首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 824 毫秒
1.
The compressibility of antigorite has been determined up to 8.826(8) GPa, for the first time by single crystal X-ray diffraction in a diamond anvil cell, on a specimen from Cerro del Almirez. Fifteen pressure–volume data, up to 5.910(6) GPa, have been fit by a third-order Birch–Murnaghan equation of state, yielding V 0 = 2,914.07(23) Å3, K T0 = 62.9(4) GPa, with K′ = 6.1(2). The compression of antigorite is very anisotropic with axial compressibilities in the ratio 1.11:1.00:3.22 along a, b and c, respectively. The new equation of state leads to an estimation of the upper stability limit of antigorite that is intermediate with respect to existing values, and in better agreement with experiments. At pressures in excess of 6 GPa antigorite displays a significant volume softening that may be relevant for very cold subducting slabs.  相似文献   

2.
The compression behavior of natural adamite [Zn2AsO4OH] has been investigated up to 11.07 GPa at room temperature utilizing in situ angle-dispersive X-ray diffraction and a diamond anvil cell. No phase transition has been observed within the pressure range investigated. A third-order Birch–Murnaghan equation of state fitted to all of the data points yielded V 0 = 430.1(4) Å3, K 0 = 80(3) GPa, K′ 0 = 1.9(5). The K 0 was obtained as 69(1) GPa when K′ 0 was fixed at 4. Analysis of axial compressible moduli shows the intense compression anisotropy of adamite: K a0 = 37(3) GPa, K b0 = 153(6) GPa, K c0 = 168(8) GPa; hence, a axis is the most compressible and the compressibility of b and c axis is comparable. Furthermore, the comparisons among the compressional properties of adamite, libethenite (Cu2PO4OH, also belongs to olivenite group), and andalusite (Al2SiO4O has the similar structure with adamite) at high pressure were made.  相似文献   

3.
The comparative compressibility and high-pressure stability of a natural epidote (0.79 Fe-total per formula unit, Fetot pfu) and clinozoisite (0.40 Fetot pfu) were investigated by single-crystal X-ray diffraction and Raman spectroscopy. The lattice parameters of both phases exhibit continuous compression behavior up to 30 GPa without evidence of phase transformation. Pressure–volume data for both phases were fitted to a third-order Birch–Murnaghan equation of state with V 0 = 461.1(1) Å3, K 0 = 115(2) GPa, and \(K_{0}^{'}\) = 3.7(2) for epidote and V 0 = 457.8(1) Å3, K 0 = 142(3) GPa, and \(K_{0}^{'}\) = 5.2(4) for clinozoisite. In both epidote and clinozoisite, the b-axis is the stiffest direction, and the ratios of axial compressibility are 1.19:1.00:1.15 for epidote and 1.82:1.00:1.19 for clinozoisite. Whereas the compressibility of the a-axis is nearly the same for both phases, the b- and c-axes of the epidote are about 1.5 times more compressible than in clinozoisite, consistent with epidote having a lower bulk modulus. Raman spectra collected up to 40.4 GPa also show no indication of phase transformation and were used to obtain mode Grüneisen parameters (γ i) for Si–O vibrations, which were found to be 0.5–0.8, typical for hydrous silicate minerals. The average pressure coefficient of Raman frequency shifts for M–O modes in epidote, 2.61(6) cm?1/GPa, is larger than found for clinozoisite, 2.40(6) cm?1/GPa, mainly due to the different compressibility of FeO6 and AlO6 octahedra in M3 sites. Epidote and clinozoisite contain about 2 wt% H2O are thus potentially important carriers of water in subducted slabs.  相似文献   

4.
High-pressure in situ X-ray diffraction experiment of Fe- and Al-bearing phase D (Mg0.89Fe0.14Al0.25Si1.56H2.93O6) has been carried out to 30.5 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields values of V 0 = 86.10 ± 0.05 Å3; K 0 = 136.5 ± 3.3 GPa and K′ = 6.32 ± 0.30. If K′ is fixed at 4.0 K 0 = 157.0 ± 0.7 GPa, which is 6% smaller than Fe–Al free phase D reported previously. Analysis of axial compressibilities reveals that the c-axis is almost twice as compressible (K c  = 93.6 ± 1.1 GPa) as the a-axis (K a  = 173.8 ± 2.2 GPa). Above 25 GPa the c/a ratio becomes pressure independent. No compressibility anomalies related to the structural transitions of H-atoms were observed in the pressure range to 30 GPa. The density reduction of hydrated subducting slab would be significant if the modal amount of phase D exceeds 10%.  相似文献   

