the longitudinal distribution of DO in bottom waters. The model is based on Lagrangian concept—following a water parcel as it travels upriver along the estuarine bottom. The model successfully describes the characteristic distribution of DO and also explains the shifting of the minimum DO location in response to spring-neap cycling. A diagnostic study with the model provided insight into relationships between the bottom DO and the competing factors that contribute to the DO budget of bottom waters. The study reveals that both oxygen demand, either benthic or water column demand, and vertical mixing have a promounced effect on the severity of hypoxia in bottom waters of an estary. However, it is the vertical mixing which controls the longitudinal location of the minimum DO. The strength of gravitational circulation is also shown to affect the occurrence of hypoxia. An estuary with stronger circulation tends to have less chance for hypoxia to occur. The initial DO deficit of bottom water entering an estuary has a strong effect on DO concentration near the river mouth, but its effect diminishes in the upriver direction.  相似文献   

2.
Although marine lagoons are ubiquitous features along coastal margins, studies investigating the dynamics of metal, organic matter, and nutrient concentrations in such systems are rare. Here we present a comprehensive examination of the temporal and spatial gradients in dissolved trace metals (Ag, Cd, Cu, Mn, Pb), organic and inorganic nutrients (POC, PON, DOC, N03 , NH4 +, H4SiO4, PO4 −3, and urea), and algal biomass in a lagoon estuary, Great South Bay (GSB), New York, USA. While this estuary has experienced a series of environmental problems during recent decades (urbanization, loss of fisheries, harmful algal blooms), root causes are largely unknown, in part because levels of bioactive substances, such as trace metals, have never been measured. Sampling was undertaken within multiple estuarine, riverine, and groundwater sites during spring, summer, and fall. Trace metal tracers (e.g., Ag, Mn) and statistical analyses were used to differentiate the influences of natural and anthropogenic processes on the chemical composition of the lagoon. Our analyses revealed three clusters of biogeochemical constituents that behaved similarly in GSB: constituents under strong biological control such as POC, PON, DOC and chlorophyll,a; elements indicative of benthic remobilization processes such as Mn, Cd, and Cu; and constituents strongly influence by anthropogenic processes such as Ag, Pb, PO4 −3, NO3 , and NH4 +. Although GSB is surrounded by a densely populated watershed (c. 1 million people), it does not appear to be significantly contaminated by trace metals compared to other urban estuaries. Levels of DOC (up to 760 μM) in GSB were well correlated with phytoplankton biomass and exceeded at least 98% of values reported in similar mid Atlantic estuaries at the same salinities. These high levels of DOC are likely to be an important source of carbon export to the coastal ocean and likely promote mixotrophic harmful algal blooms in this system.  相似文献   

3.
The Mattaponi River is part of the York River estuary in Chesapeake Bay. Our objective was to identify the organic matter (OM) sources fueling the lower food web in the tidal freshwater and oligohaline portions of the Mattaponi using the stable isotopes of carbon (C) and nitrogen (N). Over 3 years (2002–2004), we measured zooplankton densities and C and N stable isotope ratios during the spring zooplankton bloom. The river was characterized by a May–June zooplankton bloom numerically dominated by the calanoid copepod Eurytemora affinis and cladocera Bosmina freyi. Cluster analysis of the stable isotope data identified four distinct signatures within the lower food web: freshwater riverine, brackish water, benthic, and terrestrial. The stable isotope signatures of pelagic zooplankton, including E. affinis and B. freyi, were consistent with reliance on a mix of autochthonous and allochthonous OM, including OM derived from vascular plants and humic-rich sediments, whereas macroinvertebrates consistently utilized allochthonous OM. Based on a dual-isotope mixing model, reliance on autochthonous OM by pelagic zooplankton ranged from 20% to 95% of production, declining exponentially with increasing river discharge. The results imply that discharge plays an important role in regulating the energy sources utilized by pelagic zooplankton in the upper estuary. We hypothesize that this is so because during high discharge, particulate organic C loading to the upper estuary increased and phytoplankton biomass decreased, thereby decreasing phytoplankton availability to the food web.  相似文献   

