共查询到20条相似文献,搜索用时 15 毫秒
1.
M. S. Korchinski J. Vry T. A. Little M.‐A. Millet R. Bicknell E. Smith A. von der Handt 《Journal of Metamorphic Geology》2014,32(9):1019-1039
The youngest known ultrahigh‐pressure (UHP) rocks in the world occur in the Woodlark Rift of southeastern Papua New Guinea. Since their crystallization in the Late Miocene to Early Pliocene, these eclogite facies rocks have been rapidly exhumed from mantle depths to the surface and today they remain in the still‐active geodynamic setting that caused this exhumation. For this reason, the rocks provide an excellent opportunity to study rates and processes of (U)HP exhumation. We present New Rb–Sr results from 12 rock samples from eclogite‐bearing gneiss domes in the D'Entrecasteaux Islands, and use those results to examine the time lag between (U)HP metamorphism and later ductile thinning, penetrative fabric development and accompanying metamorphic retrogression at amphibolite facies conditions during their exhumation. A Rb–Sr age for a sample of mafic eclogite (with no preserved coesite) from the core zone of the Mailolo gneiss dome (Fergusson Island) provides a new estimate of the timing of HP metamorphism (5.6 ± 1.6 Ma). The strongly deformed quartzofeldspathic and granitic gneisses (90–95% by volume) that enclose variably retrogressed relict blocks of mafic eclogite (5–10% by volume) yield Rb–Sr isochron ages from 4.4 to 2.4 Ma. For the UHP‐bearing gneisses of Mailolo dome, previously published U–Pb ages on zircon and our Rb–Sr isochron ages are consistent with a mean time lag of 2.2 ± 1.5 Ma (~95% c.i.) for passage of the rock between eclogite and amphibolite facies conditions. New thermobarometric data indicate that the main syn‐exhumational foliation developed at amphibolite facies conditions of 630–665 °C and 12.1–14.4 kbar. These pressure estimates indicate that the lower crust of the Woodlark Rift was unusually thick (>40 km) at the time of the amphibolite facies overprint, possibly as a result of accumulation and underplating of UHP‐derived material from below. Our data imply a minimum unroofing rate of 10 ± 7 mm year?1 (~95% c.i.) for the (U)HP body from minimum HP depths (73 ± 7 km) to lower crustal depths. This minimum unroofing rate reinforces previous inferences that the exhumation from the mantle to the surface of the gneiss domes in the D'Entrecasteaux Islands took place at plate tectonic rates. On the basis of previous structural studies and the new thermobarometry, we attribute the high (cm year?1) exhumation to diapiric ascent of the partially molten terrane from mantle depths, with a secondary contribution from pure shear thinning of the terrane after its arrival in the crust. 相似文献
2.
Mineralogical, petrological and geochemical analyses of corals and associated skeletal limestones taken from three transects across the Late Quaternary raised coral reefs of the Huon Peninsula, Papua New Guinea, show that tectonic uplift can be related to the degree of subaerial diagenesis of the reefs. Where the uplift rate is high, Pleistocene corals frequently retain their aragonite mineralogy, even though the annual rainfall is relatively high. In contrast, similar age corals from low‐uplift areas are consistently altered neomorphically to calcite. The transformation of reef skeletal limestones shows a similar, but less pronounced, trend to the corals. Chemical analysis shows that the neomorphic calcite crystals of coral skeletons from the low‐uplift areas have relatively higher Sr and Mg concentrations, compared with those in high‐uplift areas. This may indicate that neomorphism of corals in the low‐uplift terraces takes place at a relatively higher rate and an earlier stage than that in the high‐uplift areas. The pattern of diagenesis of the Huon reefs can be explained by the effects of tectonic uplift on the regional hydrological regime. First, lower uplift rates allow a raised reef or any part of it to remain in the meteoric phreatic zone for a relatively long time. Second, river gorge slopes from low‐uplift regions have lower gradients and reef terraces in these areas have more extensive raised lagoon depressions than in high‐uplift areas. Thus, there is less runoff and consequently more extensive vadose percolation in the former areas. Third, the resulting low‐relief topography in low‐uplift areas prompts formation of soils on the terraces, and further increases the ability of interaction between coral reefs and formation water. 相似文献
3.
