首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our study examines the relationships among various environmental variables in Surat city using remote sensing. Landsat Thematic Mapper satellite data were used in conjugation with geospatial techniques to study urbanization and correlation among satellite-derived biophysical parameters namely, normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), normalized difference bareness index (NDBaI) and land surface temperature (LST). A modified NDWI (MNDWI) was used for extracting areas under water. Land use/land cover classification was performed using hierarchical decision tree classification technique using ERDAS IMAGINE Expert classifier with an accuracy of 90.4% for 1990 and 85% for 2009. It was found that city has expanded over 42.75 sq.km within two decades. Built-up, fallow and sediment land use classes exhibited high dynamics with increase of nearly 200% and 50% and decrease of 55% respectively from 1990 to 2009. Vegetation and water classes were less dynamic with 20% decrease and 15% increase. The transformation of land parcels from vegetation to built-up, vegetation to fallow and fallow to built-up has resulted in increase of LST by 5.5 ± 2.6°C, 6.7 ± 3°C and 3.5 ± 2.9°C, respectively.  相似文献   

2.
基于遥感的长沙市城市热岛与土地利用/覆盖变化研究   总被引:9,自引:0,他引:9  
基于多时相Landsat TM/ETM+影像,首先计算长沙市地表亮度温度,然后利用NDVI(归一化植被指数)、MNDWI(改进 的归一化水体指数)、NDBI(归一化建筑指数)和NDBaI(归一化裸土指数)4个指数,采用决策树分类方法对长沙市影像进行 土地利用/覆盖分类。在此基础上,对长沙市城市热岛的空间分布特征、时空演变特征以及城市热岛与土地利用/覆盖变化和各种影 响因子之间的关系进行研究。结果表明,随着长沙市城区范围的不断扩张,城市热岛范围也不断增大; 土地利用/覆盖类型的变化 会改变地表温度的空间分布,城市用地和裸地是城市热岛强度的主要贡献因素,水体和林地具有较好的降温作用。地表温度与4种 归一化指数的回归分析表明,它们之间存在明显的相关性,不同土地利用/覆盖类型的地表温度存在较大差异。  相似文献   

3.
Main objective of this study was to establish a relationship between land cover and land surface temperature (LST) in urban and rural areas. The research was conducted using Landsat, WorldView-2 (WV-2) and Digital Mapping Camera. Normalised difference vegetation index and normalised difference built-up index were used for establishing the relation between built-up area, vegetation cover and LST for spatial resolution of 30 m. Impervious surface and vegetation area generated from Digital Mapping Camera from Intergraph and WV-2 were used to establish the relation between built-up area, vegetation cover and LST for spatial resolutions of 0.1, 0.5 and 30 m. Linear regression models were used to determine the relationship between LST and indicators. Main contribution of this research is to establish the use of combining remote sensing sensors with different spectral and spatial resolution for two typical settlements in Vojvodina. Correlation coefficients between LST and LST indicators ranged from 0.602 to 0.768.  相似文献   

4.
One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). By using the Landsat TM/ETM+ thermal infrared remote sensing data of 1993, 2001 and 2011 to retrieve the land surface temperature (LST) of Lanzhou City, and by adopting object-oriented fractal net evolution approach (FNEA) to make image segmentation of the LST, the UHI elements were extracted. The G* index spatial aggregation analysis was made to calculate the urban heat island ratio index (URI), and the landscape metrics were used to quantify the changes of the spatial pattern of the UHI from the aspects of quantity, shape and structure. The impervious surface distribution and vegetation coverage were extracted by a constrained linear spectral mixture model to explore the relationships of the impervious surface distribution and vegetation coverage with the UHI. The information of urban built-up area was extracted by using UBI (NDBI-NDVI) index, and the effects of urban expansion on city thermal environment were quantitatively analyzed, with the URI and the LST grade maps built. In recent 20 years, the UHI effect in Lanzhou City was strengthened, with the URI increased by 1.4 times. The urban expansion had a spatiotemporal consistency with the UHI expansion. The patch number and density of the UHI landscape were increased, the patch shape and the whole landscape tended to be complex, the landscape became more fragmented, and the landscape connectivity was decreased. The heat island strength had a negative linear correlation with the urban vegetation coverage, and a positive logarithmic correlation with the urban impervious surface coverage.  相似文献   