4.
Most populations of estuarine-dependent, early life stages of marine fishes are open. As a result, it has been difficult to apply conventional population models to most systems. In this study, a marked population of young-of-year spot (Leiostomus xanthurus) was released into a polyhaline tidal creek within the Guinea Marshes of the York River estuary, Virginia. Over a 90-day study period, 221 marked fishes were recaptured. Plots of the ratio of marked to unmarked individuals (mi/ni) in subsequent samples indicated that the population was resident in the creek for up to 162 days with the average individual present for 81 days. When this population turnover rate was compared to the total population decay rate (marked plus unmarked fish), it was determined that exchange between habitats (immigration/emigration) accounted for about 36.4% of the total decay rate, with the remainder attributed to natural mortality. By correcting the overall disappearance rate for population turnover due to emigration and using this adjusted value as a measure of instantaneous mortality (z), the estimated production (over 90 days) in this population was 23,630 cal (98,870 J) per m2. This figure agrees with a previously derived estimate for spot in the Guinea marshes and is nearly two orders of magnitude higher than other reported values for this species for all size classes over the entire growing season.  相似文献   

5.
Spatial and temporal dynamics of N and P were examined in the tidal Hudson River between 1992 and 1996. For all seasons and at all locations in the river nutrient concentrations were generally quite high. TN averaged 60 μM and was above 50 μM in 75% of samples. TP averaged 1.7 μM and was above 1.2 μM in 75% of samples. NO3 was the dominant form of N (60% of TN) while PO4 comprised about 40% of TP. Seasonal and spatial variation in most N and P components was quite low but patterns were apparent. Seasonally, forms of N (TN, NO3 and NH4) and PO4 showed opposite patterns. All N components showed summertime decreases, but PO4 increased over the summer. Spatially, along the 200 km fresh to oligohaline stretch, N and P showed similar patterns—declining from upper to mid sections of the river but subsequently increasing in most down river, oligohaline stretches. The down river increase in nutrients is likely caused by a combination of sewage inputs and salinity-related geochemical release of P. A preliminary budget of the upper to the mid section of the river (a 100 km stretch) suggests that the decline in nutrient concentration in this section is due to the net retention of almost 2,000 mT N and 200 mT P per year or about 20% of the N and P input to this section of river. The retention in tidal rivers, like the Hudson, occurs immediately above the estuary and may, therefore, be relatively more significant than retention occurring higher in the watershed.  相似文献   

6.
Epiphytic microbial biomass (as chlorophylla) was measured monthly in North Inlet Estuary, South Carolina, for 16 months on spatially distinct stem sections (bottom and middle) of dead and livingSpartina alterniflora growth forms (tall, medium, and short) exposed at low tide. The highest biomass was located on the bottom section of tall plants, presumably due to their relatively longer contact with creek water and associated phytoplankton, and their closer proximity to marsh sediments with associated benthic microalgae, both recruitment sources for epiphytes. Dead plants left standing from the previous year’s growth cycle had higher epiphytic biomass than living plants, which occurred mostly in late spring through fall. Epiphytic biomass was highest in the winter (mean of 1.77 mg chla (m2 marsh)−1) and lowest in the summer (mean of 0.34 mg chla (m2 marsh)−1). Because phytoplankton andSpartina production are lowest in the winter, the results emphasize the relative importance of epiphytes to growth of herbivores in this season.  相似文献   

7.
During 1995 the phytoplankton in the Swan River were intensively sampled to assess biomass and species composition. Continuous measurements of fluorescence, salinity, and temperature were made weekly during 40 km sampling trips along the estuary and used to map the seasonal progression of the algal biomass. Weekly measurements of primary production were made and used to model net primary production from the vertical distribution of biomass, irradiance, and phytoplankton species composition. Potential nutrient limitation was assessed with “all but one” nutrient bioassays. The results indicate a complex mixture of potentially limiting factors, which vary in time and space. Although the data sequence is short, it suggests a annual succession pattern of diatoms, chlorophytes, diatoms, and finally dinoflagellates and cryptophytes in late summer-autumn. Peak seasonal biomass was observed during January to April. Mean annual chlorophylla biomass was greatest in upstream stations (5–9), where estimates of net primary production rates averaged 1.55 g C m?2 d?1 and gross primary production was 800–1000 g C m?2 yr?1. Potential nutrient limitation was most severe from November to May, although not during January 1995. Based on bioassay results, during the period of greatest potential for nutrient limitation, nitrogen was 15 to 30 times more limiting to biomass development than phosphate. Runoff due to consistent rainfall during winter eventually breaks down stratification and flushes the estuary with low-salinity, nutrient-rich water, producing, a light-limited, nutrient-rich aquatic ecosystem. Timing and magnitude of physical forcing events, mainly rainfall, appear critical in determining the susceptibility of this ecosystem to summer and autumn algal blooms.  相似文献   

