首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
石英双晶的复杂性远远超出了人们的想象。首先介绍了石英的11种双晶律,然后介绍测试鉴定石英双晶律的各种方法及存在的局限性,综述了近年来石英双晶与温压条件关系、晶格结构匹配理论方面的研究成果,最后结合我们近期用EBSD对岩石中石英双晶的观察、测试结果,指出存在的问题及今后的研究方向。  相似文献   

2.
Dauphiné (electrical) twins have been introduced into quartz crystals by means of suitably oriented mechanical stresses. Stress-induced twinning was observed optically by means of the photoelastic effect. Accompanying acoustic emission, first detected by ear, was quantitatively measured with a piezoelectric transducer and a suitable filtering and amplification system. Synchronized sound cinematography has been used to correlate the acoustic emission with visual observation of twinning. The resultant motion picture has been used to determine the stress levels required for twinning in Brazilian quartz and to set limits on the twin wall velocity. The possible relevance to rock noise and earthquake precursory phenomena is discussed.  相似文献   

3.
Mechanical twinning along calcite e-planes has been used for paleostress analyses. Since the twinning has a critical resolved shear stress at ∼10 MPa, not only principal stress axes but also differential stress can be determined from the twins. In this article, five-dimensional stress space used in plasticity theory was introduced to describe the yield loci of calcite e-twinning. The constraints to paleostress from twin and untwin data and from calcite grains twinned on 0, 1, 2 and 3 e-planes were quantified by using their information contents, which were defined in the stress space. The orientations of twinned and untwinned e-planes are known to constrain not only stress axes but also differential stress, D, but they loose the resolution of D if the twin lamellae were formed at D greater than 50–100 MPa. On the other hand, it is difficult to observe twin lamellae subparallel to a thin section. The stochastic modeling of this effect showed that 20–25% of twin lamellae can be overlooked. The degradation of the constraints by this sampling bias can be serious especially for the determination of D.  相似文献   

4.
石英结晶学优选与应用   总被引:10,自引:0,他引:10  
石英集合体的结晶学优选可由位错滑移、双晶滑移、定向成核与生长等形成,其中位错滑移是塑性变形岩石中石英结晶学优选产生的最重要的机制。影响变形石英结晶学优选的因素有温度、应变速率、应变、差应力、水、复矿物岩石中各种矿物间的相互作用、初始结晶学方向等。系统总结了石英晶体变形与滑移系,结晶学优选的测量与表达,多种条件下石英的结晶学优选,以及在判断剪切方向、计算运动学涡度、判定变形温度、分析变形历史等方面的应用,并认为应用石英组构作运动学和动力学解析时需与其它微观、宏观现象相结合。  相似文献   

5.
Fine extinction bands (FEBs) (also known as deformation lamellae) visible with polarized light microscopy in quartz consist of a range of nanostructures, inferring different formation processes. Previous transmission electron microscopy studies have shown that most FEB nanostructures in naturally deformed quartz are elongated subgrains formed by recovery of dislocation slip bands. Here we show that three types of FEB nanostructure occur in naturally deformed vein quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium). Prismatic oriented FEBs are defined by bands of dislocation walls. Dauphiné twin boundaries present along the FEB boundaries probably formed after FEB formation. In an example of two sub-rhombohedral oriented FEBs, developed as two sets in one grain, the finer FEB set consists of elongated subgrains, similar to FEBs described in previous transmission electron microscopy studies. The second wider FEB set consists of bands with different dislocation density and fluid-inclusion content. The wider FEB set is interpreted as bands with different plastic strain associated with the primary growth banding of the vein quartz grain. The nanometre-scale fluid inclusions are interpreted to have formed from structurally bounded hydroxyl groups that moreover facilitated formation of the elongate subgrains. Larger fluid inclusions aligned along FEBs are explained by fluid-inclusion redistribution along dislocation cores. The prismatic FEB nanostructure and the relation between FEBs and growth bands have not been recognized before, although related structures have been reported in experimentally deformed quartz.  相似文献   