Detrital zircon from two basement blocks (Kubor and Bena Bena) in the central Highlands of Papua New Guinea has an age signature that strongly suggests a northern Australian provenance. Samples of the Omung Metamorphics, southeastern Kubor Block, together yield principal zircon populations with ages of ca 1.8 Ga (~10% of the total), ca 1.55 Ga (~10%), 470–440 Ma (~15%), ca 340 Ma (~10%) and 290–260 Ma (~40%).Two tonalite stocks of the Kubor Intrusive Complex, which intrude the Omung Metamorphics, yield indistinguishable ages of 244.8 ± 4.9 Ma and 239.1 ± 4.2 Ma.Therefore, the deposition and subsequent deformation of the Omung Metamorphics is Late Permian to Early Triassic. A sample of Goroka Formation (Bena Bena Block) contains detrital zircon of similar ages to the Omung Metamorphics, ca 1.8 Ga (5%), ca 1.55 Ga (~45%), ca 430 Ma (~5%) and ca 310 Ma (~40%), suggesting that the Goroka Formation has a similar provenance and might be correlative. In contrast, a metapsammite from the Bena Bena Formation yielded only ages of 290–280 Ma (85%) and ca 240 Ma (15%). A tuff interbedded in the Bena Bena Formation yielded only igneous zircon with a Late Triassic age of 221 ± 3 Ma. Contrary to previous interpretations, the Bena Bena Formation is probably younger than the Goroka Formation. Ages of New Guinea detrital zircon closely match those of igneous and detrital zircon from the Coen Inlier, northeastern Queensland, but contrast with the ages of zircon from terranes further south, east and west. The Kubor and Bena Bena Blocks are not suspect terranes, but rather form part of the Australian craton. The craton margin, modified by rifting during the Mesozoic, was re‐inverted during Cenozoic compression. The Australian craton, in the eastern Highlands of Papua New Guinea, extends at least as far north as the Markham Valley, the northern edge of the Bena Bena terrane. 相似文献
4.
巴布亚新几内亚地质构造格架复杂,包括地台、碰撞造山带、外来地体、俯冲带、岛弧和海底扩张中心。巴布亚新几内亚铜金矿床类型主要为斑岩型铜金矿床、浅成低温热液型金银矿床和夕卡岩型铜金矿床(三者之间具有密切的时间、空间和成因关系),其次为海底块状硫化物矿床。铜金矿床分布比较集中,主要产出于碰撞造山带和岛弧上,其次产出于现代海底扩张中心。铜金矿床大多规模巨大或较大,埋藏较浅,易于勘探和适合露天开采。与铜金矿床有关的岩浆岩大多为钙碱性火山岩和浅成侵入岩,少数与富钾碱性火山岩(橄榄玄粗岩)或侵入岩伴生。铜金矿床蚀变带发育且分带性明显,大多与斑岩体系和/或火山机构有关。虽然许多铜金矿床的矿物成分比较复杂,但是其矿石较易处理和利用。 相似文献
5.
Tsunamis originating in Indonesia and Papua New Guinea can be locally devastating and also occasionally threaten coastal areas of northern Australia. Tsunamis may be caused by earthquakes, volcanoes or submarine landslides. In Rabaul a unique set of records exists of tsunamis and seiches generated by tectonic earthquakes, volcanic earthquakes and a volcanic eruption. Spectral analysis of the digitised waveforms has been undertaken to compare the effects of the different sources and to estimate the characteristic natural periods of Rabaul Harbour. Seiches in Rabaul Harbourhave dominant periods of 20 to 30 min, a period band that is also typical for coastal recordings of tsunamis. 相似文献
6.
M. BRÖCKER R. KLEMD M. COSCA W. BROCK A. N. LARIONOV N. RODIONOV 《Journal of Metamorphic Geology》2009,27(5):385-403
The Orlica–?nie?nik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high‐pressure (HP) to ultrahigh‐pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370‐ to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c. 370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country‐rock gneiss from the location Nowa Wie? suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt‐forming high‐temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh‐temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet ages ( Anczkiewicz et al., 2007 ). 相似文献
7.
