首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Around Fiskefjord, southern West Greenland, Archaean amphibolite-facies, granulite-facies and retrograde orthogneisses occur in lithological and structural continuity with each other. The granulite-facies rocks here—and elsewhere in West Greenland—are surrounded by extensive areas of retrograde gneisses. Both the prograde and retrograde metamorphism took place in a major event of continental crust formation c. 3000 Ma ago, which gave rise to granulite-facies conditions in part of the rock complex exposed today. In the Fiskefjord area distributions of major and trace elements, as well as strontium and lead isotopes, show that the fades transformations were accompanied by pronounced metasomatism, and mineral chemistry indicates that the hydrous retrograde metamorphism took place under amphibolite-facies conditions and was gradual and incomplete. The metamorphic and metasomatic processes in the Fiskefjord area are believed to have been controlled by heat from continuous intracrustal injection of large masses of tonalitic magma, which caused gradual dehydration and partial melting, followed by liberation of aqueous fluids during crystallization of anatectic melts. These fluids partially retrograded previously dehydrated gneisses. In contrast, South Indian high-grade gneisses have mainly prograde amphibolite–granulite-facies transitions which are distinct and well preserved, later than penetrative deformation, and are likely to have been controlled by CO2 streaming. These amphibolite–granulite-facies transitions are reported to be near-isochemical. It is suggested that there are (at least) two different kinds of granulite-facies metamorphism: a near-isochemical prograde type in stabilized tectonic environments, perhaps controlled by influx of CO2 (e.g. in South India) and significantly post-dating original crust formation; and a fluid-deficient type with widespread anatexis, hydrous retrogression and metasomatism, which takes place during accretion of continental crust, and in which heat is the governing factor (e.g. in southern West Greenland).  相似文献   

2.
Until the middle of the 20th century, the continental crust was considered to be dominantly granitic. This hypothesis was revised after the Second World War when several new studies led to the realization that the continental crust is dominantly made of metamorphic rocks. Magmatic rocks were emplaced at peak metamorphic conditions in domains, which can be defined by geophysical discontinuities. Low to medium-grade metamorphic rocks constitute the upper crust, granitic migmatites and intrusive granites occur in the middle crust, and the lower crust, situated between the Conrad and Moho discontinuities, comprises charnockites and granulites. The continental crust acquired its final structure during metamorphic episodes associated with mantle upwelling, which mostly occurred in supercontinents prior to their disruption, during which the base of the crust experienced ultrahigh temperatures (>1000 °C, ultrahigh temperature granulite-facies metamorphism). Heat is provided by underplating of mantle-derived mafic magmas, as well as by a massive influx of low H2O activity mantle fluids, i.e. high-density CO2 and high-salinity brines. These fluids are initially stored in ultrahigh temperature domains, and subsequently infiltrate the lower crust, where they generate anhydrous granulite mineral assemblages. The brines can reach upper crustal levels, possibly even the surface, along major shear zones, where granitoids are generated through brine streaming in addition to those formed by dehydration melting in upper crustal levels.  相似文献   

3.
http://www.sciencedirect.com/science/article/pii/S1674987114000565   总被引:1,自引:0,他引:1  
During granulite-facies metamorphism of metasedimentary rocks by the infiltration of carbonic fluids, the disappearance of hydrated minerals leads to the liberation of aqueous fluids. These fluids are strongly enriched in F and C1, and a series of Large-lon-Lithophile (LIL) elements and rare metals, resulting in their depletion in granulites. To sum up the fate of these elements, we focus on three domains representing different crustal levels and showing distinct behaviours with respect to these elements. The Lapland metasedimentary granulites illustrate the behaviour of the LILE and rare metals during lower crustal metamorphism. There is no change in Ba, moderate loss in Rb, and extreme depletion in Cs, Li, and Sn. F and CI contents are also very low compared to the protoliths or average upper continental crust. Biotite and amphibole breakdown leads to the incorporation of their partitioning into a fluid or a melt. The Tranomaro metasomatized marbles recrystallizing under granulite-facies conditions represent a demonstrative example of fluid transfer from granulite-facies supracrustals to traps represented by regional scale skarns. Such fluids may be at the origin of the incompatible element enrichment detected in leucosomes of migmatites from St Malo in Brittany (France) and Black Hills in South Dakota, The northern French Massif Central provides us with an example of a potential association between incompatible element enrichment of granitic melts and granulite-facies metamorphism. U- and F- enriched fine-grained granites are emplaced along a crustal scale shear zone active during the emplacement within the St Sylvestre peraluminous leucogranitic complex, We propose that during granulite-facies metamorphism dominated by carbonic waves in a deep segment of the continental crust, these shear zones control: (i) the percolation of F-, LILE-, rare metal-rich fluids liberated primarily by the breakdown of biotite; (ii) the enhancement of partial melting by F-rich fluids at intermediate crustal lev  相似文献   