6.
Chemical etching of dislocations has been studied in natural and synthetic quartz single crystals, in deformed synthetic quartz and in naturally and experimentally deformed quartzites. The ability of different etchants to produce polished or preferentially etched surfaces on quartz is described. Dislocation etching was achieved on all crystal planes examined by using a saturated solution of ammonium bifluoride as the etchant. Appropriate etching times were determined for etching quartzites for grain size, subgrain boundaries, deformation lamellae, dislocations and twins. Growth and polished surfaces of synthetic single crystal quartz were similarly etched and dislocation etch pits, characteristic of various orientations were found. The use of ammonium bifluoride proved to be expecially advantageous for the basal plane, producing a polished surface with etch pits, suitable for dislocation etch pit counting. “Double” etch pits have been found on Dauphiné twin boundaries on the basal plane and the first order prism, using this etchant. Slip lines and deformation bands were suitably etched on deformed synthetic crystal surfaces for identification of the slip planes. Other acidic etchants have been explored and their application to the study of deformation structures in quartz crystals is discussed.  相似文献   

7.
边千韬  林传勇 《地质科学》1996,31(2):170-175
在可可西里北缘发现的糜棱岩化带,经显微构造研究确定为韧性剪切带。此带发育流劈理及拉伸线理。糜棱岩化花岗岩和糜棱岩化石英脉中的石英发育亚晶粒构造、位错构造和动态重结晶,长石主要发育机械双晶。石英c轴组构属韧性剪切带中的典型形式,石英变形以位错蠕变机制和位错滑移机制共存为特征,石英的动态重结晶作用是由亚晶粒旋转机制形成。长石的变形主要是通过机械双晶实现的。此韧性剪切带形成时的温度约400℃,差异应力约30MPa,应变速率约1.9×10-13s-1.  相似文献   

8.
A synthetic crystal of coesite, SiO2, has been found to contain microtwins. The (100) reflection twin has been made evident on incoherent (010) planes. The twin structure is directly imaged by high resolution electron microscopy at 2,5 Å resolution, allowing an atomic model to be proposed. This twin could be incoherent on large surfaces and the dislocation density is predicted. The X-ray crystallographic data are analyzed critically in view of the presence of such defects in single crystals. The mutual orientation between a silicon matrix and coesite precipitates in Czochralski-silicon annealed specimens is proposed to be non unique as a consequence of the easy twinning of coesite.  相似文献   

9.
Quartz is known to be ferrobielastic; that is, quartz crystals have domain states (Dauphiné twins) which differ in their elastic compliance values and which can be switched by an appropriately oriented stress. Polycrystalline quartz has also been reported (Tullis 1970) to show preferential orientation of these domains following application of large uniaxial stresses. These experiments were designed to study twinning of synthetic quartz “grains” (minimum size 0.07×0.07×0.02 cm) in specially-constructed composites and of grains in three natural quartz aggregates — a quartzite, a novaculite, and a jasper. Backreflection X-ray techniques were used to verify twinning in the composite grains, while special electroding and electrical detection allowed the twinning processes to be examined in “real time.” Small synthetic quartz crystals were found to behave identically to the massive samples previously studied. Electrical pulses due to the reversal of piezoelectric coefficient d 11 in twinned quartz were detected from quartzite and from the man-made composites. Novaculite also gave electrical pulses which were probably from twinning (evidenced by the correlation of expected and observed pulse sizes and shapes), while no pulses from the jaspers indicative of twinning were detected. Grain size distribution differences are considered the main structural reason for the different behaviors.  相似文献   