巴布亚新几内亚地质构造格架复杂,包括地台、碰撞造山带、外来地体、俯冲带、岛弧和海底扩张中心。巴布亚新几内亚铜金矿床类型主要为斑岩型铜金矿床、浅成低温热液型金银矿床和夕卡岩型铜金矿床(三者之间具有密切的时间、空间和成因关系),其次为海底块状硫化物矿床。铜金矿床分布比较集中,主要产出于碰撞造山带和岛弧上,其次产出于现代海底扩张中心。铜金矿床大多规模巨大或较大,埋藏较浅,易于勘探和适合露天开采。与铜金矿床有关的岩浆岩大多为钙碱性火山岩和浅成侵入岩,少数与富钾碱性火山岩(橄榄玄粗岩)或侵入岩伴生。铜金矿床蚀变带发育且分带性明显,大多与斑岩体系和/或火山机构有关。虽然许多铜金矿床的矿物成分比较复杂,但是其矿石较易处理和利用。 相似文献
8.
巴布亚新几内亚是在澳大利亚板块与太平洋板块斜向和快速汇聚的边界带内演化的,是世界上构造运动最复杂的区带之一,其地球动力学演化涉及俯冲与火山岛弧(岩浆弧)形成、弧陆碰撞与造山、俯冲陆壳折返-岩浆侵入-成矿作用等地质作用。地质年代学研究指出,巴布亚新几内亚主岛(新几内亚岛)的地球动力学次序是:①引起抬升和折返的碰撞作用;②折返期间或稍后的侵入作用;③侵入岩体系晚期的成矿事件。在地球动力学次序中,巴布亚新几内亚铜金成矿时代主要集中在25~0Ma之间,其中几个世界级矿床更为年轻,成矿年龄只有6-0Ma。笔者按成矿时代将巴布亚新几内亚铜金成矿作用分为第一高潮(23~12Ma)、第二高潮(7-1Ma)和第三高潮(现在进行时)(0.5-0Ma)。巴布亚新几内亚铜金成矿受大地构造、侵入杂岩体、特定赋矿地层、转换构造、背斜、各种断裂、破火山或火山管道等控制。 相似文献
9.
Geological structure of the active foreland fold and thrust belt of Papua New Guinea has been interpreted using high-quality seismic-reflection data. Three en échelon anticlines, the Strickland, Cecilia and Wai Asi, are located along the frontal margin of the Papuan Fold Belt. All three are foreland-vergent and cut by hinterland-dipping thrust faults that sole into a common detachment beneath the Oligocene to Miocene Darai Limestone. Two of the anticlines are linked by a right-lateral transfer zone. Folding occurs primarily in the upper 2000 m of strata, which consist of Darai Limestone overlain by Miocene to Quaternary siliciclastic sedimentary rocks. Beneath the Darai Limestone lies the less-competent shaly Ieru Formation, which exhibits disharmonic folding and variable bed thickness. Seismic-reflection data clearly show that the Plio-Pleistocene upper Era Beds are deformed to the same extent as the underlying Darai Limestone, demonstrating that most of the observed deformation has occurred during the Late Pliocene and Pleistocene. 相似文献
10.
