首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although hurricane disturbance is a natural occurrence in mangrove forests, the effect of widespread human alterations on the resiliency of estuarine habitats is unknown. The resiliency of mangrove forests in southwest Florida to the 2004 hurricane season was evaluated by determining the immediate response of mangroves to a catastrophic hurricane in areas with restricted and unrestricted tidal connections. The landfall of Hurricane Charley, a category 4 storm, left pronounced disturbances to mangrove forests on southwest Florida barrier islands. A significant and negative relationship between canopy loss and distance from the eyewall was observed. While a species-specific response to the hurricane was expected, no significant differences were found among species in the size of severely impacted trees. In the region farthest from the eyewall, increases in canopy density indicated that refoliation and recovery occurred relatively quickly. There were no increases or decreases in canopy density in regions closer to the eyewall where there were complete losses of crown structures. In pre-hurricane surveys, plots located in areas of management concern (i.e., restricted connection) had significantly lower stem diameter at breast height and higher stem densities than plots with unrestricted connection. These differences partially dictated the severity of effect from the hurricane. There were also significantly lower red mangrove (Rhizophora mangle) seedling densities in plots with restricted connections. These observations suggest that delays in forest recovery are possible in severely impacted areas if either the delivery of propagules or the production of seedlings is reduced by habitat fragmentation.  相似文献   

2.
We compared (1) ichthyoplankton composition and (2) basin and channel habitat ichthyofauna and seagrass densities between 1984–1985 and 1994–1996 in Florida Bay. Stations and sampling techniques employed in 1984–1985 were duplicated in the 1994–1996 study.Thalassia testudinum, Halodule wrightii, andSyringodium filiforme densities within most of the basin and channel strata sampled in 1994–1996 had decreased by as much as 100%. We did not observe changes in the total density of juvenile and small adult fishes coincident with the reductions in seagrass densities except in the deep-water channel habitats. There was an increase in the proportion of the total ichthyofauna represented by pelagic atherinids, engraulids, and clupeids, particularly the engraulidAnchoa mitchilli, and a concomitant decrease in the proportion represented by canopy-dwelling and morebenthic-dwelling seagrass inhabitants. This suggested a shift toward a planktonic-feeding community. We observed an increase in the density and frequency of engraulid larvae, particularly in the western and Gulf of Mexico portions of Florida Bay, but no significant changes in densities of the commonly collected ichthyoplankton that are demersal as adults (i.e., Gobiidae, Callionymidae, and Blennioidei).Lucania parva, Eucinostomus spp.,Lagodon rhomboides, Floridichthys carpio, Haemulon plumieri, andSyngnathus floridae represented nearly 86% of the juvenile and small adult fish collected in 1984–1985 but represented only 29% of the ichthyofauna a decade later. The distribution of juvenile spotted seatrout had expanded into the central and northeastern basins of our sampling area, perhaps in response to reduced salinities or to the availability of food resources.  相似文献   

3.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

4.
The Florida Bay ecosystem has changed substantially in the past decade, and alterations in the seagrass communities have been particularly conspicuous. In 1987 large areas ofThalassia testudinum (turtlegrass) began dying rapidly in western Florida Bay. Although the rate has slowed considerably, die-off continues in many parts of the bay. Since 1991, seagrasses in Florida Bay have been subjected to decreased light availability due to widespread, persistent microalgal blooms and resuspended sediments. In light of these recent impacts, we determined the current status of Florida Bay seagrass communities. During the summer of 1994, seagrass species composition, shoot density, shoot morphometrics, and standing crop were measured at 107 stations. Seagrasses had been quantified at these same stations 10 yr earlier by Zieman et al. (1989).T. testudinum was the most widespread and abundant seagrass species in Florida Bay in both 1984 and 1994, and turtlegrass distribution changed little over the decade. On a baywide basis,T. testudinum density and biomass declined significantly between surveys; mean short-shoot density ofT. testudinum dropped by 22% and standing crop by 28% over the decade.T. testudinum decline was not homogeneous throughout Florida Bay; largest reductions in shoot density and biomass were located principally in the central and western bay. Percent loss ofT. testudinum standing crop in western Florida Bay in 1994 was considerably greater at the stations with the highest levels of standing crop in 1984 (126–215 g dry wt m−2) than at the stations with lower levels of biomass. While turtlegrass distribution remained consistent over time, both the distribution and abundance of two other seagrasses,Halodule wrightii andSyringodium filiforme, declined substantially between 1984 and 1994. Baywide,H. wrightii shoot density and standing crop declined by 92%, andS. filiforme density and standing crop declined by 93% and 88%, respectively, between surveys. Patterns of seagrass loss in Florida Bay between 1984 and 1994 suggest die-off and chronic light reductions were the most likely causes for decline. If die-off and persistent water-column turbidity continue in Florida Bay, the long-term future of seagrasses in the bay is uncertain.  相似文献   