8.
We conducted ship-board incubation experiments to investigate changes in nutrient uptake of phytoplankton under different phosphate concentrations and irradiances in the Changjiang River Estuary and its adjacent waters in China. Under 100% natural irradiance the uptake rates of phosphate, silicate, and nitrate were accelerated at high phosphate levels (1.84 μM), while under low irradiance (about 50% natural irradiance) their uptake rates were restrained at the high but stimulated greatly at the intermediate phosphate concentrations (1.26 μM), as the growth of phytoplankton, changes in nitrite and ammonium uptake didn't follow an obvious pattern. Our results also showed that there were linear relationships between nitrate, silicate and phosphate uptake at different phosphate concentrations under low and high irradiances, and the growth period of phytoplankton was prolonged both at the high phosphate concentrations under high irradiance and at the intermediate concentrations under low irradiance, suggesting that the limitation of phytoplankton growth mainly reflected changes in its growth period, and because no such environment (low irradiance and low phosphate concentrations) actually existed in a high turbidity zone, phytoplankton blooms hardly occurred there. In the absence of irradiance, denitrification occurred readily and phytoplankton was kept decreasing, which resulted in phosphate regeneration.  相似文献   

9.
A model study of turbidity maxima in the York River estuary,Virginia   总被引:2,自引:0,他引:2  
A three-dimensional numerical model is used to investigate the mechanisms that contribute to the formation of the turbidity maxima in the York River, Virginia (U.S.). The model reproduces the basic features in both salinity and total suspended sediments (TSS) fields for three different patterns. Both the prominent estuary turbidity maximum (ETM) and the newly discovered secondary turbidity maximum (STM) are simulated when river discharge is relatively low. At higher river inflow, the two turbidity maxima move closer to each other. During very high river discharge event, only the prominent turbidity maximum is simulated. Diagnostic model studies also suggest that bottom resuspension is an important source of TSS in both the ETM and the STM, and confirm the observed association between the turbidity maxima and the stratification patterns in the York River estuary. The ETM is usually located near the head of salt intrusion and the STM is often associated with a transition zone between upriver well mixed and downriver more stratified water columns. Analysis of the model results from the diagnostic studies indicates that the location of the ETM is well associated with the null point of bottom residual flow. Convergent bottom residual flow, as well as tidal asymmetry, is the most important mechanisms that contribute to the formation of the STM. the STM often exists in a region with landward decrease of bottom residual flow and net landward sediment flux due to tidal asymmetry. The channel depth of this region usually decreases sharply upriver. As channel depth decreases, vertical mixing increases and hence the water column is better mixed landward of the STM.  相似文献   

10.
Phytoplankton nutrient limitation experiments were performed from 1994 to 1996 at three stations in the Cape Fear River Estuary, a riverine system originating in the North Carolina piedmont. Nutrient addition bioassays were conducted by spiking triplicate cubitainers with various nutrient combinations and determining algal response by analyzing chlorophyll a production and 14C uptake daily for 3 d. Ambient chlorophyll a, nutrient concentration, and associated physical data were collected throughout the estuary as well. At a turbid, nutrient-rich oligohaline station, significant responses to nutrient additions were rare, with light the likely principal factor limiting phytoplankton production. During summer at a mesohaline station, phytoplankton community displayed significant nitrogen (N) limitation, while both phosphorus (P) and N were occasionally limiting in spring with some N+P co-limitation. Light was apparently limiting during fall and winter when the water was turid and nutrient-rich, as well as during other months of heavy rainfall and runoff. A polyhaline station in the lower estuary had clearer water and displayed significant responses to nutrient additions during all enrichment experiments. At this site N limitation occurred in summer and fall, and P limitation (with strong N+P co-limitation) occurred in winter and spring. The data suggest there are two patterns controlling phytoplankton productivity in the Cape Fear system: 1) a longitudinal pattern of decreasing light limitation and increasing nutrient sensitivity along the salinity gradient, and 2) a seasonal alternation of N limitation, light limitation, and P limitation in the middle-to-lower estuary. Statistical analyses indicated upper watershed precipitation events led to increased flow, turbidity, light attenuation, and nutrient loading, and decreased chlorophyll a and nutrient limitation potential in the estuary. Periods of low rainfall and river flow led to reduced estuarine turbidity, higher chlorophyll a, lower ambient nutrients, and more pronounced nutrient limitation.  相似文献   