5.
Regional scale urban built-up areas and surface urban heat islands (SUHI) are important for urban planning and policy formation. Owing to coarse spatial resolution (1000 m), it is difficult to use Moderate Resolution Imaging Spectroradiometer (MODIS) Land surface temperature (LST) products for mapping urban areas and visualization, and SUHI-related studies. To overcome this problem, the present study downscaled MODIS (1000 m resolution)-derived LST to 250 m resolution to map and visualize the urban areas and identify the basic components of SUHI over 12 districts of Punjab, India. The results are compared through visual interpretation and statistical procedure based on similarity analysis. The increased entropy value in the downscaled LST signifies higher information content. The temperature variation within the built-up and its environs is due to difference in land use and is depicted better in the downscaled LST. The SUHI intensity analysis of four cities (Ludhiana, Patiala, Moga and Vatinda) indicates that mean temperature in urban built-up core is higher (38.87 °C) as compared to suburban (35.85 °C) and rural (32.41 °C) areas. The downscaling techniques demonstrated in this paper enhance the usage of open-source wide swath MODIS LST for continuous monitoring of SUHI and urban area mapping, visualisation and analysis at regional scale. Such initiatives are useful for the scientific community and the decision-makers.  相似文献   

6.
The dynamics of crop-fallow rotation cycles of shifting cultivation has been poorly understood in northeastern part of the country although it is one of the major land use systems in the hilly states of this region. The present study was conducted to understand the dynamics of shifting cultivation through the use of Landsat time-series data from 1999 to 2016 in Champhai district of Mizoram. We mapped the current jhum fields and abandoned areas of each imagery of the study period and performed a post classification comparison to assess the crop-fallow rotation cycle/jhum cycle. The chrono-sequential change of slash and burn area over the past 17 years showed a decreasing trend with the greater part of the shifting cultivation area being occupied by 2nd year crop fields, covering 48.81% of total jhum land. On average, 114.46 km2 area were annually slashed for current jhum, out of which 33.41% continued with current jhum 2nd year cropping and only 3.27% of jhumias continued with 3rd year cropping. The shifting cultivation patches were mostly confined to moderately steep slopes (15°–30°). East facing aspect was mostly preferred and North facing aspect was least preferred. During the study period, 10 years jhum cycle covered the maximum area followed by 9 years and 11 years jhum cycle. The end result of this study proved that the prevalent jhum cycle in Champhai district is 8–11 years with a fallow period of 6–9 years.  相似文献   

7.
This study examined changes in urban expansion and land surface temperature in Beijing between 1990 and 2014 using multitemporal TM, ETM+, and OLI images, and evaluated the relationship between percent impervious surface area (%ISA) and relative mean annual surface temperature (RMAST). From 1990 to 2001, both internal land transformation and outward expansion were observed. In the central urban area, the high-density urban areas decreased by almost 7 km2, while the moderate- and high-density urban land areas increased by 250 and 90 km2, respectively, outside of the third ring road. From 2001 to 2014, high-density urban areas between the fifth and sixth ring roads experienced the greatest increase by more than 210 km2, and RMAST generally increased with %ISA. During 1990–2001 and 2001–2014, RMAST increased by more than 1.5 K between the south third and fifth ring roads, and %ISA increased by more than 50% outside of the fifth ring road. These trends in urban expansion and RMAST over the last two decades in Beijing can provide useful information for urban planning decisions.  相似文献   

8.
This study investigates urbanization and its potential environmental consequences in Shanghai and Stockholm metropolitan areas over two decades. Changes in land use/land cover are estimated from support vector machine classifications of Landsat mosaics with grey-level co-occurrence matrix features. Landscape metrics are used to investigate changes in landscape composition and configuration and to draw preliminary conclusions about environmental impacts. Speed and magnitude of urbanization is calculated by urbanization indices and the resulting impacts on the environment are quantified by ecosystem services. Growth of urban areas and urban green spaces occurred at the expense of cropland in both regions. Alongside a decrease in natural land cover, urban areas increased by approximately 120% in Shanghai, nearly ten times as much as in Stockholm, where the most significant land cover change was a 12% urban expansion that mostly replaced agricultural areas. From the landscape metrics results, it appears that fragmentation in both study regions occurred mainly due to the growth of high density built-up areas in previously more natural/agricultural environments, while the expansion of low density built-up areas was for the most part in conjunction with pre-existing patches. Urban growth resulted in ecosystem service value losses of approximately 445 million US dollars in Shanghai, mostly due to the decrease in natural coastal wetlands while in Stockholm the value of ecosystem services changed very little. Total urban growth in Shanghai was 1768 km2 and 100 km2 in Stockholm. The developed methodology is considered a straight-forward low-cost globally applicable approach to quantitatively and qualitatively evaluate urban growth patterns that could help to address spatial, economic and ecological questions in urban and regional planning.  相似文献   