5.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   

6.
7.
Serpentines are hydrous phyllosilicates which form by hydration of Mg–Fe minerals. The reasons for the occurrence of the structural varieties lizardite and chrysotile, with respect to the variety antigorite, stable at high pressure, are not yet fully elucidated, and their relative stability fields are not quantitatively defined. In order to increase the database of thermodynamic properties of serpentines, the PV Equations of State (EoS) of lizardite and chrysotile were determined at ambient temperature up to 10 GPa, by in situ synchrotron X-ray diffraction in a diamond-anvil cell. Neither amorphization nor hysteresis was observed during compression and decompression, and no phase transition was resolved in lizardite. In chrysotile, a reversible change in compression mechanism, possibly due to an unresolved phase transition, occurs above 5 GPa. Both varieties exhibit strong anisotropic compression, with the c axis three times more compressible than the others. Fits to ambient temperature Birch–Murnaghan EoS gave for lizardite V 0=180.92(3) Å3, K 0 = 71.0(19) GPa and K′ 0=3.2(6), and for chrysotile up to 5 GPa, V 0 = 730.57(31) Å3 and K 0 = 62.8(24) GPa (K′ 0 fixed to 4). Compared to the structural variety antigorite is stable at high pressure (HP) (Hilairet et al. 2006), the c axis is more compressible in these varieties, whereas the a and b axes are less compressible. These differences are attributed to the less anisotropic distribution of stiff covalent bonds in the corrugated structure of antigorite. The three varieties have almost identical bulk compressibility curves. Thus the compressibility has negligible influence on the relative stability fields of the serpentine varieties. They are dominated by first-order thermodynamic properties, which stabilizes antigorite at high temperature with respect to lizardite, and by out-of-equilibrium phenomena for metastable chrysotile (Evans 2004).  相似文献   

8.
MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg–akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 °C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 °C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153–839 K) of a 1 = 20(3) × 10?9 K?2 and a 0 = 17(2) × 10?6 K?1, with an average of α 0 = 27.1(6) × 10?6 K?1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch–Murnaghan equation of state (BM2 EoS) fitting yields: V 0 = 263.7(2) Å3, K T0 = 217(3) GPa (K′ fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: α a  = 8.2(3) and α c  = 10.68(9) (10?6 K?1); β a  = 11.4(3) and β c  = 15.9(3) (10?4 GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15–300 K and 0–28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between ?1.02 × 10?5 and +1.7 × 10?5 K?1, indicating both weak hydrogen bonds (O–H···O) and strong OH bonding due to long O···O distances.  相似文献   

9.
Omphacite is an important mineral component of eclogite. Single-crystal synchrotron X-ray diffraction data on natural (Ca, Na) (Mg, Fe, Al)Si2O6 omphacite have been collected at the Advanced Photon Source beamlines 13-BM-C and 13-ID-D up to 47 GPa at ambient temperature. Unit cell parameter and crystal structure refinements were carried out to constrain the isothermal equation of state and compression mechanism. The third-order Birch–Murnaghan equation of state (BM3) fit of all data gives V 0 = 423.9(3) Å3, K T0 = 116(2) GPa and K T0′ = 4.3(2). These elastic parameters are consistent with the general trend of the diopside–jadeite join. The eight-coordinated polyhedra (M2 and M21) are the most compressible and contribute to majority of the unit cell compression, while the SiO4 tetrahedra (Si1 and Si2) behave as rigid structural units and are the most incompressible. Axial compressibilities are determined by fitting linearized BM3 equation of state to pressure dependences of unit cell parameters. Throughout the investigated pressure range, the b-axis is more compressible than the c-axis. The axial compressibility of the a-axis is the largest among the three axes at 0 GPa, yet it quickly drops to the smallest at pressures above 5 GPa, which is explained by the rotation of the stiffest major compression axis toward the a-axis with the increase in pressure.  相似文献   