5.
Florida Bay is a unique subtropical estuary at the southern tip of the Florida peninsula. Recent ecological changes (seagrass die-off, algal blooms, increased turbidity) to the Florida Bay ecosystem have focused the attention of the public, commercial interests, scientists, and resource managers on the factors influencing the structure and function of Florida Bay. Restoring Florida Bay to some historic condition is the goal of resource managers, but what is not clear is what an anthropogenically-unaltered Florida Bay would look like. While there is general consensus that human activities have contributed to the changes occurring in the Florida Bay ecosystem, a high degree of natural system variability has made elucidation of the links between human activity and Florida Bay dynamics difficult. Paleoecological analyses, examination of long-term datasets, and directed measurements of aspects of the ecology of Florida Bay all contribute to our understanding of the behavior of the bay, and allow quantification of the magnitude of the recent ecological changes with respect to historical variability of the system.  相似文献   

6.
The American crocodile was declared endangered in the United States in 1975. At that time 75% of the remaining crocodile nests were in Everglades National Park, in Florida Bay. In 1980, the National Park Service established a crocodile sanctuary in northeastern Florida Bay to protect nesting and nursery habitat. In 1985, a monitoring program, focused on nesting, growth, and survival, was established to evaluate the effects of modified water deliveries on crocodiles in Florida Bay. The number and range of crocodile nests increased between 1970 and 1995, but nesting success decreased slightly. Nests on artificial substrates in the Greater Flamingo-Cape Sable area accounted for most of the increase in nests. Nests on artificial substrates were more prone to predation by raccoons. At least 1.5% of marked hatchlings survived for more than 12 mo, and growth rates were variable. Detailed information on growth and survival of crocodiles is still lacking. It is no longer a question of whether crocodiles with survive in Florida Bay, but how ecosystem restoration and management can be applied to improve conditions for crocodiles.  相似文献   

7.
8.
Sedimentological, geomorphic, and ground penetrating radar (GPR) data are combined with optically stimulated luminescence data to define the Holocene evolution of a coastal system in peninsular Malaysia. The Setiu coastal region of northeast Malaysia comprises five geological and geomorphic units representing distinct evolutionary phases of this coastline. Estimated marine limiting point elevations indicate deposition of an early aggradational shoreline associated with a sea-level elevation of −0.1 to +1.7 m (MSLPMVGD datum) between ∼6.8 ka and 5.7 ka, in agreement with previous sea-level studies from the Malay–Thai peninsula. A hiatus occurs in the record between ∼5.7 ka and 3.0 ka, possibly due to a relative sea-level oscillation and shoreline erosion. Long-term relative sea-level fall and possible still-stands created strandplains that are interrupted by aggradational to transgressive paleo-barrier and estuary formation corresponding with brief episodes of RSL rise. Analyses of GPR facies and OSL ages suggest annual clinoform deposition, with geometries dictated by variations in ENSO. These data demonstrate the utility of high resolution studies of coastal facies as useful proxy indicators for paleoclimate studies at subdecadal to millennial time-scales.  相似文献   

9.
Intensive crocodile monitoring programs conducted during the late 1970s and early 1980s in southern Florida resulted in an optimistic outlook for recovery of the protected species population. However, some areas with suitable crocodile habitat were not investigated, such as Biscayne Bay and the mainland shorelines of Barnes and Card Sounds. The objective of our study was to determine status and habitat use of crocodiles in the aforementioned areas. Spotlight and nesting surveys were conducted from September 1996 to December 2005. The results revealed annual increases in the number of crocodiles. Crocodiles preferred protected habitats such as canals and ponds. Fewer crocodiles were observed in higher salinity water. The distribution and abundance of crocodilians in estuaries is directly dependent on timing, amount, and location of freshwater delivery, providing an opportunity to integrate habitat enhancement with ongoing ecosystem restoration and management activities.  相似文献   

