首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Laser ablation of the Fe and Mn oxide coatings on stream sediments has been tested as a means of rapidly introducing this highly sorptive geochemical exploration medium into an inductively coupled plasma emission spectrometer (ICP) for simultaneous multielement analysis.Training data were obtained by selectively leaching coatings on about ten 1-cm diameter pebbles from 50 sites in the Allen drainage system, Southwest England. The Pb, Zn, Fe and Mn concentrations of the resulting leachates were determined by atomic absorption spectrophotometry. This procedure is relatively rapid and economical, but the leachate is suitable only for the determination of a restricted range of elements (mainly heavy metals). The laser-microprobe testing data were obtained by vaporizing approximately 1 μg of coating from one pebble from each sample site with a laser pulse, producing a crater in the coating 150–200 μm in diameter and 30–50 μm deep. The ablation was effected within a cell which the laser beam penetrates via a quartz window and the vaporized material quickly condenses into an aerosol which is carried in a flow of argon passing through the cell to the ICP, for simultaneous determination of up to 36 elements.Training and testing data for the elements determined were normalized by ratioing to Fe or Mn following a preliminary statistical inspection of the data to ascertain predominant correlations. In the Allen drainage basin, where a narrow and impersistent galena vein with subordinate sphalerite occupies a north-south-trending fracture, Pb determinations on coatings correlate well with the Fe content of coatings, while Zn correlates with Mn. The Pb/Fe dispersion patterns produced by the training and testing procedures are essentially similar, as are the Zn/Mn patterns from each of the procedures, demonstrating the potential of the novel laser microprobe technique.Anomalous Pb/Fe and Zn/Mn ratios in pebble coatings occur in the vicinity of the mineralized fracture. These compare favourably in terms of anomaly contrast and length of dispersion trains (especially their extension beyond major confluences) with the Pb and Zn anomalies detected by the more conventional analysis of the minus 200 μm fraction of the stream sediment. The low levels of potential pathfinder elements associated with mineralization do not lend themselves readily to determination in leachates derived from pebble coatings. Laser microprobe data, however, revealed a low-order but punctual As/Fe anomaly in a tributary, where this cuts the mineralized vein.  相似文献   

2.
Eight catchments, an area of 15 to 35 km2, have been studied within an ecogeochemical mapping programme in the western Kola Peninsula and contiguous parts of Finland and Norway. Three catchments, one northeast of Zapolyarniy (1) and two, 5 and 25 km south of Monchegorsk (2 and 4) show high levels of deposition of heavy metals, especially nickel (Ni) and copper (Cu), related to the metallurgical industry in these cities. Twenty-five topsoil samples, from sites evenly distributed over catchment 2, have mean contents of Ni and Cu 1 to 2 orders of magnitude higher than both C-horizon samples from the same sites and topsoil samples from catchment 4, providing strong evidence for the anthropogenic origin of the heavy metals. The same samples show geometric mean total contents for the noble metals analysed of: 1.4 μg/kg rhodium (Rh), 49.6 μg/kg platinum (Pt), 187.6 μg/kg palladium (Pd) and 9.5 μg/kg gold (Au). The pattern of concentration of the noble metals mirrors that found in published averages for ore from the Talnakh mineralizations in the Noril'sk province, though 1–2 orders of magnitude lower. This also clearly shows that the noble-metal contents of the topsoil are anthropogenic, and suggests that they emanate from the plants in Monchegorsk at an early stage in treatment of the ore, probably as a minor component of Ni-Cu rich particles. The noble-metal geochemistry of the topsoil in the other catchments also reflects the nature of the ore being processed at the plants nearby.  相似文献   