Ore mineralization and wall rock alteration of Crater Mountain gold deposit, Papua New Guinea, were investigated using ore and host rock samples from drill holes for ore and alteration mineralogical study. The host rocks of the deposit are quartz‐feldspar porphyry, feldspar‐hornblende porphyry, andesitic volcanics and pyroclastics, and basaltic‐andesitic tuff. The main ore minerals are pyrite, sphalerite, galena, chalcopyrite and moderate amounts of tetrahedrite, tennantite, pyrrhotite, bornite and enargite. Small amounts of enargite, tetradymite, altaite, heyrovskyite, bismuthinite, bornite, idaite, cubanite, native gold, CuPbS2, an unidentified Bi‐Te‐S mineral and argentopyrite occur as inclusions mainly in pyrite veins and grains. Native gold occurs significantly in the As‐rich pyrite veins in volcanic units, and coexists with Bi‐Te‐S mineral species and rarely with chalcopyrite and cubanite relics. Four mineralization stages were recognized based on the observations of ore textures. Stage I is characterized by quartz‐sericite‐calcite alteration with trace pyrite and chalcopyrite in the monomict diatreme breccias; Stage II is defined by the crystallization of pyrite and by weak quartz‐chlorite‐sericite‐calcite alteration; Stage III is a major ore formation episode where sulfides deposited as disseminated grains and veins that host native gold, and is divided into three sub‐stages; Stage IV is characterized by predominant carbonitization. Gold mineralization occurred in the sub‐stages 2 and 3 in Stage III. The fS2 is considered to have decreased from ~10?2 to 10?14 atm with decreasing temperature of fluid. 相似文献
11.
Kelsie Long Larissa Schneider Ian S. Williams Stewart J. Fallon Hilary Stuart-Williams Simon Haberle 《第四纪科学杂志》2020,35(3):457-464
The oxygen isotopic composition of Stenomelania gastropod shells was investigated to reconstruct Holocene palaeoclimate change at Lake Kutubu in the southern highlands of Papua New Guinea. Oxygen isotope (δ18O) values recorded in aquatic gastropod shells change according to ambient water δ18O values and temperature. The gastropod shells appear to form in oxygen isotopic equilibrium with the surrounding water and record a shift in average shell oxygen isotopic composition through time, probably as a result of warmer/wetter conditions at ca. 600–900 and 5900–6200 cal a bp. Shorter term fluctuations in oxygen isotope values were also identified and may relate to changes in the intensity or source of rainfall. Further δ18O analyses of gastropod shells or other carbonate proxies found in the Lake Kutubu sediments are warranted. © 2020 John Wiley & Sons, Ltd. 相似文献
12.
The interaction of the Australian, South Bismarck and Solomon Sea Plates in Papua New Guinea is the source of frequent earthquakes that occur as a result of subduction and arc continent collision. Previous investigators have drawn attention to a discontinuity in the horizontal azimuth of slip vectors along the southern boundary of the South Bismarck Plate, with those to the west of 148°E being systematically rotated 20ndash;30° clockwise compared to those located east of 148°E. This has led to the suggestion that relative motion may be occurring between the Huon Peninsula and New Britain or that more than two plates are acting south of the South Bismarck Plate. Global positioning system (GPS) measurements since 1991 indicate that there is no internal deformation occurring within the South Bismark Plate and that at least two distinct plates are in contact with the southern edge of the South Bismarck Plate. We show from a study of a recent earthquake dataset that the change in slip vector azimuth can be modelled by the interaction of the overriding South Bismarck Plate with the underthrusting Australian and Solomon Sea Plates, consistent with the GPS observations, while maintaining the South Bismarck Plate as a rigid entity. We found that a transition zone exists between 147°E and 148°E where the underlying plate changes from the Australian Plate to the Solomon Sea Plate. There are insufficient data at present to indicate whether or not a third plate, the Woodlark Plate, is also interacting directly with the South Bismarck Plate in this transition zone. Slip vector azimuths were used to estimate an Euler pole (6.74°S, 144.64°E), which describes the relative motion of the South Bismarck and Solomon Sea Plates along the New Britain Trench. 相似文献
13.