10.
Hurricanes and other major storms cause acute changes in salinity within Florida's streams and rivers. Winddriven tidal surges that increase salinities may have long-lasting effects on submersed aquatic vegetation (SAV) and the associated fauna. We investigated potential effects of salinity pulses on SAV in Kings Bay, Florida, by subjecting the three most common macrophytes,Vallisneria americana, Myriophyllum spicatum., andHydrilla verticillata, to simulated salinity pulses. In Kings Bay, we documented changes in salinity during three storms in September 2004 and measured biomass and percent cover before and after these storms. During experiments, macrophytes were exposed to salinities of 5‰, 15‰, or 25‰ for 1, 2, or 7 d, with a 28-d recovery period in freshwater. Relative to controls, plants subjected to salinities of 5‰ exhibited few significant decreases in growth and no increase in mortality. All three species exhibited decreased growth in salinities of 15‰ or 25‰.H. verticillata, exhibited 100% mortality at 15‰ and 25‰, irrespective of the duration of exposure.M. spicatum andV. american exhibited increased mortality after 7-d exposures to 15‰ or any exposure to 25‰ Maximum daily salinities in Kings Bay approached or exceeded 15‰ after each of the three storms, with pulses generally lasting less than 2 d. Total aboveground biomass and percent cover of vascular plants, were reduced following the storms.M. spicatum exhibited an 83% decrease in aboveground biomass and an 80% decrease in percent cover.H. verticillata exhibited a 47% and 15% decline in biomass and percent cover, respectively.V. americana, exhibited an 18% increase in aboveground biomass and a 37% increase in percent cover, which suggests greater tolerance of salinity pulses and release from competition with the invasiveH. verticillata andM. spicatum. Our results indicate that rapid, storm-induced pulses of high salinity can have important consequences for submersed aquatic vegetation, restoration efforts, and management of invasive species.  相似文献   

11.
A large environmental restoration project designed to improve the hydrological conditions of the Florida Everglades and increase freshwater flow to Florida Bay is underway. Here we explore how changing freshwater inflow to the southern Everglades is likely to change the input of nutrients to Florida Bay. We calculated annual inputs of water, total phosphorus (TP), total nitrogen (TN), and dissolved inorganic nitrogen (DIN) to Everglades National Park (ENP) since the early 1980s. We also examined changes in these nutrient concentrations along transects through the wetland to Florida Bay and the Gulf of Mexico. We found that the interannual variability of the water discharge into ENP greatly exceeded the interannual variability of flow-weighted mean nutrient concentrations in this water. Nutrient inputs to ENP were largely determined by discharge volume. These inputs were high in TN and low in TP; for two ENP watersheds TN averaged 1.5 mg l?1 (0.11 mM) and 0.9 mg l?1 (0.06 mM) and TP averaged 15 μg l?1 (0.47 μM) and 9 μg l?1 (0.28 μM). Both TP and DIN that flowed into ENP wetlands were rapidly removed from the water. Over a 3-km section of Taylor Slough, TP decreased from a flow-weighted mean of 11.6 μg l?1 (0.37 μM) (0.20 μM) and DIN decreased from 240 μg l?1 (17μM) to 36 μ l?1 (2.6 μM). In contrast, TN, which was generally 95% organic N, changed little as it passed through the wetland. This resulted in molar TN:TP ratios exceeding 400 in the wetland. Decreases in TN concentrations only occurred in areas with relatively high P availability, such as the wetlands to the north of ENP and in the mangrove streams of western ENP. Increasing freshwater flow to Florida Bay in an effort to restore the Everglades and Florida Bay ecosystems is thus not likely to increase P inputs from the freshwater Everglades but is likely to increase TN inputs. Based on a nutrient budget of Florida Bay, both N and P inputs from the Gulf of Mexico greatly exceed inputs from the Everglades, as well as inputs from the atmosphere and the Florida Keys. We estimate that the freshwater Everglades contribute <3% of all P inputs and <12% of all N inputs to the bay. Evaluating the effect of ecosystem restoration efforts on Florida Bay requires greater understanding of the interactions of the bay with the Gulf of Mexico and adjacent mangrove ecosystems.  相似文献   