10.
High-pressure single-crystal X-ray diffraction measurements of synthetic LiCrSi2O6 clinopyroxene (with space group P21/c) were performed in a diamond-anvil cell up to 7.970 GPa. No phase transition has been observed within the pressure range investigated, but the elastic behavior at lower pressures (up to ~2.5 GPa) is affected by an anomalous softening due to the proximity of the phase transition to the HT-C2/c phase at 330 K and at ambient pressure. A third-order Birch–Murnaghan equation of state fitted to the compression data above 2.5 GPa yields a bulk modulus K T0 = 93(2) GPa and its first derivative K′ = 8.8(6). The structural data measured up to 7.970 GPa confirm that the space group P21/c is maintained throughout the whole pressure range investigated. The atomic parameters, obtained from the integrated diffraction intensities, suggest that the Li coordination polyhedron changes its coordination number from 5 to 6 at 6–7 GPa by means of the approach of the bridging O atom, related to the increased kinking of the B tetrahedral chain. Furthermore, at higher pressures, the structural evolution of LiCrSi2O6 provides evidence in the variation of kinking angles and bond lengths of a potential phase transition above 8 GPa to the HP-C2/c space group. A comparison of the Li-clinopyroxenes (M1 = Cr, Al, Sc, Ga, Mg + Fe) previously investigated and our sample shows that their elastic behavior and structural mechanisms of compression are analogous.  相似文献   

11.
The crystal structures of natural jadeite, NaAlSi2O6, and synthetic kosmochlor, NaCrSi2O6, were studied at room temperature, under hydrostatic conditions, up to pressures of 30.4 (1) and 40.2 (1) GPa, respectively, using single-crystal synchrotron X-ray diffraction. Pressure–volume data have been fit to a third-order Birch–Murnaghan equation of state yielding V 0 = 402.5 (4) Å3, K 0 = 136 (3) GPa, and K 0  = 3.3 (2) for jadeite and V 0 = 420.0 (3) Å3, K 0 = 123 (2) GPa and K 0  = 3.61 (9) for kosmochlor. Both phases exhibit anisotropic compression with unit-strain axial ratios of 1.00:1.95:2.09 for jadeite at 30.4 (1) GPa and 1:00:2.15:2.43 for kosmochlor at 40.2 (1) GPa. Analysis of procrystal electron density distribution shows that the coordination of Na changes from 6 to 8 between 9.28 (Origlieri et al. in Am Mineral 88:1025–1032, 2003) and 18.5 (1) GPa in kosmochlor, which is also marked by a decrease in unit-strain anisotropy. Na in jadeite remains six-coordinated at 21.5 (1) GPa. Structure refinements indicate a change in the compression mechanism of kosmochlor at about 31 GPa in both the kinking of SiO4 tetrahedral chains and rate of tetrahedral compression. Below 31 GPa, the O3–O3–O3 chain extension angle and Si tetrahedral volume in kosmochlor decrease linearly with pressure, whereas above 31 GPa the kinking ceases and the rate of Si tetrahedral compression increases by greater than a factor of two. No evidence of phase transitions was observed over the studied pressure ranges.  相似文献   

12.
The structure of lead fluorapatite [PbFAP; Pb10(PO4)6F2], crystallized from the melt in a platinum capsule at 1,000°C and 1 atm, has been investigated by single-crystal X-ray diffraction. Crystal data are a = 9.7638 (6), c = 7.2866 (4) Å, space group P63/m, R = 0.043, R w = 0.034. We have also studied the compressional behaviour of the c-axis channel of PbFAP up to 9 GPa at 25°C, using a diamond-anvil cell, synchrotron X-radiation, and Rietveld powder structure refinement. Pressure–volume data for the channel polyhedron of PbFAP fitted to the third-order Birch–Murnaghan equation resulted in K T  = 33.2 ± 1.2 GPa when K T ′ is fixed at 4. The c-axis channel of PbFAP is about twice as compressible as the unit-cell volume of PbFAP and the channel of calcium apatites. This is attributed to the anomalous narrowing of the channel of PbFAP with increase in confining pressure. Flexibility of the apatite channel is a key factor in the scavenging of toxic heavy metals by calcium apatites.  相似文献   

