首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Variscan to Alpine magmatic activity on the North Tethys active Eurasian margin in the Caucasus region is revealed by 40Ar/39Ar ages from rocks sampled in the Georgian Crystalline basement and exotic blocs in the Armenian foreland basin. These ages provide insights into the long duration of magmatic activity and related metamorphic history of the margin, with: (1) a phase of transpression with little crustal thickening during the Variscan cycle, evidenced by HT-LP metamorphism at 329–337 Ma; (2) a phase of intense bimodal magmatism at the end of the Variscan cycle, between 303 and 269 Ma, which is interpreted as an ongoing active margin during this period; (3) further evolution of the active margin evidenced by migmatites formed at ca. 183 Ma in a transpressive setting; (4) paroxysmal arc plutonic activity during the Jurassic (although the active magmatic arc was located farther south than the studied crystalline basements) with metamorphic rocks of the Eurasian basement sampled in the Armenian foreland basin dated at 166 Ma; (5) rapid cooling suggested by similar within-error ages of amphibole and muscovite sampled from the same exotic block in the Armenian fore-arc basin, ascribed to rapid exhumation related to extensional tectonics in the arc; and finally (6) cessation of ‘Andean’-type magmatic arc history in the Upper Cretaceous. Remnants of magmatic activity in the Early Cretaceous are found in the Georgian crystalline basement at c. 114 Ma, which is ascribed to flat slab subduction of relatively hot oceanic crust. This event corresponds to the emplacement of an oceanic seamount above the N Armenian ophiolite at 117 Ma. The activity of a hot spot between the active Eurasian margin and the South Armenian Block is thought to have heated and thickened the Neo-Tethys oceanic crust. Finally, the South Eurasian margin was uplifted and transported over this hot oceanic crust, resulting in the cessation of subduction and the erosion of the southern edge of the margin in Upper Cretaceous times. Emplacement of Eocene volcanics stitches all main collisional structures.  相似文献   

2.
Regional‐scale 40Ar–39Ar data presented in this paper reveal significant across‐strike and along‐strike age differences in the Committee Bay belt (CBb), Rae Province, Nunavut, Canada, that complement variations in observed monazite ages. 40Ar–39Ar hornblende ages are c. 1795, 1775, and 1750 Ma in the western, eastern and central parts of the Prince Albert Group (PAG) domain respectively. The migmatite domain and Walker Lake intrusive complex are characterized by c. 1750–1730 40Ar–39Ar hornblende ages without significant along‐strike variation. The 40Ar–39Ar data provide important constraints on the cooling history and on thermal modelling that elucidates the controls on diachroneity and metamorphic patterns within the belt. In the western CBb, prograde monazite growth occurred 26 ± 10 Myr earlier in the migmatite domain (1864 ± 9 Ma; peak P–T = 5 kbar?700 °C) than in the PAG domain (1838 ± 5 Ma; peak P–T = 5 kbar?580 °C). Calculations indicate that this earlier monazite growth results from tectonic thickening of higher heat productivity Archean lithologies in the migmatite domain, which undergoes more rapid prograde heating than the less radiogenetic and lower grade rocks of the PAG domain. Granite generation via biotite dehydration melting at 800 °C and 20 km depth is predicted to occur c. 1835 Ma, in agreement with geochronological constraints. The tectonic burial of crustal domains with contrasting radiogenic properties also explains the general congruence of lower to upper amphibolite facies metamorphic zones generated during the two main orogenic cycles (i.e. M2–D1 and M3–D2). The modelled timing of prograde monazite growth in the migmatite domain suggests that D2 tectonic thickening began at 1872 ± 9 Ma, some 8 ± 3 Myr before monzazite growth, coeval with the inferred time of collision of the Meta Incognita terrane with the southern Rae Province. Along‐strike diachroneity, reflected in 25 Myr younger monazite and 40Ar–39Ar hornblende ages in the eastern relative to the western PAG domain, cannot be accounted for by heat productivity contrasts along the belt. Instead the younger deformation and metamorphism in the eastern CBb was driven by its proximity to the eastern promontory of the Superior Province which collided with the Rae Province at c. 1820 Ma. The 40Ar–39Ar data presented here support the interpretation that the youngest monazite in the CBb crystallized at c. 1790 Ma in the central CBb when this part of the belt was downfolded into a gentle synformal structure while the western part of the belt cooled through 40Ar–39Ar hornblende closure. The results of this study illustrate the important influence of contrasting rock properties on the thermal evolution of orogenic belts and on the temporal record of this evolution.  相似文献   