3.
Several pilot studies were made in a PGE-mineralized area of central Madagascar in order to compare Pt,Pd halos in heavy mineral concentrates and to select the most suitable stream-sediment fractions, sampling densities and anomaly thresholds for regional PGE surveys. Results show low anomaly thresholds for Pt (30 ppb) and Pd (20 ppb) in the −63 μm fractions of the active sediment, with restricted halos of nearly 300 m for Pt and nearly 500 m for Pd. Using a slightly coarser fraction (−125 μm) increases the anomaly contrast. The Pt anomalies in heavy mineral pan concentrates are considerably enhanced (400–1,000 ppb) but occur further downstream in residual terraces. A regular increase in the weight of the heavy mineral concentrate for a given volume of sediment is noticed downstream. A simple weight correction of the raw Pt grade in the heavy mineral concentrate gives a better definition of the mineralized source upstream. Assessment of the corrected heavy mineral concentrate Pt anomalies together with Pt,Pd anomalies in the finest stream-sediment fraction produces the optimum definition of the target. Optical determination and scanning electron microscope studies of the PGM show sperrylite to be the major Pt-bearing mineral in the stream sediment, whereas the Pd mineralogy remains unresolved. Pt dispersion appears to be a predominantly mechanical process and Pd dispersion a chemical process with deposition controlled mainly by MnO scavenging.  相似文献   

4.
Summary of biogeochemical prospecting for mercury mineralization in the Pinchi Fault is given. One thousand two hundred and eight plant samples were collected and analyzed for mercury. In mineralized areas the typical mercury content of dried plants was not less than 0.2 and 0.4 μg/g and even concentrations between 0.6 and 1.6 μg/g were observed. In nonmineralized zones at least 90% of the plants contained no more than 0.15 μg/g of mercury. Analytical and sampling procedures are described.  相似文献   

5.
This paper describes the influence of siliceous and iron-rich calcic low-temperature hydrothermal fluids (LTHF) on the mineralogy and geochemistry of the Late Permian No. 11 Coal (anthracitic, Rr=2.85%) in the Dafang Coalfield in northwestern Guizhou Province, China. The No. 11 Coal has high contents of vein ankerite (10.2 vol.%) and vein quartz (11.4 vol.%), with formation temperatures of 85 and 180 °C, respectively, indicating that vein ankerite and vein quartz were derived from low-temperature calcic and siliceous hydrothermal fluids in two epigenetic episodes. The vein quartz appears to have formed earlier than vein ankerite did, and at least three distinct stages of ankerite formation with different Ca/Sr and Fe/Mn ratios were observed.The two types of mineral veins are sources of different suites of major and trace metals. Scanning electron microscope and sequential extraction studies show that, in addition to Fe, Mg, and Ca, vein ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn in the coal, and the contents of these five elements are as high as 0.09% and 74.0, 33.6, 185, and 289 μg/g, respectively. In contrast, vein quartz is the main carrier mineral for platinum-group elements (PGEs) Pd, Pt, and Ir in the coal, and the contents of Pd, Pt, and Ir are 1.57, 0.15, and 0.007 μg/g, respectively. Sequential extraction showed a high PGE content in the silicate fraction, up to 10.4 μg/g Pd, 1.23 μg/g Pt, and 0.05 μg/g Ir, respectively. It is concluded that the formation of ankerite and quartz and the anomalous enrichment of trace elements in the No. 11 Coal in the Dafang Coalfield, Guizhou, result from the influx of calcic and siliceous low-temperature hydrothermal fluids.  相似文献   