10.
Strain analysis of a shear zone in a granodiorite   总被引:1,自引:0,他引:1  
A ductile shear zone in a late Precambrian granodiorite, from the Rouergue (southwest part of the French Massif Central) has been studied.A single episode of deformation is responsible for the formation of a foliation and a well-defined lineation which are localized into an elongated zone, a few decimeters wide.The strain features can be attributed to a simple-shear mechanism (Ramsay and Graham, 1970), so that the main parameters of the deformation are defined.At stages of increasing deformation, the quartz isotropic sub-fabric of the undeformed host rock is progressively transformed into an anisotropic fabric composed of a single oblique girdle while the subgrain size progressively decrease and the dislocation density remains constant. It is suggested that the gliding planes of quartz are the basal plane (0001) and a predominant prismatic plane 101̄0 the slip directions may be a for both glide-planes.The results obtained in this investigation provide a basis for a high voltage electron microscope (H.V.E.M.) study which shows that the fabrics development may be related to dislocation processes. The difference of strain rates in the host rock and in the shear zone is calculated from the dislocation microstructures.  相似文献   

11.
A grain of ilmenite enclosed in deformed quartz‐mica‐staurolite schist from Ducktown, Tennessee, shows a variety of optical features produced by natural deformation, recovery and recrystallisation processes. These features are consistent with dislocation processes similar to those observed in metals and other minerals, with the principal deformation modes apparently being slip on (0001) and twinning on (1011). Recrystallisation may have proceeded by sub‐grain rotation. Strain hardening associated with late‐stage deformation twinning has resulted in considerable variation in hardness, with measured Vickers Hardnesses ranging from 362 to 788. This range is substantially greater than those reported to date in standard compilations of ore microscopic data, even though detailed microprobe analysis has shown it to contain no component due to chemical inhomogeneity, and relatively little can be due to structural anisotropy. If other minerals show equally substantial effects of natural work‐hardening and annealing, the diagnostic value of microhardness determinations will be considerably reduced.  相似文献   

12.
Samples of quartz-bearing rocks were heated above the α (trigonal)–β (hexagonal) phase transformation of quartz (625–950°C) to explore changes in preferred orientation patterns. Textures were measured both in situ and ex situ with neutron, synchrotron X-ray and electron backscatter diffraction. The trigonal–hexagonal phase transformation does not change the orientation of c- and a-axes, but positive and negative rhombs become equal in the hexagonal β-phase. In naturally deformed quartzites measured by neutron diffraction a perfect texture memory was observed, i.e. crystals returned to the same trigonal orientation they started from, with no evidence of twin boundaries. Samples measured by electron back-scattered diffraction on surfaces show considerable twinning and memory loss after the phase transformation. In experimentally deformed quartz rocks, where twinning was induced mechanically before heating, the orientation memory is lost. A mechanical model can explain the memory loss but so far it does not account for the persistence of the memory in quartzites. Stresses imposed by neighboring grains remain a likely cause of texture memory in this mineral with a very high elastic anisotropy. If stresses are imposed experimentally the internal stresses are released during the phase transformation and the material returns to its original state prior to deformation. Similarly, on surfaces there are no tractions and thus texture memory is partially lost.  相似文献   

13.
In this contribution we present a review of the evolution of microstructures and fabric in ice. Based on the review we show the potential use of ice as an analogue for rocks by considering selected examples that can be related to quartz-rich rocks. Advances in our understanding of the plasticity of ice have come from experimental investigations that clearly show that plastic deformation of polycrystalline ice is initially produced by basal slip. Interaction of dislocations play an essential role for dynamic recrystallization processes involving grain nucleation and grain-boundary migration during the steady-state flow of ice. To support this review we describe deformation in polycrystalline ‘standard’ water-ice and natural-ice samples, summarize other experiments involving bulk samples and use in situ plane-strain deformation experiments to illustrate the link between microstructure and fabric evolution, rheological response and dominant processes. Most terrestrial ice masses deform at low shear stresses by grain-size-insensitive creep with a stress exponent (n ≤ 3). However, from experimental observations it is shown that the distribution of plastic activity producing the microstructure and fabric is initially dominated by grain-boundary migration during hardening (primary creep), followed by dynamic recrystallization during transient creep (secondary creep) involving new grain nucleation, with further cycles of grain growth and nucleation resulting in near steady-state creep (tertiary creep). The microstructural transitions and inferred mechanism changes are a function of local and bulk variations in strain energy (i.e. dislocation densities) with surface grain-boundary energy being secondary, except in the case of static annealing. As there is a clear correspondence between the rheology of ice and the high-temperature deformation dislocation creep regime of polycrystalline quartz, we suggest that lessons learnt from ice deformation can be used to interpret polycrystalline quartz deformation. Different to quartz, ice allows experimental investigations at close to natural strain rate, and through in-situ experiments offers the opportunity to study the dynamic link between microstructural development, rheology and the identification of the dominant processes.  相似文献   