3.
采自广东南澳韧性剪切带和莲花山韧性剪切带的6个单矿物的40Ar/39Ar年龄谱数据可分为3组:151~162Ma、117.5~129.7Ma、66~97Ma。第1组年龄代表较深层次逆冲、褶皱和动热变质的时代,该期间沿莲花山断裂带开始出现火山活动;第2组年龄(2/3样品40Ar/39Ar坪年龄值集中于这一组范围内),代表强烈韧性剪切、左行平移兼逆断层活动的时代,即韧性剪切带的形成时代,此期在南澳断裂带还发生了混合岩化和花岗岩化作用;第3组年龄代表后期热扰动,即韧脆性转化、右行平移正断层活动和地壳伸展的时代。  相似文献   

4.
Controversy over the age of peak metamorphism and therefore the tectonic evolution of the Arabian margin relates to the polydeformed and polymetamorphosed nature of glaucophane-bearing eclogites from the Saih Hatat window beneath the allochthonous Samail ophiolite in NE Oman. These eclogites contain relicts of earlier fabrics, structures and metamorphic assemblages and provide a record of change from subduction to exhumation. The eclogites are part of a mafic layer that was disrupted into boudins up to 0.5 km in length within a lower plate shear zone (As Sifah shear zone). The megaboudins not only preserve the relicts of the highest grade of metamorphism but also an early ENE-trending lineation and sheathlike isoclines enveloped by the flat-lying schistosity. The boudin-bearing layer is isoclinally folded with calc-schist, mafic schist and quartz–mica schist, where the regional folds have axes parallel to the NE-trending stretching lineation (a-type folds). Textural evidence suggests multiple growth events for garnet and clinopyroxene, requiring polymetamorphism of the mafic layers that formed the eclogite megaboudins. The surrounding calc-schist and quartz–mica schist are both intensely deformed with transposition foliation containing an NE-trending lineation in phengite and asymmetric shear indicators such as C′-type shear bands and asymmetric pressure shadows around garnets, that give top-to-the-NE sense of shear. Although consistent ENE-trending lineations in all the boudins suggest that they have largely acted as passive, nonrotating rigid bodies, the presence of NE-vergent asymmetric mesofolds, extensive dynamic recrystallisation, multiple generations of phengites and a range of 40Ar–39Ar apparent ages within the megaboudins suggest, however, that they have not acted entirely passively during the later deformation. Phengites isolated from the high-P/low-T fabrics show groupings in 40Ar–39Ar apparent ages interpreted as distinct metamorphic/cooling intervals at 140–135, 120–98 and 92–80 Ma. Microstructural relations suggest that age groupings younger than 100 Ma reflect phengite growth during exhumation with the top-to-the-NE shearing. The older ages (120–110 Ma) from fabrics that give top-to-the-S shear sense may reflect growth during the subduction phase. The combination of groupings of apparent argon ages older than the crystallisation age of the Samail Ophiolite, the suggestion of different geothermal gradients, and superposed metamorphism suggest that the eclogites and garnet blueschists formed as a result of underthrusting along a break that was not directly related to the metamorphic sole of the ophiolite. The glaucophane–eclogites are interpreted as having formed at different times under varying pressure–temperature conditions during underthrusting with variations in the rate of underthrusting, allowing thermal equilibration and/or rapid cooling at different crustal levels.  相似文献   