6.
Surface sediment samples were collected from the Squamish River Delta, British Columbia, in order to determine the role of sediment surface area in the preservation of organic matter (OM) in a paralic sedimentary environment. The Squamish Delta is an actively prograding delta, located at the head of Howe Sound.Bulk total organic carbon (TOC) values across the Squamish Delta are low, ranging from 0.1 to 1.0 wt.%. The carbon/total nitrogen ratio (Corg/N) ranges from 6 to 17, which is attributed to changes in OM type and facies variations. The <25-μm fraction has TOC concentrations up to 2.0 wt.%, and a Corg/N ratio that ranges from 14 to 16. The 53–106-μm fraction has higher TOC concentrations and Corg/N ratios relative to the 25–53-μm fraction. The Corg/N ratio ranges from 9 to 18 in the 53–106-μm fraction and 5.5–10.5 in the 25–53-μm fraction. Surface area values for bulk sediments are low (0.5–3.0 m2/g) due to the large proportion of silt size material. Good correlation between surface area and TOC in bulk samples suggests that OM is adsorbed to mineral surfaces. Similar relationships between surface area and TOC were observed in size-fractionated samples. Mineralogy and elemental composition did not correlate with TOC concentration.The relationships between surface area, TOC and total nitrogen (TN) can be linked to the hydrodynamic and sedimentological conditions of the Squamish Delta. As a result, the Squamish Delta is a useful modern analogue for the formation of petroleum source rocks in ancient deltaic environments, where TOC concentrations are often significantly lower than those in source rocks formed in other geological settings.  相似文献   

7.
The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10–15 m) in the Cenomanian rock (calcareous–marl), which is characterised by an important permeability from cracks. The soil is sand–clay characterized by a weak coefficient of retention.The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer.To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l−1, chemical oxygen demand = 1000 mg l−1, iron = 23 000 μg l−1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm−1 in electric conductivity, 1620 and 1000 mg l−1 respectively in chlorides and sulfate (), 15–25 μg l−1 in cadmium, and 60–100 μg l−1 in chromium. These concentrations widely exceed the standard values for potable water.Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a system of collection, drainage and treatment of landfill leachates and to emplace an impermeable surface at the site of landfill, in order to limit the infiltration of leachate.  相似文献   

8.
Arkosic sandstones and conglomerates of Tertiary age beneath the Challis Volcanics of Eocene age at Basin Creek, 10 km northeast of Stanley, Idaho, contain uranium-bearing vitrainized carbon fragments. The economic potential of these sandstones and conglomerates is currently being assessed. Springs abound at the contacts of rock units, and water from these springs supports abundant growths of bryophytes (mosses and liverworts). Water from 22 springs and associated bryophytes were sampled; two springs were found to contain apparently anomalous concentrations (normalized) of uranium — as much as 6.5 μg/L (ppb) in water and 1800 μg/g (ppm) in ash of mosses. Moss samples from both springs also contained anomalous concentrations of arsenic, and one contained highly anomalous amounts of beryllium. Water from a third spring contained slightly anomalous amounts of uranium, and two species of mosses at the spring contained anomalous uranium (400 and 700 μg/g) and high levels of both cadmium and lead. Water from a fourth spring was normal for uranium (0.18 μg/L), but the moss from the water contained a moderate uranium level and highly anomalous concentrations of lead, germanium, and thallium.These results suggest that, in the Basin Creek area, moss sampling at springs may give a more reliable indication of uranium occurrence than would water sampling. The reason for this may be the ability of mosses to concentrate uranium and its associated pathfinder elements and to integrate uranium fluctuations that occur in the spring water over any period of time.  相似文献   

9.
Surface microlayer and subsurface water samples were collected at an oligotrophic Mediterranean site during a diel cycle. The composition of phospholipid ester-linked fatty acids (PLFA) was determined in size-fractionated particles (0.2–0.7 μm; 0.7–200 μm) in order to characterize the major contributors of organic matter to different size fractions. GF/F-retained particles (0.7–200 μm) from the surface microlayer were consistently enriched in PLFA relative to the underlying water. Molecular markers revealed a substantial difference in biological assemblages in both particle sizes. The larger particles were dominated by dinoflagellates, cyanobacteria, microzooplankton and attached bacteria, whereas particles filtered through GF/F and collected on 0.2 μm porosity Durapore filters (0.2–0.7 μm) were mostly bacteria and heterotrophic flagellates. Bacterial PLFA associated with 0.7–200 μm particles were more abundant than those in the 0.2–0.7 μm particles. Specific markers in the branched series appeared more representative of bacteria of smaller particle size.  相似文献   