14.
We use the crystallographic orientations of quartz crystals, as determined with EBSD, to provide new evidence for the formation of clustered quartz crystals during magma crystallization. Vinalhaven is dominated by granite, with minor porphyry that formed when granite remelted during input of coeval basalt. CL zoning suggests that most quartz clusters in granite and porphyry formed by synneusis, the “swimming together” of preformed crystals. In granite, most quartz pairs in clusters have random orientations—only about 10% have parallel or Esterel twin orientations. Porphyry has fewer quartz clusters, and all pairs have approximately parallel or Esterel twin orientations. CL zoning of quartz pairs in porphyry indicates that they attached prior to a major remelting event. Interpretation of the Vinalhaven quartz clusters leads us to propose that oriented synneusis occurs during crystal accumulation on a magma chamber floor. During hindered settling, some quartz crystals should have come into contact along their dipyramidal faces. Once in contact, continued settling and loss of interstitial melt may have rotated some quartz crystals such that lattices on their dipyramidal faces matched—producing parallel and Esterel twin orientations and creating strong bonds between pairs. Only a small proportion of pairs with matched dipyramidal faces formed in the granite and, during rejuvenation to produce porphyry, only these oriented pairs survived. Hence, the presence of oriented synneusis in a plutonic rock may demonstrate a history of crystal accumulation.  相似文献   

15.
Mechanical twinning in polycrystalline quartz was investigated in situ with time-of-flight neutron diffraction and a strain diffractometer. Dauphiné twinning is highly temperature sensitive. It initiates at a macroscopic differential stress of 50–100 MPa and, at 500°C, saturates at 400 MPa. From normalized diffraction intensities the patterns of preferred orientation (or texture) can be inferred. They indicate a partial reversal of twinning during unloading. The remaining twins impose residual stresses corresponding to elastic strains of 300–400 microstrain. Progressive twinning on loading and reversal during unloading, as well as the temperature dependence, can be reproduced with finite element model simulations.  相似文献   

16.
The construction of twin tunnels at shallow depth has become increasingly common in urban areas. In general, twin tunnels are usually near each other, in which the interaction between tunnels is too significant to be ignored on their stability. The equivalent arbitrarily distributed loads imposed on ground surface were considered in this study, and a new analytical approach was provided to efficiently predict the elastic stresses and displacements around the twin tunnels. The interaction between 2 tunnels of different radii with various arrangements was taken into account in the analysis. We used the Schwartz alternating method in this study to reduce the twin‐tunnel problem to a series of problems where only 1 tunnel was contained in half‐plane. The convergent and highly accurate analytical solutions were achieved by superposing the solutions of the reduced single‐tunnel problems. The analytical solutions were then verified by the good agreement between analytical and numerical results. Furthermore, by the comparison on initial plastic zone and surface settlement between analytical solution and numerical/measured results of elastoplastic cases, it was proven that the analytical solution can accurately predict the initial plastic zone and its propagation direction and can qualitatively provide the reliable ground settlements. A parametric study was finally performed to investigate the influence of locations of surcharge load and the tunnel arrangement on the ground stresses and displacements. The new solution proposed in this study provides an insight into the interaction of shallow twin tunnels under surcharge loads, and it can be used as an alternative approach for the preliminary design of future shallow tunnels excavated in rock or medium/stiff clay.  相似文献   