5.
abstract

Although numerous ages have been obtained for the Chinese southwestern Tianshan high pressure/ultrahigh pressure-low temperature (HP/UHP-LT) metamorphic belt in the past two decades, its exhumation history is still controversial. The poor age constraint was related to the appealing low metamorphic temperatures and excess Ar commonly present under HP/UHP conditions. This study aims to provide new age constraints on the orogen’s exhumation by obtaining 40Ar/39Ar mica ages using the conventional step-heating technique, with emphasis on the avoidance of excess Ar contamination. From a cross section along the Kekesu Valley, four samples, three from the HP-LT metamorphic belt (TK050, TK051, and TK081) and one from the southern margin of the low pressure metamorphic belt (TK097), were selected for 40Ar/39Ar dating. Phengites from garnet glaucophane schist TK050 and the surrounding rock garnet phengite schist TK051 yield comparable plateau ages of 321.4 ± 1.6 and 318.6 ± 1.6 Ma, respectively, while epidote mica schist TK081 gives a younger plateau age of 293.3 ± 1.5 Ma. Considering the chemical compositions of phengites, mineral assemblages, and microstructures in the thin slices, we suppose that the former represents the time the HP rocks retrograded from the peak stage (eclogite facies) to the (epidote)-blueschist facies, whereas the latter reflects greenschist facies overprinting. Biotite and muscovite from two-mica quartzite TK097 give similar plateau ages of 253.0 ± 1.3 and 247.1 ± 1.2 Ma, interpreted to date movement on the post collisional transcrustal South Nalati ductile shear zone. By combining our new ages with published data, a two-stage exhumation model is suggested for the Chinese southwestern Tianshan HP/UHP-LT metamorphic belt: initial fast exhumation to a depth of about 30–35 km by ~320 Ma was followed by relatively slow (~1 mm year–1) uplift to ~10 km by ~293 Ma.  相似文献   

6.
The Fire Clay tonstein [Pennsylvanian (Upper Carboniferous), Westphalian Series, Duckmantian Stage]–a kaolinized, volcanic-ash deposit occurring in Kentucky, West Virginia, Tennessee, and Virginia–is the most widespread bed in the Middle Pennsylvanian of the central Appalachian basin, USA. A concordant single-crystal U–Pb zircon datum for this tonstein gives a 206Pb/238U age of 314.6 ± 0.9 Ma (2σ). This age is in approximate agreement with a mean sanidine plateau age of 311.5 ± 1.3 Ma (1σ, n = 11) for the Fire Clay tonstein. The difference between the two ages may be due to bias between the 40K and 238U decay constants and other factors. The age of the Fire Clay tonstein has important implications for Duckmantian Stage (Westphalian Series) sedimentation rates, correlations with the Westphalian Series of Europe, Middle Pennsylvanian volcanic events, and the late Paleozoic time scale.  相似文献   

7.
The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age remains much disputed,which prevents the identification of the relationship between the mineralization and the associated magmatism.In this paper,we quantitatively present the feasibility of making ore mineral ~(40)Ar/~(39)Ar dating and report reliable ~(40)Ar/~(39)Ar ages of lamprophyre groundmass,K-feldspar and sphalerite from the Zhenzigou deposit.Direct and indirect methods are applied to constrain the timing of mineralization,which plays a vital role in discussing the contribution of multistage magmatism to ore formation.The low-potassium sphalerite yielded an inverse isochron age of 232.8±41.5 Ma,which features a relatively large uncertainty.Two lamprophyre groundmasses got reliable inverse isochron ages of 193.2±1.3 Ma and 152.3±1.5 Ma,respectively.K-feldspar yielded a precise inverse isochron age of 134.9±0.9 Ma.These four ages indicate that the mineralization is closely associated with Mesozoic magmatism.Consequently,regarding the cooling age of the earliest Mesozoic Shuangdinggou intrusion(224.2±1.2 Ma)as the initial time of mineralization,we can further constrain the age of the sphalerite to 224–191 Ma.These new and existing geochronological data,combined with the interaction cutting or symbiotic relationship between the lamprophyre veins and ore veins,suggest that the Pb-Zn-Au-Ag mineralization in the Qingchengzi orefield mainly occurred during three periods:the late Triassic(ca.224–193 Ma),the late Jurassic(ca.167–152 Ma)and the early Cretaceous(ca.138–134 Ma).This polymetallic deposits are shown to have been formed during multiple events coinciding with periods of the Mesozoic magmatic activity.In contrast,the Proterozoic magmatism and submarine exhalative and hydrothermal sedimentation in the Liaolaomo paleorift served mainly to transport and concentrate the ore-forming substances at the Liaohe Group with no associated Pb-Zn-Au-Ag mineralization.  相似文献   