10.
The Okchon black shale in Korea provides a typical example of natural geological materials enriched with potentially toxic elements. The Chung-Joo, Duk-Pyung, Geum-Kwan, I-Won, Bo-Eun and Chu-Bu areas are underlain by these black shales and slates of the Guryongsan Formation or the Changri Formation, which are parts of the Okchon Group in the central part of the southern Korean Peninsula. In order to investigate the enrichment levels and dispersion patterns of potentially toxic elements in the rock–soil–plant system, environmental geochemical surveys were undertaken in the above six study areas in the Okchon Zone. After appropriate preparation, rock and soil samples were analyzed for potentially toxic elements by instrumental neutron activation analysis (INAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES), and plant samples by atomic absorption spectrometry (AAS). In particular, Ba, Cd, Mo, V and U in Okchon black shales are highly enriched, and their mean concentrations are significantly higher than those in black slates. These elements are geochemically associated, and might be enriched simultaneously. The highest mean concentrations of 42.0 μg g−1 As, 2100 μg g−1 Ba, 10.9 μg g−1 Cd, 213 μg g−1 Mo, 83 μg g−1 U, 938 μg g−1 V and 394 μg g−1 Zn are found in black shales from the Duk-Pyung area. Mean concentrations of As, Mo and U in soils overlying black shales occurring in the Duk-Pyung area (30 μg g−1 As, 24 μg g−1 Mo and 50 μg g−1 U) and Chu-Bu area (39 μg g−1 As, 15 μg g−1 Mo and 27 μg g−1 U) are higher than the permissible level. Enrichment index values of the six study areas decrease in the order of Duk-Pyung > Chu-Bu > Bo-Eun > Chung-Joo > Geum-Kwan = I-Won areas. Relationships between trace element concentrations in soils and plants are significantly correlated, and the biological absorption coefficients (BAC) in plants are in the order of Cd > Zn = Cu > Pb, which suggests that Cd is more bioavailable to plants than the other elements. Cadmium concentrations in plant species decrease in the order of chinese cabbage > red pepper > soybean = sesame > rice stalk > corn > rice grain. From the result of sequential extraction analysis of soils, relatively high proportions of Cu, Pb and Zn are present as residual fractions, and that of Cd as non-residual fractions. Cadmium occurs predominantly as exchangeable/water-acid soluble phase in soils, and this is in agreement with the findings of high Cd concentrations in plants.  相似文献   

11.
Plant species that accumulate high levels of metals in proportion to the metal content in the soil are of considerable interest in biogeochemical and biogeobotanical prospecting. This study was aimed at investigating copper and nickel accumulation in the plants Helichrysum candolleanum and Blepharis diversispina, to assess their potential use as mineral indicators in biogeochemical prospecting. Soils and plants were collected from copper–nickel mineralised areas in Botswana. Analyses of the soils and the respective plant parts (roots, stem, leaves and flowers) were carried out using ultrasonic slurry sampling electrothermal atomic absorption spectrometry (ETAAS), which allowed rapid determination of copper and nickel in small amounts of the samples.The metal concentration in the soil was in the range ≈ 40 μg/g–4% (w/w) for Cu and ≈ 60 μg/g–0.3% (w/w) for Ni. The concentration ranges of the elements in the plant parts were ≈ 6 μg/g–0.2% Cu and ≈ 3–210 μg/g Ni. At high soil metal content (greater than 2.5% (w/w) Cu and 0.1% (w/w) Ni), high levels of both nickel and copper were found in the shoots (leaves and flowers) of H. candolleanum. Concentrations as high as 0.2% (w/w) Cu were found in the leaves and flowers of H. candolleanum, indicating hyperaccumulation for this plant. For B. diversispina, the metal concentrations did not exceed 100 μg/g for any plant part, for both metals. Both plant species tolerate high concentrations of metals and should therefore be categorized as metallophytes. In order to evaluate metal translocation from the soil to the shoots, metal leaf transfer coefficients (ratio of metal concentration in the leaf to metal concentration in the soil) were calculated. Our data suggest that the two plant species have different metal uptake and transport mechanisms, which needs to be investigated further. The present work also suggests that H. candolleanum may be used as a copper/nickel indicator plant in biogeochemical or biogeobotanical prospecting.  相似文献   