Sung Won Kim Chang Whan Oh Ian S. Williams Daniela Rubatto In-Chang Ryu V.J. Rajesh Cheong-Bin Kim Jinghui Guo Mingguo Zhai 《Lithos》2006,92(3-4):357-377
Petrological analysis, zircon trace element analysis and SHRIMP zircon U–Pb dating of retrogressed eclogite and garnet granulite from Bibong, Hongseong area, SW Gyeonggi Massif, South Korea provide compelling evidence for Triassic (231.4 ± 3.3 Ma) high-pressure (HP) eclogite facies (M1) metamorphisms at a peak pressure–temperature (P–T) of ca. 16.5–20.0 kb and 775–850 °C. This was followed by isothermal decompression (ITD), with a sharp decrease in pressure from 20 to 10 kb and a slight temperature rise from eclogite facies (M1) to granulite facies (M2), followed by uplift and cooling. Granitic orthogneiss surrounding the Baekdong garnet granulite and the ophiolite-related ultramafic lenticular body near Bibong records evidence for a later Silurian (418 ± 8 Ma) intermediate high-pressure (IHP) granulite facies metamorphism and a prograde P–T path with peak P–T conditions of ca. 13.5 kb and 800 °C. K–Ar ages of biotite from garnet granulites, amphibolites, and granitic orthogneisses in and around the Bibong metabasite lenticular body are 208–219 Ma, recording cooling to about 310 °C after the Early Triassic metamorphic peak. Neoproterozoic zircon cores in the retrogressed eclogite and granitic orthogneiss provide evidence that the protoliths of these rocks were 800 and 900 Ma old, respectively, similar to the ages of tectonic episodes in the Central Orogenic Belt of China. This, and the evidence for Triassic HP/UHP metamorphism in both China and Korea, is consistent with a regional tectonic link within Northeast Asia from the time of Rodinia amalgamation to Triassic continent–continent collision between the North and South China Blocks, and with an eastward extension of the Dabie–Sulu suture zone into the Hongseong area of South Korea. 相似文献
14.
巴布亚新几内亚西部Fubilan山奥克泰迪矿床是一个世界级铜金矿床,在大地构造上位于新几内亚造山带的巴布亚褶皱带。该矿床的铜金矿化赋存于Fubilan二长斑岩及其周边的磁铁矿夕卡岩和硫化物夕卡岩中。矿石类型以原生硫化物矿石为主,金属矿物包括磁铁矿、黄铁矿、磁黄铁矿、白铁矿、黄铜矿、斑铜矿等。蚀变类型包括夕卡岩化、钾化、泥化和青盘岩化。矿床氧化次生富集带发育,表生矿石矿物为蓝辉铜矿、辉铜矿、自然铜、铜蓝和银金矿。成矿作用主要受区域构造、侵入杂岩体、Darai组灰岩地层、断裂等因素的控制。根据矿床的主岩、矿石特征、蚀变特征和控矿因素,认为该矿床成因类型属于较为典型的夕卡岩—斑岩型矿床。 相似文献
15.
《International Geology Review》2012,54(18):2211-2226
ABSTRACTTo constrain the timing from the accretion to the subduction-related metamorphism of the protolith in the Sanbagawa eclogites, we performed zircon U–Pb datings and REE composition analyses on pelitic schist of the Seba eclogite-facies region in the Besshi area in central Shikoku, Japan. The detrital igneous cores of the zircons show ages from ca. 2000 to 100 Ma, and the metamorphic rims show ca. 90 Ma. These results show that the protolith was accreted at ca. 100–90 Ma, which is significantly younger than the previously reported accretion age of ca. 130 Ma of other eclogite-facies regions in this area. And, the metamorphic rim domains show HREE decrease without Eu anomalies, suggesting that they were formed at ca. 90 Ma eclogite-facies metamorphism. Our results combined with previous reports for the tectonics of the Sanbagawa metamorphic rocks suggest that there are at least two eclogite-facies units with different accretion ages in the Besshi area; ca. 130 Ma unit (Besshi unit) and ca. 100–90 Ma unit (Asemi-gawa unit), which structurally contact with each other. It is likely that the older unit was subducted into a depth of over 50 km and stagnated until the younger unit was subducted to the same depth. Probably, both units were juxtaposed at a mantle depth and began to exhume to the surface at the same timing after ca. 90 Ma. The juxtaposition and exhumation process might have relation to multi-factors such as tectonic erosion along the subduction zone, shallowing subduction angle of the hotter slab, backflow in the mantle and fluid infiltration along exhumation route. 相似文献
16.