9.
Land use and land cover (LULC) change detection associated with oil and gas activities plays an important role in effective sustainable management practices, compliance monitoring, and reclamation assessment. In this study, a mapping methodology is presented for quantifying pre- and post-disturbance LULC types with annual Landsat Best-Available-Pixel multispectral data from 2005 to 2013. Annual LULC and land disturbance maps were produced for one of the major conventional oil and gas production areas in West-Central Alberta with an accuracy of 78% and 87%, respectively. The highest rate of vegetation loss (178 km2/year) was observed in coniferous forest compared to broadleaf forest, mixed forest, and native vegetation. Integration of ancillary oil and gas geospatial data with annual land disturbances indicated that less than 20% of the total land disturbances were attributable to oil and gas activities. In 2013, approximately 44% of oil and gas disturbances from 2005 to 2013 showed evidence of vegetation recovery. In the future, geospatial data related to wildfire, logging activities, insect defoliation, and other natural and anthropogenic factors can be integrated to quantify other causes of land disturbances.  相似文献   

10.
Landsat TM/ETM and MODIS satellite remote sensing data from 1995 to 2012 are used to study Shanghai’s urban heat island (UHI) in China from the perspectives of time and space. Furthermore the UHI characteristics are analyzed in terms of landscape ecology theory and the urban heat island effect ratio (UHIER). The results show that: in the time sequence, the land brightness temperature (LBT) of Shanghai in 2000 is the strongest and the one in 2003 is the weakest. The urban area LBT has continued to decline since 2003, but for the entire Shanghai, it has had an overall increase. In the spatial distribution, LBT structure is mainly dominated by urban area from 1995 to 2000; but since the rapid development of built-up area of Pudong, Songjiang, Minhang and Jiading Districts in 2000, the LBT landscape pattern which was primarily urban area-centered and multicenter built-up area-supplemented has been gradually formed.  相似文献   

11.
The land use and land cover pattern of a region is a consequence of natural and socio-economic factors and their utilization by man in time and space. In this study, we hypothesized that land use and land cover change patterns in the Lake Chivero catchment, Zimbabwe, were related to its human population dynamics. Using nonparametric correlation coefficients (Spearman’s rho, ρ), we found that bareland, cropland and built-up land had positive relations with human population growth of ρ = 0.7, ρ = 0.9 and ρ = 1, respectively. Grassland/shrubland, water and forest, on the other hand, had a negative relationship with human population growth of ρ = ?0.9, ρ = ?0.7 and ρ = ?0.667, respectively. However, these relationships were only significant (p < 0.05) for cropland, grassland/shrubland and built-up land. Human population dynamics in the Lake Chivero catchment could be one of the major drivers of land use and land cover change in the catchment between 1986 and 2014.  相似文献   

12.
The aim of this paper is to evaluate the impacts of land use change on soil loss. Soil loss was quantified using the revised universal soil loss equation model in Darabkola catchment. Land use maps of 1992, 1998 and 2012 were derived from Landsat Thematic Mapper data. The mean annual soil loss was therefore determined for these years. The results showed open-canopy forest area decreased by 36% between 1992 and 1998. Likewise, the decreasing trend of forest lands which are near to residential areas has continued from 1795 ha in 1998 to 1765 ha in 2012. Also the results indicate that the maximum annual soil loss ranged from 5.06, 6.19 and 15.23 ton h?1 y?1 in 1992, 1998 and 2012, respectively. Also, by assuming that all watershed conditions and land uses be constant in the future, then the area of close- and open-canopy forest and dry agricultural lands will be 23.23, 2.88 and 29.89 ha in 2040, respectively.  相似文献   