12.
Concentrations of Au, Ag, As, Cd and Sb in aquatic bryophytes collected from the Dolgellau Mineral Belt, North Wales, U.K. are reported. One aquatic liverwort, Scapania undulata (L) Dum. and two mosses, Fontinalis squamosa Hedw. and Racomitrium aciculare (Hedw.) Brid. were collected from sites upstream and downstream of the recently reopened Gwynfyndd Au mine. There was little inter-species variation in metal contents for these three bryophytes, but Scapania undulata appeared the most sensitive to changes in water concentrations of Ag, As and Sb. Gold concentrations varied little between the contaminated and control sites. Concentrations in the range < 4–18 ng Aug g−1 D.W. were typical background levels, while bryophytes collected immediately below the mine contained 6–45 ng Au g−1. Silver and Sb both showed more pronounced ( 5–10 fold) elevations above control concentrations in samples collected downstream of the mine. Background concentrations for these elements were 5–85 ng Ag g−1 and 0.15–1.3 μg Sb g−1.Arsenic concentrations downstream of the mine (160–1080 μg g−1) greatly exceeded the background range of 9–32 μg g−1. It is suggested, therefore, that As may be an ideal ‘pathfinder’ element when prospecting for auriferous deposits using aquatic bryophytes.  相似文献   

13.
The first evaluation of the distribution of platinum group elements (PGE) derived from automobile catalytic converters in urban soil samples in Mexico City was carried out. There are more than four millions cars in Mexico City and, at the present time, one third of them have catalytic converters. PGE concentrations in soils exposed to high traffic densities exceed the natural background values by upto two orders of magnitude and are directly influenced by traffic conditions. The highest concentrations of Pt, Pd and Rh in the analyzed samples are about 300, 70 and 40 μg/l, respectively. Although the PGE concentrations found in soil samples are relatively low, they represent an accumulation of only 10 yr. It is likely that the use of catalytic converters will dramatically change the distribution of these metals in the urban environment in the next decades.  相似文献   

14.
An experimental study of the solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions was conducted at temperatures from 200° to 350 °C and at saturated vapor pressure. A 500-mL Bridgemantype pressure vessel constructed of titanium, and equipped with a motor-driven magnetic stirrer was employed. The pH and the oxidation state were buffered by the coexistence of H2S/HS/SO inf4 sup2– . The pH at temperature was calculated to be in the range 5.91–9.43, and S was 0.3–2.2 m. Under the experimental conditions, the measured solubility of gold is about two to three orders of magnitude greater than that of either platinum and palladium, and the measured solubility of platinum is, in general, approximately equal to that of palladium, in molal units. The solubilities are found to be in the range: platinum 4–800 ppb, palladium 1–400 ppb, and gold 2–300 ppm. The solubility data can be modeled adequately using the following reactions: Au+H2S+HH=Au(HS) 2 +1/2H2 (K14); PtS+HS+H+=Pt (HS) 2 0 (K15); PdS+HS+H+=Pd (HS) 2 0 (K16); PtS2+H2=Pt (HS) 2 0 (K21).With equilibrium constants determined as follows (errors represent two standard deviations): Preliminary measurements of the solubilities of metallic Pt, Pd and Au as hydroxide complexes were also conducted using a second titanium pressure vessel, at temperatures of 200° to 350 °C and vapor saturation pressure, with pH and the oxidation state controlled or buffered by adding known amounts of NaOH and H2 gas. The concentration of NaOH was in the range 0.01–1.3 m, and the partial pressure of H2 at 200 °C was 62–275 bars, initially. Under the temperature and pressure conditions of these experiments, the solubility of platinum in 1 m NaOH solution is less than 100 ppb, that of palladium is less than 10 ppb and that of gold is less than 0.2 ppm; and in 0.01 m NaOH solutions, both Pt and Pd solubilities are less than 1 ppb. These data indicate that the contributions of hydroxide complexes to the total solubilities in the bisulfide runs, where the pH was in the range of 5.9–9.4, are negligible. The concentrations of both Pt and Pd as bisulfide complexes in the Salton Sea geothermal system predicted using the stability constants determined in this work agree very well with those values measured by McKibben et al. (1990). This calculation strongly suggests that the PGE are transported in moderately reducing, near neutral hydrothermal fluids as bisulfide complexes, as is gold. However, the much lower maximum solubility of the PGE relative to gold severely constrains models of re genesis, and may explain the relative rarity of hydrothermal PGE deposits compared to the relative abundance of hydrothermal Au deposits.  相似文献   