4.
Oxide–sulphide–Fe–Mg–silicate and titanite–ilmenite textures as well as their mineral compositions have been studied in felsic and intermediate orthogneisses across an amphibolite (north) to granulite facies (south) traverse of lower Archean crust, Tamil Nadu, south India. Titanite is limited to the amphibolite facies terrane where it rims ilmenite or occurs as independent grains. Pyrite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade. Pyrrhotite is confined to the high‐grade granulites. Ilmenite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade and occurring primarily as hemo‐ilmenite in the high‐grade granulite facies rocks. Magnetite is widespread throughout the traverse and is commonly associated with ilmenite. It decreases in abundance with increasing metamorphic grade. In the granulite facies zone, reaction rims of magnetite + quartz occur along Fe–Mg silicate grain boundaries. Magnetite also commonly rims or is associated with pyrite. Both types of reaction rims represent an oxidation effect resulting from the partial subsolidus reduction of the hematite component in ilmenite to magnetite. This is confirmed by the presence of composite three oxide grains consisting of hematite, magnetite and ilmenite. Magnetite and magnetite–pyrite micro‐veins along silicate grain boundaries formed over a wide range of post‐peak metamorphic temperatures and pressures ranging from high‐grade SO2 to low‐grade H2S‐dominated conditions. Oxygen fugacities estimated from the orthopyroxene–magnetite–quartz, orthopyroxene–hematite–quartz, and magnetite–hematite buffers average 2.5 log units above QFM. It is proposed that the trends in mineral assemblages, textures and composition are the result of an external, infiltrating concentrated brine containing an oxidizing component such as CaSO4 during high‐grade metamorphism later acted upon by prograde and retrograde mineral reactions that do not involve an externally derived fluid phase.  相似文献   

5.
We review petrologic observations of reaction textures from high-grade rocks that suggest the passage of fluids with variable alkali activities. Development of these reaction textures is accompanied by regular compositional variations in plagioclase, pyroxenes, biotite, amphibole and garnet. The textures are interpreted in terms of exchange and net-transfer reactions controlled by the K and Na activities in the fluids. On the regional scale, these reactions operate in granitized, charnockitized, syenitized etc. shear zones within high-grade complexes. Thermodynamic calculations in simple chemical systems show that changes in mineral assemblages, including the transition from the hydrous to the anhydrous ones, may occur at constant pressure and temperature due only to variations in the H2O and the alkali activities. A simple procedure for estimating the activity of the two major alkali oxides, K2O and Na2O, is imple- mented in the TWQ software. Examples of calculations are presented for well-documented dehydration zones from South Africa, southern India, and Sri Lanka. The calculations have revealed two end-member regimes of alkalis during specific metamorphic processes: rock buffered, which is characteristic for the precursor rocks containing two feldspars, and fluid-buffered for the precursor rocks without K-feldspar. The observed reaction textures and the results of thermodynamic modeling are compared with the results of available experimental studies on the interaction of the alkali chloride and carbonate-bearing fluids with metamorphic rocks at mid-crustal conditions. The experiments show the complex effect of alkali activities in the fluid phase on the mineral assemblages. Both thermodynamic calculations and experiments closely reproduce paragenetic relations theoretically predicted by D.S. Korzhinskii in the 1940s.  相似文献   

6.
"罗田穹隆"中的下地壳俯冲成因榴辉岩及其地质意义   总被引:12,自引:0,他引:12  
在“罗田穹隆”中发现了下地壳俯冲成因榴辉岩.榴辉岩呈透镜状或板状产于含石榴子石条带状片麻岩中.新鲜的榴辉岩主要由石榴子石、绿辉石、金红石等组成.含少量退变质的角闪石、斜长石、紫苏辉石、透辉石、(钛)磁铁矿和石英等.研究区榴辉岩以保留早期麻粒岩相变质矿物残留体以及经受晚期麻粒岩相和角闪岩相退变为特征.指示它们由扬子镁铁质下地壳麻粒岩相岩石俯冲到深部发生变质并形成榴辉岩.然后折返至下地壳发生麻粒岩相退变,由于麻粒岩相退变质阶段仅以后成合晶形式出现.因而它们可能在下地壳停留时间不长.就又进一步被构造抬升至中上地壳而发生角闪岩相退变.大别山造山带乃至扬子板块北缘现今缺乏厚层镁铁质下地壳.它们也很少出露地表.推测这些俯冲的镁铁质下地壳可能已拆离再循环进人地幔.从而为“罗田穹隆”的形成和演化以及大别山高压-超高压岩石的形成与折返机制等研究提供了关键性的岩石学证据。  相似文献   