13.
The compression behavior of a synthetic Ca4La6(SiO4)6(OH)2 has been investigated to about 9.33 GPa at 300 K using in situ angle-dispersive X-ray diffraction and a diamond anvil cell. No phase transition has been observed within the pressure range investigated. The values of zero-pressure volume V 0, K 0, and $K_{0}^{'}$ refined with a third-order Birch–Murnaghan equation of state are V 0 = 579.2 ± 0.1 Å3, K 0 = 89 ± 2 GPa, and $K_{0}^{'} = 10.9 \pm 0.8$ . If $K_{0}^{'}$ is fixed at 4, K 0 is obtained as 110 ± 2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a0 = 79 ± 2 GPa) is more compressible than the c-axis (K c0 = 121 ± 7 GPa). A comparison between the high-pressure elastic response of Ca4La6(SiO4)6(OH)2 and the iso-structural calcium apatites is made. The possible reasons of the different elastic behavior between Ca4La6(SiO4)6(OH)2 and calcium apatites are discussed.  相似文献   

14.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

15.
High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).  相似文献   

16.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

17.
The effect of ion beam irradiations on the elastic properties of hydrous cordierite was investigated by means of Raman and X-ray diffraction experiments. Oriented single crystals were exposed to swift heavy ions (Au, Bi) of various specific energies (10.0–11.1 MeV/u and 80 MeV/u), applying fluences up to 5 × 1013 ions/cm2. The determination of unit-cell constants yields a volume strain of 3.4 × 10?3 up to the maximum fluence, which corresponds to a compression of non-irradiated cordierite at ~480 ± 10 MPa. The unit-cell contraction is anisotropic (e 1 = 1.4 ± 0.1 × 10?3, e 2 = 1.5 ± 0.1 × 10?3, and e 3 = 7 ± 1 × 10?4) with the c-axis to shrink only half as much as the axes within the ab-plane. The lattice elasticity for irradiated cordierite (? = 1 × 1012 ions/cm2) was determined from single-crystal XRD measurements in the diamond anvil cell. The fitted third-order Birch–Murnaghan equation-of-state parameters of irradiated cordierite (V 0 = 1548.41 ± 0.16 Å3, K 0 = 117.1 ± 1.1 GPa, ?K/?P = ?0.6 ± 0.3) reveal a 10–11 % higher compressibility compared to non-irradiated cordierite. While the higher compressibility is attributed to the previously reported irradiation-induced loss of extra-framework H2O, the anomalous elasticity as expressed by elastic softening (β a ?1 , β b ?1 , β c ?1  = 397 ± 9, 395 ± 28, 308 ± 11 GPa, ?(β ?1)/?P = ?4.5 ± 2.7, ?6.6 ± 8.4, ?5.4 ± 3.0) appears to be related to the framework stability and to be independent of the water content in the channels and thus of the ion beam exposure.  相似文献   

18.
The behavior of a natural topaz, Al2.00Si1.05O4.00(OH0.26F1.75), has been investigated by means of in situ single-crystal synchrotron X-ray diffraction up to 45 GPa. No phase transition or change in the compressional regime has been observed within the pressure-range investigated. The compressional behavior was described with a third-order Birch–Murnaghan equation of state (III-BM-EoS). The III-BM-EoS parameters, simultaneously refined using the data weighted by the uncertainties in P and V, are as follows: K V = 158(4) GPa and K V  = 3.3(3). The confidence ellipse at 68.3 % (Δχ2 = 2.30, 1σ) was calculated starting from the variance–covariance matrix of K V and K′ obtained from the III-BM-EoS least-square procedure. The ellipse is elongated with a negative slope, indicating a negative correlation of the parameters K V and K V , with K V = 158 ± 6 GPa and K V  = 3.3 ± 4. A linearized III-BM-EoS was used to obtain the axial-EoS parameters (at room-P), yielding: K(a) = 146(5) GPa [β a = 1/(3K(a)) = 0.00228(6) GPa?1] and K′(a) = 4.6(3) for the a-axis; K(b) = 220(4) GPa [β b = 0.00152(4) GPa?1] and K′(b) = 2.6(3) for the b-axis; K(c) = 132(4) GPa [β c = 0.00252(7) GPa?1] and K′(c) = 3.3(3) for the c-axis. The elastic anisotropy of topaz at room-P can be expressed as: K(a):K(b):K(c) = 1.10:1.67:1.00 (β a:β b:β c = 1.50:1.00:1.66). A series of structure refinements have been performed based on the intensity data collected at high pressure, showing that the P-induced structure evolution at the atomic scale is mainly represented by polyhedral compression along with inter-polyhedral tilting. A comparative analysis of the elastic behavior and P/T-stability of topaz polymorphs and “phase egg” (i.e., AlSiO3OH) is carried out.  相似文献   