11.
为分析城镇化发展程度与极端降雨变化之间的关系,选取珠江三角洲地区22个雨量站1973—2012年的小时降雨资料,利用空间分析、线性回归、滑动平均和Mann-Kendall趋势检验等方法,分析高度城镇化背景下珠三角地区极端降雨时空分布规律和变化特性,并解析暴雨雨型变化特征。结果表明:①珠江三角洲高度城镇化地区极端降雨量上升了44.3 mm/(10 a),呈显著增加趋势,相邻其他地区则无明显变化,高度城镇化地区的前汛期极端降雨量显著增多是造成其年极端降雨量增加的主要原因。②珠三角地区暴雨雨型以单峰型为主,其中以雨峰在前的Ⅰ型暴雨占比最高,约为33.7%,高度城镇化地区Ⅰ型暴雨发生频率明显增加,易导致暴雨内涝事件增加,需加强高度城镇化地区防洪排涝工作。  相似文献   

12.
River discharge, tide, wind, topography and other factors all have great impacts on the saltwater intrusion of Modaomen Waterway (MW), a major outlet of the Pearl River Estuary. A coupled 1D–3D numerical model was applied in this study to account for the dynamic characteristics of saltwater intrusion in the MW, and the impacts of tide and river discharge on the length of saltwater intrusion were uncovered. Results are as the followings: (1) River discharge from upstream induces an obvious dilution of salinity along the MW, whereas tide can exert a positive force that pushes salt water landward. The effects of river discharge and tide on the length of saltwater intrusion can be well described by a regression function; (2) the saltwater intrusion along the MW is generally aggravated by increases in tidal range from the South China Sea. The length of saltwater intrusion usually reaches a maximum 2 or 3 days before spring tide, and the hourly length of saltwater intrusion along the MW usually slows the tidal process for approximately 4 h, which can provide important information that the pumping operation along the MW to store freshwater in the backup storages needs to be at least 3 days ahead of the spring tide so as to avoid serious impact from saltwater intrusion; (3) the length of saltwater intrusion generally decreases with increasing river discharge. In 2005, 2009 and 2010, the average river discharge from upstream was 2680, 2630 and 3160 m3/s, respectively, with corresponding average lengths of saltwater intrusion of 32.7, 42.3 and 21.4 km. The inverse correlation between the water flow and the length of saltwater intrusion may provide some guidance for operations to maintain enough upstream flow to dilute the salinity and therefore satisfy the domestic water supply.  相似文献   

13.
Tao  Jie  Qiao  Wenzhao  Li  Hang  Qu  Xiaoning  Gan  Rong 《Natural Hazards》2022,113(2):997-1016
Natural Hazards - Under the background of global warming, it is very important to explore the spatial–temporal evolution and causes of regional drought/flood for the realization of drought...  相似文献   