8.
L.M. Chambers  M.S. Pringle  R.R. Parrish   《Lithos》2005,79(3-4):367-384
The relative chronology of magmatic and tectonic events is key to an understanding of the influence of the Iceland plume on the North Atlantic. In particular, the location and duration of magmatism is of fundamental importance. Initial widespread flood basalt formation occurred in Baffin Island, Greenland, and Britain before complete plate break up at 56 Ma after which time magmatism became concentrated in the active rift zone.

Historically the British Tertiary Igneous Province (BTIP) has been instrumental in advancing many concepts of igneous petrology. However, the absolute age and duration of the province remains unresolved. Here, we present new internally consistent 40Ar/39Ar ages that help to constrain the volcanic activity in the Small Isles centre to within 2 my. This short duration has implications for the onset of magmatism in the larger North Atlantic province, the rapid unroofing of the Rum volcano, and more significantly, some of the evidence used to propose pulsing of the Iceland plume.  相似文献   


9.
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma.

Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism.  相似文献   


10.
11.
A new Rb−Sr age of 779±10 Ma has been obtained for a suite of andesite-daciterhyolite from the Malani Igneous Province of southwestern Rajasthan, dated earlier at 745±10 Ma by Crawford and Compston (1970). The associated basalts may be slightly younger than the felsic volcanics and have a mantle source. The felsic volcanics on the other hand were most probably derived by fractional crystallization of a crustal magma (Srivastavaet al 1989a, b).40Ar−39Ar systematics of three samples viz., a basalt, a dacite and a rhyolite show disturbed age spectra indicating a thermal event around 500–550 Ma ago. This secondary thermal event is quite wide-spread and possibly related to the Pan-African thermo-tectonic episode observed in the Himalayas and south India.  相似文献   

12.
The multiple high‐pressure (HP), low‐temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction‐ and continental accretion‐related evolution of the eastern limb of the long‐lived Aegean subduction system. Recent reports of the HP–LT index mineral Fe‐Mg‐carpholite in three metasedimentary units of the Gondwana‐derived Anatolide–Tauride continental block (namely the Afyon Zone, the Ören Unit and the southern Menderes Massif) suggest a more complicated scenario than the single‐continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica 40Ar–39Ar geochronology), and where possible are combined with PT estimates (chlorite thermometry, phengite barometry, multi‐equilibrium thermobarometry), on carpholite‐bearing rocks from these three HP–LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite‐bearing assemblages were retrogressed through greenschist‐facies conditions at c. 67–62 Ma. Early retrograde stages in the Ören Unit are dated to 63–59 Ma. In the Kurudere–Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post‐collisional cooling to c. 26 Ma. These new results support that the Ören Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere–Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP–LT metamorphic belts thus formed: the northernmost Tav?anl? Zone (c. 88–82 Ma), the Ören–Afyon Zone (between 70 and 65 Ma), and the Kurudere–Nebiler Unit (c. 52–45 Ma). The southward younging trend of the HP–LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93–90 and c. 35 Ma. After the accretion of the Menderes–Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian‐type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll‐back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.  相似文献   