15.
The occurrence of synkinematic and authigenic clay minerals is a common feature in fault gouges. Few attempts have been made to date fault gouges. We present the first age data in Australia for synkinematic illite–smectite growth in two fault zones of the northern Sydney Basin, NSW. The faults occur at Burwood Beach, NSW in the northern part of the Sydney Basin and are hosted by Early Permian siltstones, tuffs and coals of the Lambton Formation, Newcastle Coal Measures. The faults are 1.5 m apart, show normal displacement and trend N–S with steep easterly dips. Foliated gouge zones, comminution and dilational breccias are developed along both fault surfaces. K–Ar ages extracted from samples in the gouge and tuffs in the damage zones are 172 (6–10 μm) to 119 Ma (<0.4 μm), respectively. Older ages of 272–281 Ma for the coarse fractions (>2 μm), 237–245 Ma for the <2 μm fraction, 218 Ma for the <0.4 μm fraction and 196 Ma for the <0.1 μm fraction have been obtained from siltstones within and outside the damage zone. We believe the younger ages of 196–237 Ma indicate the time at which diagenetic illite–smectite formed and the 122–150 Ma dates from the <2 μm fraction represent the maximum age of gouge formation. The younger ages are thought to reflect the last slip event occurring on the faults, which is related to the rifting and dispersal of the eastern margin of the Australian continent.  相似文献   

16.
The Nickel Plate deposit, in which gold occurs as <25 μm blebs associated with arsenopyrite in garnet-pyroxene skarns, is in the subalpine zone near the southern limit of the Thompson Plateau. During the last glaciation the Cordilleran ice sheet moved south-southwest across the deposit and deposited a stony basal till. A dispersion train with anomalous concentrations of gold in tills and soils now extends 2 km down ice from the deposit.Gold contents of samples of humus (LFH horizon) and the −212 μm fraction of mineral soils (A, B and C horizons) was determined by instrumental neutron activation and fire assay-atomic absorption, respectively. Selected samples were examined in detail to determine distribution of gold between different size and density fractions.Despite erratic variability, Au contents of the −212 μm fraction generally decrease from 200–400 ppb close to the mine site to <50 ppb at distal sites. At most sites there is also a twofold increase of gold values down the soil profile. Within samples concentrations of Au in the −420 + 212 μm, −212 + 106 μm, −106 + 53 μm and −53 μm fractions are usually roughly constant. However, because of its abundance, the −53 μm fraction contains more than 70% of the gold. Amenability of gold in this fraction to cyanidation suggests that it is largely free gold. For size fractions > 53 μm the contribution of the heavy mineral (SG > 3.3) fraction to total gold content increases with decreasing grain size.Distribution of gold between size and density fractions is consistent with its release from the bedrock or pre-glacial regolith by glacial abrasion. The bulk of the gold was incorporated into the fine fractions of the till at or close to the source. However, differences between down ice dilution ratios for gold in different heavy mineral size fractions suggest that comminution of host minerals continued to transfer gold to the finer size fractions during glacial transport.For exploration purposes, B and C horizon samples provide the best anomaly contrast. Estimates of the abundance of gold particles in different size fractions indicate that the nugget effect, which causes erratic gold values in the −212 μm fraction, can be avoided by analysis of 30 g of −53 μm material.  相似文献   