17.
In view of the apparent difficulty of satisfying the von Mises criterion for general plasticity by dislocation glide alone, the climb mechanism proposed by Nabarro (1967) has been considered as an important contributor to the steady state deformation of quartzites in the earth's crust. The proposed deformation mechanism can provide the necessary strain rates; it is consistent with the observed dislocation structures and leads to a simple explanation of the water weakening phenomenon in terms of the increase in diffusivity of the atom species. In addition, the experimentally observed effects of strain rate and temperature on the opening angle of the characteristic ‘girdle’ fabrics of quartzite are a natural consequence of the model and this relationship could provide analytical procedures for the establishment of crustal deformation conditions.  相似文献   

18.
Dolomite single crystals of six different crystallographic orientations were tested in compression under confining pressure at temperatures of 20 to 800° C. The chosen orientations favoured slip or twinning on particular systems. The deformed crystals were analysed by optical and high voltage transmission electron microscopy to determine activated deformation systems, dislocation behaviour, etc., and to assist in interpreting stress-strain data. It is shown that slip on c≡(0001) and on \(f \equiv (\bar 1012)\) ), and twinning on f between 300 and 600° C, are the principal modes of deformation. At low temperatures there is considerable cataclasis, and shear-fracturing must be counted as a significant deformation mechanism. The effects of climb become apparent at temperatures ?600° C. A pronounced increase in strength with testing temperature shown by some orientations of the crystals is largely associated with c slip, but f twinning also shows similar although weaker tendencies. The yield stress for f slip decreases markedly with temperature. Values of critical resolved shear stress are obtained for c and f slip, and for f twinning. Major and minor slip systems, dislocation and twin configurations generated by deformation under different regimes are documented and illustrated. Some of the characteristics of the deformation systems are attributed to the details of atomic displacements. In particular, the increase in strength with temperature for c slip is explained by friction of CO 3 2? groups during dislocation movement, which is unique for c slip. This friction increases with thermal vibration, expansion and rotation of the CO 3 2? groups.  相似文献   

19.
矿物中位错的柏格斯矢量b反映了矿物发生变形时所经历的条件,对它的精确测定为构造地质学研究提供了定量依据。本文用会聚束电子衍射的方法对石英位错进行了测定,同传统的双束法相比较,此方法更为简单和方便。  相似文献   

20.
The effect of Dauphiné twinning on plastic strain in quartz   总被引:1,自引:0,他引:1  
We present an electron backscatter diffraction analysis of five quartz porphyroclasts in a greenschist facies (T = 300–400°C) granitoid protomylonite from the Arolla unit of the NW Alps. Mechanical Dauphiné twinning developed pervasively during the incipient stage of deformation within two porphyroclasts oriented with a negative rhomb plane {z} almost orthogonal to the compression direction (z-twin orientation). Twinning was driven by the anisotropy in the elastic compliance of quartz and resulted in the alignment of the poles of the planes of the more compliant positive rhomb {r} nearly parallel to the compression direction (r-twin orientation). In contrast, we report the lack of twinning in two porphyroclasts already oriented with one of the {r} planes orthogonal to the compression direction. One twinned porphyroclast has been investigated with more detail. It shows the localization of much of the plastic strain into discrete r-twins as a consequence of the higher amount of elastic strain energy stored by r-twins in comparison to z-twins. The presence of Dauphiné twins induced a switch in the dominant active slip systems during plastic deformation, from basal <a> (regions without twinning) to {π} and {π′} <a> (pervasively twinned regions). Dynamic recrystallization is localized along an r-twin and occurred dominantly by progressive subgrain rotation, with a local component of bulging recrystallization. Part of the recrystallized grains underwent rigid-body rotation, approximately about the bulk vorticity axis, which accounts for the development of large misorientation angles. The recrystallized grain size piezometer for quartz yields differential stress of 100 MPa. The comparison of this palaeostress estimate with literature data suggests that mechanical Dauphiné twinning could have a potential use as palaeopiezometer in quartz-bearing rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号