13.
杨静  郑德文  陈文  武颖  李洁  张彦 《地质通报》2015,34(203):579-586
由于40Ar/39Ar定年方法在技术上极具复杂性,目前,国内在开展干旱区研究中很少使用风化矿物定年研究手段。重点介绍黄钾铁矾矿物40Ar/39Ar定年法的基本流程,并针对该方法的技术问题初步探讨了解决办法。研究表明,科学的野外采集样品、仔细的挑选矿物并综合采用多种测试手段(X衍射、扫描电镜、电子探针)进行监测可以获得纯净的风化矿物,并结合精细的40Ar/39Ar阶段加热技术,能够获得比较可靠的风化矿物40Ar/39Ar年龄。  相似文献   

14.
We propose a deformation dating method that combines XRD quantification and Ar chronology of submicroscopic illite to determine the absolute ages of folds that contain clay-bearing layers. Two folds in the frontal segment of the Mexican Fold-Thrust Belt (MFTB), which was deformed from Late Cretaceous to Eocene, are used to illustrate the method and its future potential.Variations in mineral composition, illite-polytype, crystallite-size (CS) and Ar total gas ages were analyzed in the limbs and hinge of two mesoscopic folds. This analysis examines potential effects of strain variation on illitization and the Ar isotopic system along folded layers, versus possible regional thermal overprints. The Ar total-gas ages for 9 samples in Fold 1 vary between 48.4 and 43.9 Ma. The % of 2M1 (detrital) illite vs. Ar total-gas ages tightly constrains the age of folding at 43.5 ± 0.3 Ma. Nine ages from three samples in Fold 2 range from 76.2 to 62.7 Ma, which results in a folding age of 63.9 ± 2.2 Ma. Both ages are in excellent agreement with more broadly constrained stratigraphic timing. The method offers a novel approach to radiometric dating of clay-bearing folds formed at very low-grade metamorphic conditions, and has the potential to constrain dates and rates of regional and local deformation along and across foreland orogenic belts.  相似文献   

15.
A kinematic and geochronological study has been carried out on the Triassic high-strain shear zones in Hainan Island, the southern South China Block. There are WNW- and NE-trending high-strain shear zones with greenschist- to amphibolite-facies metamorphism in this island. Kinematic indicators suggest a dextral top-to-the-NNE thrust shearing for the WNW-trending high-strain shear zones and a sinistral top-to-the-SE thrust shearing for the NE-trending shear zones. The quartz c-axis orientations of mylonitic rocks exhibit the domination of basal slip and some activation of a rhombohedra gliding system. The timing of shearing for these shear zones has been constrained by the 40Ar/39Ar dating analyses of synkinematic minerals. Middle Triassic (242–250 Ma) and late Triassic–early Jurassic (190–230 Ma) have been identified for the WNW- and NE-trending shear zones, respectively. A synthesis of these kinematic and thermogeochronological data points to a two-stage tectonic model for Hainan Island, that is, top-to-the-NNE oblique thrusting at 240–250 Ma followed by top-to-the-SE oblique thrusting at 190–230 Ma. In combination with the available data from the southern South China and Indochina Blocks, it is inferred that South Hainan and North Hainan have affinity to the Indochina and South China Blocks, respectively. The tectonic boundary between South Hainan and North Hainan lies roughly along the WNW-trending Changjiang–Qionghai tectonic zone probably linking to the Song Ma and Ailaoshan zones. The middle Triassic structural pattern of Hainan Island is spatially and temporally compatible with those of the South China and Indochina Blocks, and thus might be a derivation from the amalgamation of the Indochina with South China Blocks in response to the closure of the Paleotethys Ocean and subsequent subduction/collision.  相似文献   