14.
祁连山大通河源多年冻土区浅层土壤水热时空变化特征   总被引:1,自引:0,他引:1  
在大通河源不同草甸生态系统中建立浅层土壤水热监测网络. 2010-2011年监测结果表明:土壤温度和水分均具有明显的冻融交替和空间梯度变化格局. 在沼泽化草甸和典型草甸区,土壤融化和冻结末期分别出现在5月底、6月初和11月中下旬;而退化草甸区对应的时间则出现在4月底、5月初和11月中上旬. 在沼泽化草甸和典型草甸土壤温度变化曲线上有明显的“零点幕”时期,而退化草甸则不太明显. 土壤温度曲线的阶段划分结果表明,沼泽化草甸和典型草甸各阶段不存在显著差异,二者阶段划分曲线基本重合,均可以划分为6个阶段:春季升温阶段、春季“零点幕”阶段、夏季升温阶段、秋季降温阶段、秋季“零点幕”阶段和冬季降温阶段. 对于退化草甸而言,春季和秋季“零点幕”时期不明显,阶段划分曲线与前二者具有较大差异. 退化草甸温度曲线“零点幕”时期不显著对应于下伏多年冻土临近岛状多年冻土边缘,是最易于受环境影响变化而发生退化的区域. 3个监测场地浅层土壤水热格局一定程度上指示了下伏多年冻土的空间分布格局.  相似文献   

15.
We compared the distribution and nutrient status of native haplotype F ofPhragmites australis along the freshwater to mesohaline tidal marsh gradient of the Rappahannock River, Virginia, for comparison with the nonnative, invasive haploty M. Using GIS analysis of aerial photography and GPS-based ground truthing, we identified 55 separate clones of native haplotype F comprising a total of 3.68 ha (range 0.002–0.734 ha), all found in tidal wetlands where surface water salinity was 0 psu. We identified 219 separate clones of the invasive haplotype M covering 68.3 ha along the same stretch of river (range 0.004–11.86 ha), found in wetlands where salinity ranged from 0 to 11 psu. From 15 separate clones for each haplotype, average carbon content in leaves of the native was significantly higher than the invasive (43.90±0.08% versus 42.82±0.15%, F1,28=20.938, p<0.01), and nitrogen content was significantly lower (2.22±0.03% versus 2.58±0.07%, F1,28=11.972, p<0.01). The average C:N:P ratio for leaf tissue was 1100∶48∶1 for haplotype F and 1084∶56∶1 for haplotype M. Relative to the native, the invasive haplotype forms larger stands distributed throughout a broader estuarine reach and incorporates more nitrogen in leaf tissue. From a management standpoint, nativePhragmites protection should focus on deterring nonnative haplotype invasion through the minimization of both adjacent upland disturbance and nutrient enrichment in tidal freshwater marshes.  相似文献   

16.
External nutrient loadings, internal nutrient pools, and phytoplankton production were examined for three major subsystems of the Chesapeake Bay Estuary—the upper Mainstem, the Patuxent Estuary, and the 01 Potomac Estuary—during 1985–1989. The atomic nitrogen to phosphorus ratios (TN:TP) of total loads to the 01 Mainstem, Patuxent, and the Potomac were 51, 29 and 35, respectively. Most of these loads entered at the head of the estuaries from riverine sources and major wastewater treatment plants. Approximately 7–16% for the nitrogen load entered the head of each estuary as particulate matter in contrast to 48–69% for phosphorus. This difference is hypothesized to favor a greater loss of phosphorus than nitrogen through sedimentation and burial. This process could be important in driving estuarine nitrogen to phosphorus ratios above those of inputs. Water column TN: TP ratios in the tidal fresh, oligohaline, and mesohaline salinity zones of each estuary ranged from 56 to 82 in the Mainstem, 27 to 48 in the Patuxent, and 72 to 126 in the Potomac. A major storm event in the Potomac watershed was shown to greatly increase the particulate fraction of nitrogen and phosphorus and lower the TN:TP in the river-borne loads. The load during the month that contained this storm (November 1985) accounted for 11% of the nitrogen and 31% of the phosphorus that was delivered to the estuary by the Potomac River during the entire 60-month period examined here. Within the Mainstem estuary, salinity dilution plots revealed strong net sources of ammonium and phosphate in the oligohaline to upper mesohaline region, indicating that these areas were sites of considerable internal recycling of nutrients to surface waters. The sedimentation of particulate nutrient loads in the upper reaches of the estuary is probably a major source of these recycled nutrients. A net sink of nitrate was indicated during summer. A combination of inputs and these internal recycling processes caused dissolved inorganic N to P ratios to approach 16:1 in the mesohaline zone of the Mainstem during late summer; this ratio was much higher at other times and in the lower salinity zones. Phytoplankton biomass in the mesohaline Mainstem reached a peak in spring and was relatively constant throughout the other seasons. Productivity was highest in spring and summer, accounting for approximately 33% and 44%, respectively, of the total annual productivity in this region. In the Patuxent and Potomac, the TN:TP ratios of external loads documented here are 2–4 times higher than those observed over the previous two decades. These changes are attributed to point-source phosphorus controls and the likelihood that nitrogen-rich nonpoint source inputs, including contributions from the atmosphere, have increased. These higher N:P ratios relative to Redfield proportions (16:1) now suggest a greater overall potential for phosphorus-limitation rather than nitrogen-limitation of phytoplankton in the areas studied.  相似文献   