19.
The structural evolution at high pressure of a natural 2M 1-phengite [(K0.98Na0.02)Σ=1.00(Al1.55Mg0.24Fe0.21Ti0.02)Σ=2.01(Si3.38Al0.62)O10(OH)2; a = 5.228(2), b = 9.057(3), c = 19.971(6)Å, β = 95.76(2)°; space group: C2/c] from the metamorphic complex of Cima Pal (Sesia Zone, Western Alps, Italy) was studied by single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions up to ~11 GPa. A series of 12 structure refinements were performed at selected pressures within the P range investigated. The compressional behaviour of the same phengite sample was previously studied up to ~25 GPa by synchrotron X-ray powder diffraction, showing an irreversible transformation with a drastic decrease of the crystallinity at P > 15–17 GPa. The elastic behaviour between 0.0001 and 17 GPa was modelled by a third-order Birch–Murnaghan Equation of State (BM-EoS), yielding to K T0 = 57.3(10) GPa and K′ = ?K T0/?P = 6.97(24). The single-crystal structure refinements showed that the significant elastic anisotropy of the 2M 1-phengite (with β(a):β(b):β(c) = 1:1.17:4.60) is mainly controlled by the anisotropic compression of the K-polyhedra. The evolution of the volume of the inter-layer K-polyhedron as a function of P shows a negative slope, Fitting the PV(K-polyhedron) data with a truncated second-order BM-EoS we obtain a bulk modulus value of K T0(K-polyhedron) = 26(1) GPa. Tetrahedra and octahedra are significantly stiffer than the K-polyhedron. Tetrahedra behave as quasi-rigid units within the P range investigated. In contrast, a monotonic decrease is observed for the octahedron volume, with K T0 = 120(10) GPa derived by a BM-EoS. The anisotropic response to pressure of the K-polyhedron affects the P-induced deformation mechanism on the tetrahedral sheet, consisting in a cooperative rotation of the tetrahedra and producing a significant ditrigonalization of the six-membered rings. The volume of the K-polyhedron and the value of the ditrigonal rotation parameter (α) show a high negative correlation (about 93%), though a slight discontinuity is observed at P >8 GPa. α increases linearly with P up to 7–8 GPa (with ?α/?P ≈ 0.7°/GPa), whereas at higher Ps a “saturation plateau” is visible. A comparison between the main deformation mechanisms as a function of pressure observed in 2M 1- and 3T-phengite is discussed.  相似文献   

20.
In order to examine pressure–volume–temperature (PVT) relations for CaSiO3 perovskite (Ca-perovskite), high-temperature compression experiments with in situ X-ray diffraction were performed in a laser-heated diamond anvil cell (DAC) to 127 GPa and 2,300 K. We also employed an external heating system in the DAC in order to obtain PV data at a moderate temperature of 700 K up to 113 GPa, which is the reference temperature for constructing an equation of state. The PV data at 700 K were fitted to the second-order Birch–Murnaghan equation of state, yielding K 700,1bar = 207 ± 4 GPa and V 700,1bar = 46.5 ± 0.1 Å3. Thermal pressure terms were evaluated in the framework of the Mie–Grüneisen–Debye model, yielding γ 700,1bar = 2.7 ± 0.3, q 700,1bar = 1.2 ± 0.8, and θ 700,1bar = 1,300 ± 500 K. A thermodynamic thermal pressure model was also employed, yielding α700,1bar = 5.7 ± 0.5 × 10?5/K and (?K/?T) V  = ?0.010 ± 0.004 GPa/K. Computed densities along a lower mantle geotherm demonstrate that Ca-perovskite is denser than the surrounding lower mantle, suggesting that Ca-perovskite-rich rocks do not rise up through the lower mantle. One of such rocks might be a residue of partial melting of subducted mid-oceanic ridge basalt (MORB) at the base of the mantle. Since the partial melt is FeO-rich and therefore denser than the mantle, all the components of subducted MORB may not return to shallow levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号