12.
We examined heterotrophic bacterial nutrient limitation at four sites in Florida Bay, U. S. in summer 1994 and winter 1995. Bacterial growth and biomass production in this system were most limited by inorganic phosphorus (P) in the eastern and southern regions of the bay. Nutrient additions stimulated productivity and biomass accumulation mostly in summer. The magnitude of growth responses (thymidine incorporation) to nutrient additions was nearly an order of magnitude less in winter than summer. Biomass-normalized alkaline phosphatase activity in the northeast and south-central region was 5–20 times greater than in the northwest and north-central regions, suggesting that P is most limiting to planktonic growth in those areas. Chlorophyll levels were higher in the northwest and north-central regions and P-uptake into particles >1 μm, primarily phytoplankton, was also higher in these regions. Consistent with these observations, others have observed that P is advected into the bay primarily in the northwestern region. Abundant seagrasses in Florida Bay may promote heterotrophic bacterial production relative to phytoplankton production by releasing dissolved organic carbon that makes bacteria more competitive for limiting quantities of inorganic phosphate, especially in the eastern bay where turbidity is low, P is most limiting, and light levels reaching the benthic plants are high.  相似文献   

13.
There is a net discharge of water and nutrients through Long Key Channel from Florida Bay to the Florida Keys National Marine Sanctuary (FKNMS). There has been speculation that this water and its constituents may be contributing to the loss of coral cover on the Florida Keys Reef tract over the past few decades, as well as speculation that changes in freshwater flow in the upstream Everglades ecosystem associated with the Comprehensive Everglades Restoration Plan may exacerbate this phenomenon. The results of this study indicate that although there is a net export of approximately 3,850 (±404) ton N year?1 and 63 (±7) ton P year?1, the concentrations of these nutrients flowing out of Florida Bay are the same as those flowing in. This implies that no significant nutrient enrichment is occurring in the waters of the FKNMS in the vicinity of Long Key Channel. Because of the effect of restricted southwestward water flow through Florida Bay by shallow banks and small islands, the volume of relatively high-nutrient water from central and eastern portions of the bay exiting through the channel is small compared to the average tidal exchange. Nutrient loading of relatively enriched bay waters is mediated by tidal exchange and mixing with more ambient concentrations of the western Florida Bay and Hawk Channel. System-wide budgets indicate that the contribution of Florida Bay waters to the inorganic nitrogen pool of the Keys coral reef is small relative to offshore inputs.  相似文献   

14.
In the Tampa Bay region of Florida, extreme levels of annual and seasonal rainfall are often associated with tropical cyclones and strong El Niño episodes. We used stepwise multiple regression models to describe associations between annual and seasonal rainfall levels and annual, bay-segment mean water clarity (as Secchi depth [m]), chlorophylla (μg I?1), color (pcu), and turbidity (ntu) over a 20-yr period (1985–2004) during which estimated nutrient loadings have been dominated by non-point sources. For most bay segments, variations in annual mean water clarity were associated with variations in chlorophylla concentrations, which were associated in turn with annual or seasonal rainfall. In two bay segments these associations with annual rainfall were superimposed on significant long-term declining trends in chlorophylla. Color was significantly associated with annual rainfall in all bay segments, and in one segment variations in color were the best predictors of variations in water clarity. Turbidity showed a declining trend over time in all bay segments and no association with annual rainfall, and was significantly associated with variations in water clarity in only one bay segment. While chlorophylla, color, and turbidity a affected water clarity to varying degrees, the effects of extreme rainfall events (El Niño events in 1998 and 2003, and multiple tropical cyclone events in 2004) on water clarity were relatively short-lived, persisting for periods of months rather than years. During the 20-yr period addressed in these analyses, declining temporal trends in chlorophylla and turbidity, produced in part by a long-term watershed management program that has focused on curtailing annual loadings of nitrogen and other pollutants, may have helped to prevent the bay as a whole from responding more adversely to the high rainfall periods that occurred in 1998 and 2003–2004.  相似文献   