13.
The urban forest plays an important role in mitigating the urban heat island. However, the cooling effects of different types of urban forest are unclear. In addition, the fairness of the cooling effect of the urban forest has not been discussed. In this study, the land surface temperature (LST) of Changchun City, China was obtained from Landsat ETM+ data and then correlated with detailed urban forest information derived from the high-spatial-resolution Google Maps in order to determine the cooling intensity and cooling distance of different types of urban forest. In addition, the Gini coefficient was used to evaluate the equity of cooling services provided by the urban forest. The results indicated that (1) the total area of urban forest in Changchun City is 106.69 km2 and is composed of attached forest (AF, 45.83 km2), road forest (RF, 23.87 km2), ecological public welfare forest (EF, 23.24 km2) and landscape forest (LF, 13.75 km2); (2) the cooling effect of different types of urban forest varies. The cooling intensity and cooling distance are 3.2 °C and 125 m (LF), 0.2 °C and 150 m (EF) and 0.6 °C and 5 m (AF), and RF had no cooling effect; and (3) the cooling effect of urban forest benefits approximately 760,000 people in Changchun City, and the Gini coefficient of the cooling services of urban forest was 0.29, indicating that the cooling service was reasonable. Therefore, we demonstrated that ETM+ and Google data are a convenient and affordable approach to study the LST on an urban scale, and the Gini coefficient could be a meaningful indicator to evaluate urban ecological services.  相似文献   

14.
One of the significant environmental consequences of urbanization is the urban heat island (UHI). In this paper, Landsat TM images of 1986 and 2004 were utilized to study the spatial and temporal variations of heat island and their relationships with land cover changes in Suzhou, a Chinese city which experienced rapid urbanization in past decades. Land cover classifications were derived to quantify urban expansions and brightness temperatures were computed from the TM thermal data to express the urban thermal environment. The spatial distributions of surface temperature indicated that heat islands had been largely broadened and showed good agreements with urban expansion. Temperature statistics of main land cover types showed that built-up and bare land had higher surface temperatures than natural land covers, implying the warming effect caused by the urbanization with natural landscape being replaced by urban areas. In addition, the spatial detail distributions of surface temperature were compared with the distribution of land cover by means of GIS buffer analysis. Results show remarkable show good correspondence between heat island variations with urban area expansions.  相似文献   

15.
Urbanization is increasingly becoming a widespread phenomenon at all scales of development around the globe. Be it developing or developed nations, all are witnessing urbanization at very high pace. In order to study its impacts, various methodologies and techniques are being implemented to measure growth of urban extents over spatial and temporal domains. But urbanization being a very dynamic phenomenon has been facing ambiguities regarding methods to study its dynamism. This paper aims at quantifying urban expansion in Delhi, the capital city of India. The process has been studied using urban land cover pattern derived from Landsat TM/ETM satellite data for two decades (1998–2011). These maps show that built-up increased by 417 ha in first time period (1998–2003) and 6,633 ha during next period (2003–2011) of study. For quantification of metrics for urban expansion, the Urban Landscape Analysis Tool (ULAT) was employed. Land cover mapping was done with accuracy of 92.67 %, 93.3 % and 96 % respectively for years 1998, 2003 and 2011. Three major land covers classes mapped are; (i) built-up, (ii) water and (iii) other or non-built-up. The maps were then utilized to extract degree of urbanization based on spatial density of built-up area consisting of seven classes, (i) Urban built-up, (ii) Suburban built-up,(iii) Rural built-up, (iv) Urbanized open land, (v) Captured open land, (vi) Rural open land and (vii) Water. These classes were demarcated based on the urbanness of cells. Similarly urban footprint maps were generated. The two time maps were compared to qualitatively and quantitatively capture the dynamics of urban expansion in the city. Along with urbanized area and urban footprint maps, the new development areas during the study time periods were also identified. The new development areas consisted of three major categories of developments, (i) infill, (ii) extension and (iii) leapfrog.  相似文献   

