首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper reports Rb–Sr and Sm–Nd isotope data on the gabbro–diorite–tonalite rock association of the Reft massif (eastern margin of the Middle Urals) and Lu–Hf isotope data on zircon populations from these rocks. In terms of Nd and Hf isotope composition, the rocks of the studied association are subdivided into two distinctly different groups. The first group consists of gabbros and diorites, as well as plagioclase granites from thin dikes and veins cutting across the gabbros. In terms of 43Nd/144Nd i = 0.512518–0.512573 (εNd(T) = +8.6...+9.7) and 176Hf/177Hf i = 0.282961–0.283019 (εHf(T) = +15.9...+17.9), these rocks are practically identical to depleted mantle. Their Nd and Hf model ages show wide variations, but in general are close to their crystallization time. The second group is represented by tonalites and quartz diorites, which compose a large body occupying over half of the massif area. These rocks are characterized by the lower values of 143Nd/144Nd i = 0.512265–0.512388 (εNd(T) = +3.7...+6.0) and 176Hf/177Hf i = 0.282826–0.282870 (εHf(T) = +11.1...+12.7). The TDM values of the second group are much (two–three times) higher than their geological age (crystallization time), which indicates sufficiently long crustal residence time of their source. The initial 87Sr/86Sr in the rocks of both the groups varies from 0.70348 to 0.70495. This is likely explained by the different saturation of melts with fluid enriched in radiogenic Sr. The source of this fluid could be seawater that was buried in a subduction zone with oceanic sediments and released during slab dehydration. Obtained data make it possible to conclude that the formation of the studied gabbro–diorite–tonalite association is a result of spatially and temporally close magma formation processes in the crust and mantle, with insignificant contribution of differentiation of mantle basite magma.  相似文献   

2.
Doklady Earth Sciences - The results of local U–Th–Pb-SIMS-SHRIMP-II analysis of the collection of pyrochlores from Nb rare-metal deposits of the Ilmeny–Vishnevogorsky alkaline...  相似文献   

3.
Kovalev  S. G.  Maslov  A. V.  Kovalev  S. S.  Vysotskii  S. I. 《Doklady Earth Sciences》2019,488(1):1018-1021
Doklady Earth Sciences - This paper reports new data on the age of picrites in the Lysogorsk complex, which are common in the Taratash metamorphic complex (Bashkir Meganticlinorium, the western...  相似文献   

4.
The U–Pb age of the boundary between the Lower and Middle Carboniferous has been determined on zircons separated from a volcanic tuff layer within a limestone unit near the roof of the Serpukhovian Stage in an occurrence at the right bank of the Iset’ River. The zircons have been dated using SIMS SHRIMP-II at 320 ± 3 Ma. The result agrees well with the accepted age of the boundary between the Serpukhovian and Bashkirian ages (323.2 ± 0.4 Ma, [1]).  相似文献   

5.
Doklady Earth Sciences - For timing of endogenous events in the Kharbei metamorphic complex (Polar Urals), U–Pb isotopic dating of zircons from garnet–clinozoisite–twomica...  相似文献   

6.
Doklady Earth Sciences - Sm–Nd isotope–geochemical studies of the Cenozoic sand deposits of the Muya Depression (eastern flank of the Baikal rift zone), which is located on the border...  相似文献   

7.
This paper reports chemical, geochronological, and Hf–Nd–Sr isotopic-geochemical data on granite, leucogabbro, and microgabbro porphyrite vein bodies in the gabbro of the Volkovsky massif. It was proved that the vein granite and leucogabbro are genetically related to the leucogabbro–anorthosite–plagiogranite (anorthosite–granite) series of the Urals Platinum Belt. The granite was dated by U-Pb laser ablation inductively coupled plasma mass spectrometric method at 409.0 ± 2.3 Ma. The rock has 87Sr/86Sr(409 Ма) = 0.70358, high εNd(409 Ма) = 6.4–6.5, and εHf(409 Ма) ≥ 10.8. Similar values of 87Sr/86Sr(409 Ма) = 0.70370 and εNd(409 Ма) = 5.9 were obtained for the vein leucogabbro. The isotopic-geochemical data are consistent with existing concept of the formation of the leucogabbro–anorthosite–plagiogranite (anorthosite–granite) series through partial melting of the olivine gabbro. The measured 143Nd/144Nd = 0.512939 value obtained for the microgabbro porphyrite reflects their more radiogenic composition and likely a mantle source. The granite, associated leucogabbro, and microgabbro porphyrite were emplaced at the final magmatic stage in the massif evolution. This event marks the upper age boundary of the Au–Pd mineralization related to the gabbroic rocks. The vein rocks lack any signs of the mineralization. However, it is highly probable that they were sources of energy and fluid for reworking of the earlier olivine gabbro and redeposition of ore components in this rock.  相似文献   