17.
清道光二十九年(1849年)长江中下游地区的大水灾,对民生造成了严重的影响。作者系统收集了档案、方志、日记和文集资料中关于该年份水灾的记载,以县级成灾分数资料为基础,重建了此次水灾的时空分布,并分析了形成这次水灾的天气气候特征。研究认为,该年度水灾基本在N28°~N33°间呈条状东西向分布,而以N31°一线的灾情最为严重;连续性的降水开始于5月18日左右,到7月18日才结束,中间还有3次持续各达10余天的强降雨过程;这次大水灾是全流域性的,涝灾大于洪灾,降水最集中区域为东部的太湖流域,这和有器测记录的几次长江全流域大洪水并不一致;本次大水灾的直接天气成因是梅雨期提前并超长,雨量明显偏大,持续时间长达62天左右,比有器测记录的更早、更长;当年夏季风应偏弱,副热带高压脊线位置异常偏南,且西风分支明显,经向环流发展,西风南支位置应该也异常偏南;夏季冷空气异常活跃可能是雨带长期在长江沿岸徘徊的真正原因。  相似文献   

18.
广州流溪河河水主要化学组成时空分布特征及控制因素   总被引:2,自引:0,他引:2  
本次研究报道了位于广州市典型热带-亚热带河流流溪河上游、中游和下游3个站点(东星、乌石和江高)河水的主要化学成分在近1年的持续变化时间序列。结果显示,3个站点河水的阳离子均主要来自硅酸盐的化学风化输出,但贡献率略有差异,其中在上游的东星站贡献率最大,下游的江高站次之,中游的乌石站相对较少。相较之下,阴离子的来源更为多样,其中F-主要来自于岩石风化, Cl-、SO42-和NO3-更多地受到海洋源降雨或咸潮作用的影响。流域内主要化学风化反应以钾长石、钠长石和钙长石的溶解为主。从上游到下游, Si/TZ+*比值和Si/(Na*+K)比值逐渐降低,说明上游硅酸盐岩风化较下游更为强烈。从上游到下游,随工农业生产活动的增加,人类活动对河流水化学组成的贡献逐渐增大,岩石风化输出的相对贡献逐渐减小。  相似文献   

19.
20.
以天山山区为研究区,利用MODIS 8d最大积雪合成数据MOD10A2,分析天山山区积雪的时间变化和空间变化情况以及不同高程带的积雪覆盖率的变化情况;结合SSM/I亮温数据和站点观测数据建立的雪深反演模型并反演研究区的雪深,根据研究区的地势起伏情况,提取特殊地形进行分析其雪深变化情况,进一步分析整个天山山区的积雪深度的时空特征,并对结果进行验证,并且对不同高程带的积雪深度进行分析.研究结果表明:1)天山山区积雪面积分布的趋势表现为自西向东、自北向南减少,总体是呈波动中减少的趋势,到了2012年天山山区年最大积雪面积为37.69×104 km2.2)积雪覆盖率与高程呈正比,在高山区可达70%以上.积雪深度分布呈自西向东、由北向南减少,深度最大的是在天山北部的博格达峰、河源峰附近,可以达到80 cm以上,最小在哈密地区的托木尔提峰附近积雪深度仅在10 cm左右.积雪深度与海拔呈正相关,最大雪深出现在4500 m以上的高山区.3)对雪深反演结果的精度评价表明,模型在10~30 cm雪深范围内,反演平均误差为-2.47 cm;在雪深<10 cm或>30 cm的局部地区存在较大偏差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号