15.
This paper will discuss the use of chemical proxies in coral skeletons to reconstruct the history of salinity (from the δ18O of the skeleton) and nutrients in the water (from the δ13C) in Florida Bay between 1824 and 1994. Monthly salinity and water temperature data collected since 1989 were used to establish a correlation between salinity, temperature, and the δ18O of the skeleton of the coralSolenastrea bournoni from Lignumvitae Basin in Florida Bay. This relationship explains over 50% of the variance in the δ18O of the skeleton. Assuming that interannual variations in the temperature of the water are small, we have applied this relationship to the δ18O measured in the coral skeleton collected from Lignumvitae Basin which has a record between 1824 and 1993. These data provide a revised estimate of salinity variation in Lignumvitae Basin for the period when historical records for salinity were not available, and show that the highest salinity events occurred in the past 30 yr. Using the relationships between the salinity in Lignumvitate Basin and other basins, obtained using a modern dataset, we are able to estimate ranges in salinity for other portions of Florida Bay. Skeletons of specimens of the coral speciesSiderastrea radians collected from other areas of Florida Bay show similar patterns in the δ18O over the past 10 yr, indicating that corals in most portions of Florida Bay are recording salinity variations in their skeletons and therefore support the idea that salinity variations in different portions of Florida Bay can be related. Fluorescence analysis of the coral from Lignumvitae Basin shows a large change in the magnitude of the 10-yr signal coincident with the construction of the railway, confirming that this event had a significant impact upon Florida Bay. The δ13C of the coral skeletons reveals a long-term history of the oxidation of organic material, fixation of carbon by photosynthesis (algal blooms), and the intrusion of marine water into the bay. Since the construction of the railway from Miami to Key West there has been a long-term decrease in the δ13C of the coral skeleton from Lignumvitae Basin, suggesting the increased oxidation of organic material in this area. This decrease in δ13C appears to have reached a minimum value around 1984 and has increased since this time in the western portions of Florida Bay. The increase may be related to the algal blooms prevalent in the area or alternatively could result from intrusion of more marine water. In the eastern areas, a small increase in the δ18C between 1984 and 1988 was followed by further decline suggesting more oxidation of organic material. We have also attempted to use the concentration of barium in the coral skeleton as a proxy indicator of the nutrient status in Florida Bay.  相似文献   

16.
Florida Bay is a shallow, semi-enclosed lagoon that has recently experienced significant changes to its ecosystem. These include increased turbidity and the occurrence of cyanobacteria blooms in the central region of the bay. To accurately understand these changes we need to understand the spatial and temporal patterns in observed water quality parameters. To this end, we have used empirical orthogonal functions (EOFs) to analyze both the spatial and temporal variability in an 8-yr record of water quality variables. We have used the EOFs in two ways, one highlighting local changes occurring in the bay, the other emphasizing changes occurring on a bay-wide scale. The local analysis shows that the central region of the bay has the greatest variability in water quality parameters, especially with respect to chlorophyll and nutrient concentrations. The bay-wide analysis shows a different picture. The chlorophyll blooms in the central bay are not apparent bay-wide indicating that they are a local manifestation of processes occurring on a bay-wide scale. The spatial and temporal patterns for nitrate are dissimilar from the other nutrients raising the possibility that the mechanisms controlling nitrate differ from those controlling other nutrients. On a bay-wide scale, spatial patterns are similar to distributions of sediment type and show the significance of interactions between the water column and benthos. Time-series analysis of the EOFs shows that the dominant variation of many water quality parameters is seasonal, even though a system-wide shift occurred between 1994–1995 corresponding to an increase in rainfall and runoff from the Everglades.  相似文献   

17.
We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the major benthic primary producer groups in Florida Bay (seagrass, epiphytes, macroalgae, and benthic microalgae) and characterized the shifts in primary producer community composition following nutrient enrichment. We established 24 permanent 0.25-m2 study plots at each of six sites across. Florida Bay and added N and P to the sediments in a factorial design for 18 mo. Tissue nutrient content of the turtlegrassThalassia testudinum revealed a spatial pattern in P limitation, from severe limitation in the eastern bay (N:P>96:1), moderate limitation in two intermediate sites (approximately 63:1), and balanced with N availability in the western bay (approximately 31:1). P addition increasedT. testudinum cover by 50–75% and short-shoot productivity by up to 100%, but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P limitation, few seagrass responses to nutrients occurred. Where ambientT. testudinum tissue N:P ratios indicated N and P availability was balanced, seagrass was not affected by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal and epiphytic and benthic microalgal biomass were variable between sites and treatments. In general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the strength of seasonal influences on algal biomass or regulation by grazers., N addition had little effect on any benthic primary producers throughout the bay. The Florida Bay benthic primary producer community was P limited, but P-induced alterations of community structure were not uniform among primary producers or across Florida Bay and did not always agree with expected patterns of nutrient limitation based on stoichiometric predictions from field assays ofT. testudinum tissue, N:P ratios.  相似文献   