8.
Features of the chemical composition of platinum-group mineral assemblages from chromitites of the zonal Svetly Bor, Veresovy Bor, and Nizhny Tagil clinopyroxenite–dunite massifs of the Middle Urals are compared for the first time.  相似文献   

9.
The demarcation of the Lower–Middle Triassic boundary is a disputed problem in global stratigraphic research. Lower–Middle Triassic strata of different types, from platform to basin facies, are well developed in Southwest China. This is favorable for the study of the Olenekian–Anisian boundary and establishing a stratotype for the Qingyan Stage. Based on research at the Ganheqiao section in Wangmo county and the Qingyan section in Guiyang city, Guizhou province, six conodont zones have been recognized, which can be correlated with those in other regions, in ascending order as follows: 1, Neospathodus cristagalli Interval-Zone; 2, Neospathodus pakistanensis Interval-Zone; 3, Neospathodus waageni Interval-Zone; 4, Neospathodus homeri-N. triangularis Assemblage-Zone; 5, Chiosella timorensis Interval-Zone; and 6, Neogongdolella regalis Range-Zone. An evolutionary series of the Early–Middle Triassic conodont genera Neospathodus-Chiosella-Neogongdolella discovered in the Ganheqiao and Qingyan sections has an intermediate type named Neospathodus qingyanensis that appears between Neospathodus homeri and Chiosella timorensis in the upper part of the Neospathodus homeri-N. triangularis Zone, showing an excellent evolutionary relationship of conodonts near the Lower–Middle Triassic boundary. The Lower–Middle Triassic boundary is located at 1.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Qingyan section, whereas this boundary is located 0.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Ganheqiao section. There exists one nearly 6-m thick vitric tuff bed at the bottom of the Xinyuan Formation in the Ganheqiao section, which is usually regarded as a lithologic symbol of the Lower–Middle Triassic boundary in South China. Based on the analysis of high-precision and high-sensitivity Secondary Ion Mass Spectrum data, the zircon age of this tuff has a weighted mean 206Pb/238U age of 239.0±2.9Ma (2s), which is a directly measured zircon U-Pb age of the Lower–Middle Triassic boundary. The Ganheqiao section in Wangmo county can therefore provide an excellent section through the Lower–Middle Triassic because it is continuous, the evolution of the conodonts is distinctive and the regionally stable distributed vitric tuff near the Lower–Middle Triassic boundary can be regarded as a regional key isochronal layer. This section can be regarded not only as a standard section for the establishment of the Qingyan Stage in China, but also as a reference section for the GSSP of the Lower–Middle Triassic boundary.  相似文献   

10.
The data on the geochemistry and geochronology of zircons from wehrlites and clinopyroxenites of the dunite–wehrlite–clinopyroxenite banded complex that lies at the base of the crustal section of the ophiolite complex of the Nurali massif are presented. The obtained U–Pb age of the banded complex of 450 ± 4 Ma differs markedly from the previous age data. According to REE distribution patterns zircons from ultramafic rocks are attributed to the magmatic type and they indicate the age and supposed genetic similarity of the above rocks with lherzolites and dunites from the mantle section of the Nurali massif.  相似文献   

11.
U–Pb LA ICP–MS dating of zircon from rocks of the Nekrasov gabbro–granitoid complex within the eastern margin of the Middle Urals was performed. The average U–Pb age calculated from three concordant measurements (326 ± 8 Ma) shows that their intrusion occurred at the Serpukhov Stage of the Early Carboniferous. According to the ideas on periodization of magmatic processes within the eastern sector of the Middle Urals, the formation of this complex corresponds to the final episodes of the continental marginal (supersubduction) magmatism.  相似文献   