7.
Here new mineralogical data is presented on the occurrence of K-feldspar in granulite-facies metagabbronorite xenoliths found in recent alkaline lavas from Western Sardinia, Italy. The xenoliths originated from the underplating of variably evolved subduction-related basaltic liquids, which underwent cooling and recrystallisation in the deep crust (T = 850–900 °C, P = 0.8–1.0 GPa). They consist of orthopyroxene + clinopyroxene + plagioclase porphyroclasts (An = 50–66 mol%) in a granoblastic, recrystallised, quartz-free matrix composed of pyroxene + plagioclase (An = 56–72 mol%) + Fe–Ti oxides ± K-feldspar ± biotite ± fluorapatite ± Ti-biotite. Texturally, the K-feldspar occurs in a variety of different modes. These include: (1) rods, blebs, and irregular patches in a random scattering of plagioclase grains in the form of antiperthite; (2) micro-veins along plagioclase–plagioclase and plagioclase–pyroxene grain rims; (3) myrmekite-like intergrowths with Ca-rich plagioclase along plagioclase–plagioclase grain boundaries; and (4) discrete anhedral grains (sometimes microperthitic). The composition of each type of K-feldspar is characterized by relatively high albite contents (16–33 mol%). An increasing anorthite content in the plagioclase towards the contact with the K-feldspar micro-vein and myrmekite-like intergrowths into the K-feldspar along the plagioclase–K-feldspar grain boundary are also observed. Small amounts of biotite (TiO2 = 4.7–6.5 wt.%; F = 0.24–1.19 wt.%; Cl = 0.04–0.20 wt.%) in textural equilibrium with the granulite-facies assemblage is present in both K-feldspar-bearing and K-feldspar-free xenoliths. These K-feldspar textures suggest a likely metasomatic origin due to solid-state infiltration of KCl-rich fluids/melts. The presence of such fluids is supported by the fluorapatite in these xenoliths, which is enriched in Cl (Cl = 6–50% of the total F + Cl + OH). These lines of evidence suggest that formation of K-feldspar in the mafic xenoliths reflects metasomatic processes, requiring an external K-rich fluid source, which operated in the lower crust during and after in-situ high-T recrystallisation of relatively dry rocks.  相似文献   

8.
Garnet occurs widely as a secondary mineral in the granulite-facies rocks of the Lofoten-Vesteraalen islands of North Norway. The garnet-forming reactions may be inferred from the resulting textures and are interpreted as being retrograde reactions. Microprobe analyses show that garnets with high proportions of CaO and MgO occur in coronas around olivine grains in anorthosites, whereas the most iron-rich garnets formed by reaction between plagioclase and the very iron-rich pyroxenes of some monzonitic (mangeritic) rocks. Garnets ranging in composition between these extremes formed by reactions involving biotite, plagioclase and magnetite. Textural features indicate that these reactions have been induced by oxidation of the biotite; the liberated water has converted the pyroxenes to amphibole. The net effect of the reactions is to transform the granulite-facies assemblages to amphibolite-facies assemblages.The secondary garnet is nearly ubiquitous in the granulites of the outer Lofoten islands, which may show no other signs of retrogression. On Langöy in Vesteraalen garnet occurs only within a zone of strongly retrograded gneisses. Differences in bulk composition do not satisfactorily explain the distribution of secondary garnet. This distribution, and the observed oxidation textures, imply widespread penetration of the Lofoten granulites by a transient oxidizing fluid. On Langöy these fluids apparently affected only the narrow retrograded zone. The model suggests that the 1700 to 1800 m.y. Rb/Sr date obtained by Heier and Compston (1969) for the Lofoten granulites represents the time of oxidation, whereas the 2800 m.y. date for the Langöy granulites represents the original granulite-facies metamorphism.Publication number 3 in the Norwegian Geotraverse Project.  相似文献   