17.
Gold anomalies in drainage sediments are often erratic, reflecting both the nugget effect and hydraulic effects whereby gold is concentrated at favorable sites along a stream. This study investigates these factors in a stream in northeastern Thailand.Bulk sediment samples, consisting of approximately 40 kg of −12 mm material, were collected from bar and pavement sites along an 8 km study reach. Samples were wet sieved into eight size fractions. The five fractions between 425 μm and 53 μm were then processed to obtain heavy mineral concentrates (SG > 3.3). Gold content of all size and density fractions finer than 425 μm was determined by fire assay-atomic absorption.Concentrations of Au in the heavy mineral concentrates typically range from 10,000 to 50,000 ppb (maximum 198,000 ppb), whereas the corresponding light mineral fractions and the −53 μm fraction generally contain <5 ppb gold. Within the heavy mineral fractions concentrations of Au generally increase downstream away from their supposed source and are higher at pavement than at point bar sites. Variations in abundance of gold between point bar sites can be related to stream characteristics (such as width, velocity and bed roughness) that are indicative of changing energy conditions and of the ability of the stream to winnow light minerals from its bed.The estimated median number of gold particles in the heavy mineral concentrates increase from less than one in the 212–425 μm fraction to about three in the 53–106 μm size range. However, because of dilution by the light mineral and −53 μm fractions, the probability of a 30 g analytical sub-sample containing a particle of gold is so low that in thirteen out of sixteen −149 μm sediment samples no gold was detected. Insofar as this results from dilution by large quantities of −53 μm sediment, failure of conventional sieved sediment samples to reliably detect the anomaly is probably a consequence of increased erosion caused by deforestation and land usage.Heavy mineral concentrates from pavement and other high energy sites are more reliable than conventional sediment samples for detecting gold anomalies of the Huai Hin Laep type. A low sample density is adequate but, because anomaly contrast may increase downstream, careful interpretation is required.  相似文献   

18.
The Cr and Ni contents are high in the Eocene lignite of the Shenbei coalfield, which is a small intracontinental basin located in Liaoning Province, China. In this paper, we studied the distribution, origin and occurrence of Cr, Ni and other hazardous trace elements in the Shenbei lignite on the basis of coal petrology, and geochemistry of the lignite and combustion products. The following conclusions on the Shenbei lignite can be drawn: (1) The dominant maceral group in the Shenbei coal is huminite (humodetrinite), accounting for 96%–99% of the total maceral. Inertinite content is less than 1%. Liptinite content (sporinite and cutinite) is 0.2–1.6%. Common minerals in the Shenbei lignite include clay minerals (kaolinite), pyrite and quartz, and calcite and siderite. Chromite is not present in the lignite. (2) Potentially hazardous trace elements such as Co (22 μg/g), Cr (79 μg/g), Cu (63 μg/g), Zn (93 μg/g), V (88 μg/g) and Ni (75 μg/g) are strongly enriched in the Shenbei lignite compared with average concentration of trace elements in the Chinese coal and worldwide lignite. These elements are mainly associated with fulvic acid (FA) and/or coal organic macromolecular compounds in most of the studied lignite samples, indicating an organic association and enrichment of these elements in the Shenbei lignite. (3) Unusually high trace elements contents in the Shenbei lignite are derived mainly from the olivine basalt (country rock of coal basin) that consists of 52.7% plagioclase, 17.8% pyroxene, 14% olivine and 15.5% Ti–Fe oxide minerals. These olivine basalts have higher Cr, Ni, Pb and Zn contents than other types of rock and worldwide basalts do. (4) Fly ash of the Shenbei lignite, with 90% 1–50 μm amorphous particles and 8% 1–10 μm cenosphere, has high contents of Zn (23,707 μg/g), Be (12 μg/g), Sr (1574 μg/g), Pb (486 μg/g) and Cr (349 μg/g). In particular, the ferruginous micro-cenoshperes contain 1–12.79% Zn. Fine bottom ash (<0.031mm) of the Shenbei lignite has higher contents for most of the elements with the exception of Mo, Sn and Zn. Therefore, the potentially environmental and health impact of the fly ash and fine bottom ash should constitute a major concern.  相似文献   