12.
Doklady Earth Sciences - This study presents the first data set of sulfur isotope compositions of primary Ru–Os sulfides, represented by laurite (RuS2) – erlichmanite (OsS2) series,...  相似文献   

13.
Doklady Earth Sciences - The first U–Pb (LA–ICP–MS) isotope dating of detrital zircons from quartzites of two strata of the Maksyutov metamorphic complex (Southern Urals) was...  相似文献   

14.
Doklady Earth Sciences - Metagabbroid garnet amphibolite formed after high-pressure granulite with an estimated P–T peak of 12–16 kbar at 700–790°C occurs at the sole of the...  相似文献   

15.
The granitic magmatism occurred at the precollisional stage of the continentalization of the mafic basement of the Shchuch’ya island arc system. The first U–Pb (SIMS, SHRIMP II) data on zircons indicate three pulses of transformation of the oceanic crust into a continental crust: in the Silurian and Middle and Late Devonian. The age of the Yanganape granite is 429 ± 4 Ma, which corresponds to the Late Wenlockian; that of the Yurmeneku massif is 385 ± 2 Ma (Givetian); and that of the Canyon Massif is 368 ± 3 Ma (Famennian). The zircons from the Yanganape granite yielded an age of 335 ± 4 Ma, which corresponds to the Early Carboniferous (Visean). Similar ages were noted in uranium-rich zircons from the Canyon Massif granite. They correlate with the collision time of the island arc with the eastern edge of the Eastern European paleocontinent, and it is possible that this event caused disturbance of the U–Pb system of zircons in the islandarc granites of the Shchuch’ya zone.  相似文献   

16.
Detrital zircons (DZs) from arkose sandstones of the Upper Riphean Zilmerdak Formation (Southern Urals) yielded ages in the range of 3039–964 Ma. Grains with Late Karelian and Early and Middle Riphean ages compose 35, 34, and 26% of the total number of the analyzed zircons, respectively. This is similar to the age spectra of the Vendian sandstones (Asha Group), but it differs significantly from the age distribution typical of the Riphean stratotype sandstones.  相似文献   

17.
New results of U–Pb LA ICP–MS dating of zircon from andesite samples cropping out on the western wall of the Saf’yanovka quarry (57°22′58.88″ N, 61°31′50.85″ E) in the synonymous Cu–Zn-bearing massive sulfide deposit of the Urals type are considered. The position of data points of the U–Pb systematics in the 207Pb/235U–206Pb/238U plot determines a cluster practically corresponding to the concordant U–Pb age: 422.8 ± 2.0 Ma. This date indicates for the first time the presence of Pridolian volcanogenic rocks in the East Urals megazone of the Middle Urals.  相似文献   

18.
Doklady Earth Sciences - U–Th–Pb (SHRIMP II) isotopic dating of accessory zircons from Vendian (Ediacaran) ash tuffs of the Basa formation section (Asha Group, Southern Ural) was...  相似文献   

19.
Pystin  A. M.  Pystina  Yu. I.  Khubanov  V. B. 《Doklady Earth Sciences》2019,488(1):1031-1034
Doklady Earth Sciences - Based on the first results of massive U–Pb dating of detrital zircons from the basal deposits of the Upper Precambrian section in the Subpolar Urals, their age is...  相似文献   

20.
According to isotopic analysis of rocks of the Reft gabbro–diorite–tonalite complex (Middle Urals), gabbro and related diorite and dikes and vein-shaped bodies of plagiogranitoids, crosscutting gabbro, are similar to the depleted mantle substance in εNd(T) = 8.6–9.7 and εHf(T) = 15.9–17.9. Their model Hf ages are correlated with the time of crystallization. Here, the tonalites and quartz diorites constituting most of the Reft massif are characterized by lower values: εNd(T) = 3.7–6.0, εHf(T) = 11.1–12.7, and T DM values significantly exceeding the age datings. This is evidence that Neoproterozoic crustal rocks were a source of parental magma for these rocks. The primary 87Sr/86Sr ratio in rocks of both groups is highly variable (0.70348–0.70495). The data obtained allow us to reach the conclusion that the Reft gabbro–diorite–tonalite complex was formed as a result of nearly synchronous processes occurring in the crust and the mantle within a limited area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号