9.
Quartz-carbonate gold deposits were emplaced in shear zones at or above the brittle-ductile transition. Some of the largest deposits are known to have formed along major, long-lived, transcurrent shears. Shears of this type widened downwards in the ductile regime, as a result of decreasing rock viscosity with depth; some were as wide as 40 km at depths of granulite facies metamorphism. Ductile shears are permeable and, since the permeability is along microfractures, fluid flow was pervasive, providing the opportunity for extensive chemical reaction. Reaction rates were enhanced by shear heating and by deformation-induced stress gradients in minerals, and reductions in grain size. Fluid flow tended to be upwards, because of pressure drop into the brittle portion of the shear. Given the wedge-shaped profile of ductile shears, fluids that had passed through a large volume of lower crust would have been focused at the brittle-ductile transition. Thus, if processes existed to selectively remove elements during fluid movement through the lower crust, these elements would also have been focused at this transition.One of the most constant features of quartz-carbonate lodes is carbonate alteration, which may extend kilometers out from major deposits. The 13C signature of this is consistent with a mantle source for the CO2. Upward-moving CO2 vapour of probable mantle origin has been implicated in the dehydration of amphibolite facies rocks to granulites and the concomitant depletion of large ion lithophile elements (LILE). The best documented cases of modification of the lower crust by CO2 are from major shear zones. CO2 streaming at depth could only have occurred under conditions more oxidizing than that required for graphite stability. These conditions favour solubility of gold by (a) oxidizing Au0 to Au+; (b) by dissolving sulphide from the rocks to complex with Au+. Recent work has shown that some major Archean gold deposits were derived from relatively oxidized fluids.A conceptual model is outlined for the genesis of at least some quartz-carbonate gold deposits. CO2 permeating deep ductile shear zones dehydrated amphibolite facies rocks. A relatively oxidized CO2-H2O fluid was produced, which dissolved sulphide and gold from large volumes of lower crust. Gold was carried upwards in the narrowing shear, to be focused and precipitated at or above the brittle-ductile transition.  相似文献   

10.
Reaction textures and fluid inclusions in the~2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses(Central Zone of the Limpopo Complex) suggest that the formation of these zones is a result of close interplay between dehydration process along ductile shear zones triggered by H2O-CO2-salt fluids at 750—800℃and 5.5—6.2 kbar.partial melting,and later exsolution of residual brine and H2O-CO2 fluids during melt crystallization at 650—700℃.These processes caused local variations of water and alkali activity in the fluids,resulting in various mineral assemblages within the dehydration zone.The petrological observations are substantiated by experiments on the interaction of the Sand River gneiss with the H2O-CO-2-(K,Na)Cl fluids at 750 and 800℃and 5.5 kbar.It follows that the interaction of biotite-amphibole gneiss with H2O-CO2-(K.Na)Cl fluids is accompanied by partial melting at 750—800℃.Orthopyroxene-bearing assemblages are characteristic for temperature 800℃and are stable in equilibrium with fluids with low salt concentrations,while salt-rich fluids produce clinopyroxene-bearing assemblages.These observations arc in good agreement with the petrological data on the dehydration zones within the Sand River orthoeneisses.  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987114000589   总被引:1,自引:0,他引:1  
At peak granulite-facies metamorphic conditions, lower continental crust is arguably fluxed by large amounts of two key low water activity fluids: (i) high-density CO2 and/or (ii) concentrated saline so- lutions. These fluids are either internally-derived, generated by mineral reactions or dehydration melting or, notably for CO2, externally-derived, issued from the underlying mantle. Postmetamorphic evolution results in complete disappearance of these fluids, except for minute remnants preserved in minerals as fluid inclusions. Two major processes are involved: (i) at peak conditions, granitoid magmas form, migrate upward, and crystallize as shallow intrusions in the upper crust (mineralized porphyry types or reduced intrusions); (ii) during the rapid decompression which almost systematically follows a period of post-peak isobaric cooling, especially for ultrahigh-temperature granulites (anticlockwise P-T paths), quartz-carbonate megashear zones are formed by repeated periods of seismic activity. Seismic activity may continue until all free fluids have disappeared, resulting in the ultramylonites and pseudotachylites that are found in many granulite domes. A great majority of vein-type Au deposits worldwide occur in the above-mentioned settings or nearby. We suggest that the Au has been scavenged by the granulite fluids, then redistributed and concentrated during the formation of veins and related phenomena.  相似文献   