18.
Estuarine salinity distributions reflect a dynamic balance between the processes that control estuarine circulation. At seasonal and longer time scales, freshwater inputs into estuaries represent the primary control on salinity distribution and estuarine circulation. El Niño-Southern Oscillation (ENSO) conditions influence seasonal rainfall and stream discharge patterns in the Tampa Bay, Florida region. The resulting variability in freshwater input to Tampa Bay influences its seasonal salinity distribution. During El Niño events, ENSO sea surface temperature anomalies (SSTAs) are significantly and inversely correlated with salinity in the bay during winter and spring. These patterns reflect the elevated rainfall over the drainage basin and the resulting elevated stream discharge and runoff, which depress salinity levels. Spatially, the correlations are strongest at the head of the bay, especially in bay sections with long residence times. During La Niña conditions, significant inverse correlations between ENSO SSTAs and salinity occur during spring. Dry conditions and depressed stream discharge characterize La Niña winters and springs, and the higher salinity levels during La Niña springs reflect the lower freshwater input levels.  相似文献   

19.
Water column optical properties of Greater Florida Bay were investigated in the context of their impacts on seagrass distribution. Scattering played an important role in light attenuation throughout the shallow water system. The northwest region was characterized by an absence of seagrasses and the highest scattering by particles, mostly from resuspended carbonate sediments. Higher seagrass densities were observed in the open waters just north of the Florida Keys, where absorption coefficients were dominated by colored dissolved organic material and scattering was lower than in the northwest region. Patchy dense seagrass meadows were observed in the clear waters south of the Keys where scattering and absorption were low and contributed equally to light attenuation. In general, seagrasses were observed in areas where >7.5% of surface irradiance reached the plants and where optical properties were not dominated by scattering. Although the prevention of eutrophication and nuisance algal blooms may be necessary for preserving seagrass meadows in this system, our observations and model calculations indicate that nutrient control alone may be insufficient to permit seagrass recolonization if optical properties are dominated by particulate scattering from resuspended sediments.  相似文献   

20.
Following extensive seagrass die-offs of the late 1980s and early 1990s, Florida Bay reportedly had significant declines in water clarity due to turbidity and algal blooms. Scant information exists on the extent of the decline, as this bay was not investigated for water quality concerns before the die-offs and limited areas were sampled after the primary die-off. We use imagery from the Advanced Very High Resolution Radiometer (AVHRR) to examine water clarity in Florida Bay for the period 1985 to 1997. The AVHRR provides data on nominal water reflectance and estimated light attenuation, which are used here to describe turbidity conditions in the bay on a seasonal basis. In situ observations on changes in seagrass abundance within the bay, combined with the satellite data, provide additional insights into losses of seagrass. The imagery shows an extensive region to the west of Florida Bay having increased reflectance and light attenuation in both winter and summer begining in winter of 1988. These increases are consistent with a change from dense seagrass to sparse or negligible cover. Approximately 200 km2 of these offshore seagrasses may have been lost during the primary die-off (1988 through 1991), significantly more than in the bay. The imagery shows the distribution and timing of increased turbidity that followed the die-offs in the northwestern regions of the bay, exemplified in Rankin Lake and Johnson Key Basin, and indicates that about 200 km2 of dense seagrass may have been lost or severely degraded within the bay from the start of the die-off. The decline in water clarity has continued in the northwestern bay since 1991. The area west of the Everglades National Park boundaries has shown decreases in both winter turbidity and summer reflectances, suggestive of partial seagrass recovery. Areas of low reflectance associated with a majorSyringodium filiforme seagrass meadow north of Marathon (Vaca Key, in the Florida Keys) appear to have expanded westward toward Big Pine Key, indicating changes in the bottom cover from before the die-off. The southern and eastern sections of the Bay have not shown significant changes in water clarity or bottom albedo throughout the entire time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号