19.
The potential for using groundwater helium surveys in exploration has been evaluated by conducting local and regional surveys in several mineralized and background areas in Australia. Dissolved helium contents decrease markedly upwards, particularly in the top 10–15m, due to degassing in attaining dynamic equilibrium with the atmosphere. Gradients of depth profiles are not uniform but because total concentration variations to 50m or more are commonly less than 10, whereas regional variations are 103–105, samples from the greatest constant depth possible below water-table are adequate for survey purposes. Helium concentrations in excess of the atmosphere equilibrium value of 0.044 μl He/l H2O were found to be associated with uranium mineralization at Honeymoon (6.9–44.4 μl/l), Manyingee (0.08–1.68 μl/l), Bennett Well (9.9–29.5 μ/l) and the Stuart Shelf—Roxby Downs (910–2495 μl/l), with a carbonatite at Mt. Weld (0.18–13.6 μl/l), and with kimberlites at Wandagee (0.2–3.25 μl/l). No anomaly was associated with the shallow calcrete uranium deposit at Yeelirrie. However, equivalent or higher concentrations were found in groundwaters from unmineralized areas around these deposits, e.g. up to 85 μl/l at Manyingee—Bennett Well, to 215 μl/l at Yeelirrie and to 1525 μl/l, Stuart Shelf—Mt. Gunson. Similarly, helium in waters from stock wells near Mt. Weld appears to indicate the presence of the carbonatite but in a survey of a geologically similar area near Malcolm, equivalent anomalies were not related to carbonatite.Although the uranium (and thorium) mineralization is a significant source, high helium concentrations can arise by accumulation in groundwaters with long residence times and by leakage from deep sources, particularly granitoid basement. The concentration reached is also a function of the porosity and configuration of the aquifer and the permeability of the aquiclude to helium. These factors are more important in determining dissolved helium concentrations than the uranium and thorium contents of the rocks. However, the effects are not readily quantifiable, particularly in exploration areas where geology and hydrology are relatively unknown, hence helium groundwater data can be difficult if not impossible to interpret.  相似文献   

20.
M. Doi  G. Warren  M.E. Hodson   《Applied Geochemistry》2005,20(12):2207-2216
Ochre is an unwanted waste product that accumulates in wetlands and streams draining abandoned coal and metal mines. A potential commercial use for ochre is to remediate As contaminated soil. Arsenic contaminated soil (605 mg kg−1) was mixed with different ochres (A, B and C) in a mass ratio of 1:1 and shaken in 20 mL of deionised water. After 72 h As concentration in solution was ca. 500 μg kg−1 in the control and 1–2.5 μg kg−1 in the ochre treated experiments. In a second experiment soil:ochre mixtures of 0.05–1:1 were shaken in 20 mL of deionised water for 24 h. For Ochres A and C, as solution concentration was reduced to ca. 1 μg kg−1 by 0.2–1:1 ochre:soil mixtures. For Ochre B, as concentration only reached ca. 1 μg kg−1 in the 1:1 ochre:soil mix. Sorption of As was best modelled by a Freundlich isotherm using As sorption per mass of goethite in the ochre (log K = 1.64, n = 0.79, R2 = 0.76, p 0.001). Efficiency of ochre in removing As from solution increased with increasing total Fe, goethite, citrate dithionite extractable Fe and surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号