巴布亚新几内亚西部Fubilan山奥克泰迪矿床是一个世界级铜金矿床,在大地构造上位于新几内亚造山带的巴布亚褶皱带。该矿床的铜金矿化赋存于Fubilan二长斑岩及其周边的磁铁矿夕卡岩和硫化物夕卡岩中。矿石类型以原生硫化物矿石为主,金属矿物包括磁铁矿、黄铁矿、磁黄铁矿、白铁矿、黄铜矿、斑铜矿等。蚀变类型包括夕卡岩化、钾化、泥化和青盘岩化。矿床氧化次生富集带发育,表生矿石矿物为蓝辉铜矿、辉铜矿、自然铜、铜蓝和银金矿。成矿作用主要受区域构造、侵入杂岩体、Darai组灰岩地层、断裂等因素的控制。根据矿床的主岩、矿石特征、蚀变特征和控矿因素,认为该矿床成因类型属于较为典型的夕卡岩一斑岩型矿床。 相似文献
17.
The Laloki and Federal Flag deposits are two of the many (over 45) polymetallic massive sulfide deposits that occur in the Astrolabe Mineral Field, Papua New Guinea. New data of the mineralogical compositions, mineral textures, and fluid inclusion studies on sphalerite from Laloki and Federal Flag deposits were investigated to clarify physiochemical conditions of the mineralization at both deposits. The two deposits are located about 2 km apart and they are stratigraphically hosted by siliceous to carbonaceous claystone and rare gray chert of Paleocene–Eocene age. Massive sulfide ore and host rock samples were collected from each deposit for mineralogical, geochemical, and fluid inclusion studies. Mineralization at the Laloki deposit consists of early‐stage massive sulfide mineralization (sphalerite‐barite, chalcopyrite, and pyrite–marcasite) and late‐stage brecciation and remobilization of early‐stage massive sulfides that was accompanied by late‐stage sphalerite mineralization. Occurrence of native gold blebs in early‐stage massive pyrite–marcasite‐chalcopyrite ore with the association of pyrrhotite‐hematite and abundant planktonic foraminifera remnants was due to reduction of hydrothermal fluids by the reaction with organic‐rich sediments and seawater mixing. Precipitation of fine‐grained gold blebs in late‐stage Fe‐rich sphalerite resulted from low temperature and higher salinity ore fluids in sulfur reducing conditions. In contrast, the massive sulfide ores from the Federal Flag deposit contain Fe‐rich sphalerite and subordinate sulfarsenides. Native gold blebs occur as inclusions in Fe‐rich sphalerite, along sphalerite grain boundaries, and in the siliceous‐hematitic matrix. Such occurrences of native gold suggest that gold was initially precipitated from high‐temperature, moderate to highly reduced, low‐sulfur ore fluids. Concentrations of Au and Ag from both Laloki and Federal Flag deposits were within the range (<10 ppm Au and <100 ppm Ag) of massive sulfides at a mid‐ocean ridge setting rather than typical arc‐type massive sulfides. The complex relationship between FeS contents in sphalerite and gold grades of both deposits is probably due to the initial deposition of gold on the seafloor that may have been controlled by factors such as Au complexes, pH, and fO2 in combination with temperature and sulfur fugacity. 相似文献
18.
Joseph P. Gonzalez Jay B. Thomas Suzanne L. Baldwin Matteo Alvaro 《Journal of Metamorphic Geology》2019,37(9):1193-1208
Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (P–T) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapment P–T conditions using an isotropic elastic model and P–T–V equations of state for host and inclusion minerals. Elastic models are used to constrain P–T curves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the first P–T estimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapment P–T conditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm?1 bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation (), and elastic tensor calculation (), that account for deviatoric stress. values calculated from the 128, 206, and 464 cm?1 bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm?1 Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019, 234 :129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an average and of 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2σ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as the P–T conditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. The P–T intersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range of P–T conditions thus permitting application of QuiG‐TiQ to many metamorphic rocks. 相似文献
19.