16.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   


17.
Geotectonically the Fengyang and Zhangbaling regions belong to the North China craton and the Dabie-Sulu oragene, respectively. Neo-Archean gneiss and amphibolite and metamor-phosed sea-facies sodic volcanic rocks axe the main outcrops in the two regions, respectively. The Zhangbaling terrane strike-skipped along the Tancheng-Lujiang fault zone in Mesozoic and Cenozo-ic eras and got close to the Fengyang terrane. Mesozoic Yanshanian intrusions occur broadly in thetwo regions. Gold-beating quartz veins occur in the metamorphic rocks in the Fengyang region and in the granodiorite and metamorphosed sea-facies sodic volcanic rocks in the Zhanghaling region.Generally, the formation of the auriferous quartz veins involved three stages. At the first stage,gold-poor sulfide quartz veins were formed; at the second stage gold-rich quartz sulfide veins wereformed; and at the third stage gold-poor barite and/or carbonate veins were formed. The 40^Ar/29^Ar step-heating plateau ages of the first-stage and the second-stage quartz aggregates from the Zhuding, Maoshan and Shangeheng gold deposits range between 116.1 0.6 Ma and 118.3 0.5 Ma and are pretty close to their least apparent ages and isoehronal ages, respectively. All plat-eau, least apparent and isoehronal ages range between 113.4 0.4 Ma and 118.3 0.5 Ma,which are considered as the formation age range of the quartz. It is reasonable and reliable to takethe 40^Ar/39^Ar age range of the quartz as the formation age range of gold-bearing quartz veins onthe basis of spatial relationship between gold-bearing quartz veins and their country rocks. Thegold deposits in the two regions were formed in Aptian, Cretaceous, when the Tancheng-Lujiangfault zone moved as a normal fault with slightly right-lateral strike-skip, was extensional and expe-rienced very strong magnmtic process. It is shown that the magnmtic hydrothermal fluid is a veryimportant part of the gold ore-forming hydrothermal fluid in the Fengyang and Zhanghaling re-gions. The formation of the gold ore deposits in the Fengyang and Zhanghaling regions had genetic relations with the extensional movement of the Tancheng-Lujiang fault zone and magmatic activities and took place under the extensional dynamic condition in Late Cretaceous. Therefore, the exten-sional movement of the Tancheng-Lujiang fault zone presented the energy and space for magmatic and gold ore-forming processes.  相似文献   

18.
陈鸣 《地学前缘》2005,12(1):23-27
橄榄石高压多形林伍德石被认为是地幔过渡带的主要矿物。天然产状林伍德石主要在发生强烈冲击变质的球粒陨石冲击脉体中出现。目前还没有在地球岩石中发现林伍德石的报告。陨石冲击脉体的温度压力历史和矿物组合特征研究表明,林伍德石形成后,高压下淬火是使林伍德石不发生退变作用的重要条件。陨石中有利于林伍德石保存的淬火时间仅为数秒到十多秒。在地球上任何地质事件中,均难以实现在如此短的时问内使位于地幔过渡带的林伍德石被带往地球表层。寻找地球产状的林伍德石,关键是要在岩石和矿物中存在有利于林伍德石保存的条件,特别是当这些岩石和矿物仍处于高温的环境时。  相似文献   

19.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   

20.
The Guposhan–Huashan district is an important W–Sn–Sb–Zn–(Cu) metallogenic area in South China. It is located in the middle‐west segment of the Nanling Range. Granitoids in the Guposhan–Huashan district possess certain properties of A‐type or I‐type granites. The W–Sn–Sb–Zn mineralization in the district is closely associated with magma emplacement. Two igneous biotite and seven hydrothermal muscovite samples from skarn, veins and greisenization ores were analyzed by Ar–Ar methods. Two igneous biotite samples from fine‐grained quartz monzodiorite and fine‐grained biotite granite show plateau ages of 168.7 ± 1.9 Ma and 165.0 ± 1.1 Ma, respectively. Seven hydrothermal muscovite samples from ores yield plateau ages as two groups: 165 Ma to 160 Ma and 104 Ma to 100 Ma. These data suggest that the emplacement of fine‐grained granitoids in this district is coeval with the main phase magma emplacement, different from previous studies. The W–Sn–Sb–Zn mineralization took place in two stages, i.e. the Middle–Late Jurassic and early Cretaceous. W–Sn mineralization in the Guposhan–Huashan district is closely related to the magmatism, which was strongly influenced by underplating of asthenospheric mantle along trans‐lithospheric deep faults and related fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号