12.
苏鲁造山带超高压变质岩岩石学、氧同位素、流体包裹体和名义上无水矿物的研究表明,流体-岩石相互作用在大陆地壳的俯冲与折返过程中起到多重的重要作用,并形成了复杂的流体演化过程:(1)大陆表壳岩通过与高纬度大气降水的交换作用被广泛水化,并获得了异常低的氧同位素成分;(2)在水化陆壳物质的俯冲过程中发生了一系列的进变质脱水反应,所释放的流体主要结合进了高压、超高压含水矿物和名义上无水超高压矿物;(3)在超高压变质过程中,以水为主的变质流体通过选择性的吸收使其盐度逐渐升高,并在峰期出现高密度、高盐度的H2O或CO2-H2O流体。有机质的分解反应在局部形成了以CO2、N2、CH4或它们的混合物为主要成分的变质流体;(4)名义上无水超高压矿物的结构水出溶是早期退变质流体的主要来源,并在局部富集形成了高压变质脉体;(5)透入性的中、低盐度水流体活动使超高压变质岩通过一系列的水化反应转变成角闪岩相变质岩;(6)沿韧性剪切带和脆性破碎带的强烈水流体活动为绿片岩相退变质作用和低压石英脉的形成提供了变质流体;(7)可变盐度的H2O或CO2-H2O流体是整个超高压变质岩形成与折返过程中的主要流体,但局部的流体.岩石相互作用形成了非极性的变质流体。  相似文献   

13.
Geothermometric constraints on auriferous shear zones of the Renco mine in the Northern Marginal Zone of the late-Archaean, granulite-facies Limpopo Belt in southern Zimbabwe indicate that deformation and associated mineralization occurred at temperatures of at least 600 °C up to more likely 700 °C. Mid- to upper-amphibolite facies conditions during mineralization correspond to the regional-scale retrogression of granulite facies wall rocks during the late-Archaean thrusting of high-grade metamorphic rocks of the Northern Marginal Zone onto low- to medium-grade granite-greenstone terrains of the Zimbabwe craton. Mineral assemblages indicate that the ore fluid was moderately oxidized with log fO2 values between 10−17 and 10−18 bars with high H2S activities of 0.25–0.75. Elements enriched in the shear zones include Au, S, Fe, Cu, Mo, Bi, Te, Ni, Co, and H2O, Au and Cu being the most enriched. Geochemically, Au correlates with Cu but not with S, which, together with the fact that gold is only rarely intergrown or in direct contact with sulfides, possibly indicates a transport of gold as a chloride complex. The siting of gold along fractures or within implosion breccias suggests that gold was precipitated due to fluid immiscibility induced by catastrophic fluid pressure drops during seismic slip events. Fluid inclusions are predominantly CO2 (±CH4 ± N2)-rich, but petrographic work indicates that fluid inclusions have undergone extensive post-entrapment modifications due to the pervasive recrystallization of mineral textures in the high-temperature shear zones. The mineralized shear zones are enriched in 18O compared to wall-rock enderbites, which is interpreted to represent an influx of externally derived fluids of probably metamorphic origin. Based on temporal and spatial relationships between mineralization, late-Archaean overthrusting of the Northern Marginal Zone onto the Zimbabwe craton, and coeval amphibolite-facies hydration of granulites, we suggest that the Renco mineralization formed in a mid-crustal environment from metamorphic fluids that were generated from dehydration of subcreted greenstone terrains of the Zimbabwe craton. Received: 27 October 1998 / Accepted: 13 August 1999  相似文献   