M. THÖNI C. MILLER J. BLICHERT-TOFT M. J. WHITEHOUSE J. KONZETT A. ZANETTI 《Journal of Metamorphic Geology》2008,26(5):561-581
Sm–Nd, Lu–Hf, Rb–Sr and SIMS U–Pb data are presented for meta‐gabbroic eclogites from the eclogite type‐locality ( Haüy, 1822 ) Kupplerbrunn–Prickler Halt and other areas of the Saualpe (SE Austria) and Pohorje Mountains (Slovenia). Mg‐rich eclogites derived from early gabbroic cumulates are kyanite‐ and zoisite rich, whereas eclogites with lower Mg contents contain clinozoisite ± kyanite. Calculated P–T conditions at the final stages of high‐pressure metamorphism are 2.2 ± 0.2 GPa at 630–740 °C. Kyanite‐rich eclogites did not yield geologically meaningful Sm–Nd ages due to incomplete Nd isotope equilibration, whereas Sm–Nd multifraction garnet–omphacite regression for a low‐Mg eclogite from Kupplerbrunn yields an age of 91.1 ± 1.3 Ma. The Sm–Nd age of 94.1 ± 0.8 Ma obtained from the Fe‐rich core fraction of this garnet dates the initial stages of garnet growth. Zircon that also crystallized at eclogite facies conditions gives a weighted mean U–Pb SIMS age of 88.4 ± 8.1 Ma. Lu–Hf isotope analysis of a kyanite–eclogite from Kupplerbrunn yields 88.4 ± 4.7 Ma for the garnet–omphacite pair. Two low‐Mg eclogites from the Gertrusk locality of the Saualpe yield a multimineral Sm–Nd age of 90.6 ± 1.0 Ma. A low‐Mg eclogite from the Pohorje Mountains (70 km to the SE) gives a garnet–whole‐rock Lu–Hf age of 93.3 ± 2.8 Ma. These new age data and published Sm–Nd ages of metasedimentary host rocks constrain the final stages of the eo‐Alpine high‐pressure event in the Saualpe–Pohorje part of the south‐easternmost Austroalpine nappe system suggesting that garnet growth in the high‐pressure assemblages started at c. 95–94 Ma and ceased at c. 90–88 Ma, probably at the final pressure peak. Zircon and amphibole crystallization was still possible during incipient isothermal decompression. Rapid exhumation of the high‐pressure rocks was induced by collision of the northern Apulian plate with parts of the Austroalpine microplate, following Jurassic closure of the Permo‐Triassic Meliata back‐arc basin. 相似文献
20.
Y.-B. WU S. GAO H.-J. GONG H. XIANG W.-F. JIAO S.-H. YANG Y.-S. LIU H.-L. YUAN 《Journal of Metamorphic Geology》2009,27(6):461-477
U–Pb age, trace element and Hf isotope compositions of zircon were analysed for a metasedimentary rock and two amphibolites from the Kongling terrane in the northern part of the Yangtze Craton. The zircon shows distinct morphological and chemical characteristics. Most zircon in an amphibolite shows oscillatory zoning, high Th/U and 176 Lu/177 Hf ratios, high formation temperature, high trace element contents, clear negative Eu anomaly, as well as HREE-enriched patterns, suggesting that it is igneous. The zircon yields a weighted mean 207 Pb/206 Pb age of 2857 ± 8 Ma, representing the age of the magmatic protolith. The zircon in the other two samples is metamorphic. It has low Th/U ratios, low trace element concentrations, variable HREE contents (33.8 ≥ LuN ≥2213; 14.7 ≤ LuN /SmN ≤ 354) and 176 Lu/177 Hf ratios (0.000030–0.001168). The data indicate that the zircon formed in the presence of garnet and under upper amphibolite facies conditions. The metamorphic zircon yields a weighted mean 207 Pb/206 Pb age of 2010 ± 13 Ma. These results combined with previously obtained Palaeoproterozoic metamorphic ages suggest a c. 2.0 Ga Palaeoproterozoic collisional event in the Yangtze Craton, which may result from the assembly of the supercontinent Columbia. The zircon in two samples yields weighted mean two-stage Hf model ( T DM2 ) ages of 3217 ± 110 and 2943 ± 50 Ma, respectively, indicating that their protoliths were mainly derived from Archean crust. 相似文献