16.
A procedure for the monitoring an urban heat island (UHI) was developed and tested over a selected location in the Midwestern United States. Nine counties in central Indiana were selected and their UHI patterns were modeled. Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) images taken in 2005 were used for the research. The images were sorted based on cloud cover over the study area. The resulting 94 day and night images were used for the modeling. The technique of process convolution was then applied to the images in order to characterize the UHIs. This process helped to characterize the LST data into a continuous surface and the UHI data into a series of Gaussian functions. The diurnal temperature profiles and UHI intensity attributes (minimum, maximum and magnitude) of the characterized images were analyzed for variations. Skin temperatures within any given image varied between 2–15 °C and 2–8 °C for the day and night images, respectively. The magnitude of the UHI varied from 1–5 °C and 1–3 °C over the daytime and nighttime images, respectively. Three dimensional (3-D) models of the day and night images were generated and visually explored for patterns through animation. A strong and clearly evident UHI was identified extending north of Marion County well into Hamilton County. This information coincides with the development and expansion of northern Marion County during the past few years in contrast to the southern part. To further explore these results, an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 2004 land use land cover (LULC) dataset was analyzed with respect to the characterized UHI. The areas with maximum heat signatures were found to have a strong correlation with impervious surfaces. The entire process of information extraction was automated in order to facilitate the mining of UHI patterns at a global scale. This research has proved to be promising approach for the modeling and mining of UHIs from large amount of remote sensing images. Furthermore, this research also aids in 3-D diachronic analysis.  相似文献   

17.
Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land cover and normalized difference vegetation index (NDVI) were discussed. The result of LST showed that the urban LST was evidently higher than the suburban one. The average urban LST was found to 4. 5°C and 9°C higher than the suburban and outer suburban temperature, respectively, which demonstrated the prominent UHI effects in Beijing. Prominent negative correlation between LST and NDVI was found in the urban area, which suggested the low percent vegetation cover in the urban area was the main cause of the urban heat island.  相似文献   

18.
Land surface temperature (LST) is an important aspect in global to regional change studies, for control of climate change and balancing of high temperature. Urbanization is one of the influencing factors increasing land surface and atmospheric temperature, by the emission of greenhouse gases (e.g. CO2, NO and methane). In the present study, LST was derived from Landsat-8 of multitemporal data sets to analyse the spatial structure of the urban thermal environment in relation to the urban surface characteristics and land use–land cover (LULC). LST is influenced by the greenhouse gases i.e. CO2 plays an important role in increasing the earth’s surface temperature. In order to provide the evidence of influence of CO2 on LST, the relationship between LST, air temperature and CO2 was analysed. Landsat-8 satellite has two thermal bands, 10 and 11. These bands were used to accurately to calculate the temperature over the study area. Results showed that the strength of correlation between ground monitoring data and satellite data was high. Based on correlation values of each month April (R2 = 0.994), May (R2 = 0.297) and June (R2 = 0.934), observed results show that band 10 was significantly correlating with air temperature. Relationship between LST and CO2 levels were obtained from linear regression analysis. band 11 was correlating significantly with CO2 values in each of the months April (R2 = 0.217), May (R2 = 0.914) and June, (R2 = 0.934), because band 11 is closer to the 15-micron band of CO2. From the results, it was observed that band 10 can be used for calculating air temperature and band 11 can be used for estimation of greenhouse gases.  相似文献   

19.
In the tropics, unmonitored land use/cover types cause significant effects on the narrowing and widening of river channels which affects the integrity of water resources. River channel planform extent was characterized using Landsat images, while water and bedload samples were collected and analysed for a period of one year. The results revealed that in 1986, the channel planform covered 3.7 sq km in length than in 2013 where it increased to 4.2 sq km. Wetland (537.1mgl?1) and bushland (186.3mgl?1) cover types had the highest concentration of suspended sediments. Fine sand (0.25 mm), silty sand (1 mm) and silty clay (0.125 mm) bedload particle types dominated the riverbed along the channel from the sampled land use/cover types. The high concentration of sediments, bedload materials, bank instability, and streamflow were significant contributors to the narrowing and widening of the channel (p < 0.05). Agricultural land use was the major contributor of channel aggradation (0.8 m) and degradation (0.25 m) compared to tree plantations, bushlands, forest and wetland cover types.  相似文献   

20.
Abstract

Extracting built-up areas from remote sensing data like Landsat 8 satellite is a challenge. We have investigated it by proposing a new index referred as built-up land features extraction index (BLFEI). The BLFEI index takes advantage of its simplicity and good separability between the four major component of urban system, namely built-up, barren, vegetation and water. The histogram overlap method and the spectral discrimination index (SDI) are used to study separability. BLFEI index uses the two bands of infrared shortwaves, the red and green bands of the visible spectrum. OLI imagery of Algiers, Algeria, was used to extract built-up areas through BLFEI and some new previously developed built-up indices used for comparison. The water areas are masked out leading to Otsu’s thresholding algorithm to automatically find the optimal value for extracting built-up land from waterless regions. BLFEI, the new index improved the separability by 25% and the accuracy by 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号