14.
胶北地体位于华北克拉通东部陆块胶-辽-吉带南端,主要由闪长质-TTG-花岗质片麻岩、变质表壳岩系和变质镁铁-超镁铁质岩所组成。本文通过对胶北早前寒武纪变质岩系的岩石学、矿物化学、变质反应结构和序列、变质温度和压力估算与同位素年代学资料的综合研究和总结,得出以下重要结论:(1)与华北克拉通东部陆块其它地区太古宙变质基底类似,本区也存在~2500Ma区域性新太古代变质事件,且与本区2550~2500Ma岩浆作用在时间上非常接近,其变质作用发生的时间比岩浆作用要晚10~50Myr,指示本区~2500Ma区域性变质事件可能与大规模的幔源岩浆底侵作用存在密切的成因关系。(2)胶北还存在1950~1850Ma区域性古元古代变质事件,并导致了大量高压基性和泥质麻粒岩的形成,高压基性麻粒岩主要以不规则透镜体、变形岩墙群或岩脉群的形式赋存于闪长质-TTG-花岗质片麻岩之中,并集中分布在安丘-平度-莱西-莱阳-栖霞一带,大致沿北东-南西向断续带状分布,构成了一条长约300km的古元古代高压麻粒岩相变质带。(3)本区古元古代高压麻粒岩以记录近等温减压(ITD)及随后近等压降温(IBC)的顺时针P-T-t轨迹为特征,指示本区变质杂岩在古元古代晚期曾强烈地卷入了与俯冲-拼贴-碰撞造山有关的构造过程,并可能经历了如下复杂的构造演化:(I)在古元古代晚期2000~1950Ma,随着有限大洋地壳的持续俯冲作用,本区各类变质岩的原岩开始经历一次构造增厚事件,并导致了它们的原岩经历了早期绿片岩相-角闪岩相进变质作用;(II)1950~1870Ma,大洋地壳俯冲作用结束,本区开始发生弧-陆拼贴和陆-陆碰撞作用,大陆地壳持续缩短和加厚,在加厚下地壳或岛弧根部带约50km的深度,发生了区域性高压麻粒岩相变质作用,并导致了本区变基性岩和变泥质岩分别形成了石榴石+单斜辉石+斜长石±角闪石±石英±铁-钛氧化物和石榴石+蓝晶石+钾长石+斜长石+黑云母+石英+铁-钛氧化物+熔体的高压麻粒岩相矿物组合。(III)1870~1800Ma,在同碰撞峰期变质结束之后,本区造山作用进入了后碰撞构造折返-伸展演化阶段,先后经历了早期快速构造折返和晚期缓慢冷却降温两个构造热演化阶段。其中,在早期快速构造折返阶段,高压麻粒岩经历了峰后近等温或略微增温减压退变质作用的叠加,高压基性麻粒岩表现为沿石榴石边部形成了含斜方辉石的后成合晶。与此同时,早期快速构造折返阶段还伴随着热松弛和伸展作用,出现一系列的幔源基性岩浆活动,不仅导致了本区大量未经历高压麻粒岩相变质的变基性岩群的形成,同时也诱发了区内大规模的地壳深熔作用的发生。自温度高峰期之后,本区地壳岩石还经历了一个近等压冷却降温过程,并发生了区域性角闪岩相退变质作用,高压基性麻粒岩表现为石榴石和斜方辉石边部常出现含角闪石的退变边或后成合晶。最终,在1800Ma左右,本区含电气石花岗伟晶质岩脉的大量出现,则标志着胶北地体古元古代晚期(2000~1800Ma)俯冲-拼贴-碰撞造山作用的最终结束。  相似文献   

15.
The granitoids and related polymetallic mineralization in the Zhejiang Province at the southeast margin of the Yangtze Block in China provide an important window to evaluate metallogeny associated with convergent margin magmatism. Here, we present geochronological, geochemical, and isotopic data from the granitic rocks of west Zhejiang, to constrain the timing of transformation of the tectonic setting of this region from volcanic arc to intra-plate during Late Mesozoic and its bearing on regional metallogeny. The granitic rocks in west Zhejiang can be geochemically subdivided into two groups. The first group is characterized by relatively steep rare earth element (REE) patterns with slight Eu anomalies, high Sr, low Yb, and negative Nb–Ta–Ti (NTT) anomalies, indicating a volcanic arc environment with a thickened crust in a convergent setting. The second group is featured by flat REE patterns with prominent negative Eu anomalies, low Sr, high Yb, and weak NTT anomalies, suggesting an intra-plate extensional environment with a thin crust. The geochronology of granitic rocks in west Zhejiang, combined with ages of regional tectonic basins and nappe structures, constrains the timing of the tectonic transformation to be in the range from 150 to 140 Ma. Sr–Nd isotopic data and a positive correlation displayed by oxygen fugacity (fO2), and La/Sm and Ba/Th ratios (proxies of subducted sediments and slab dehydration fluids) suggest that the high oxygen fugacity is probably related to the melting of subducted sediments and slab dehydration. From 180 to 80 Ma, due to the increasing dip angle of the subducted Izanagi Plate, the volcanic arc belt migrated oceanward, leaving most of the interior of Zhejiang Province under an intra-plate environment where insufficient subducted components and upwelling mantle generated reduced magmas which were not favorable for Cu–Mo mineralization. Our model provides a plausible explanation for the absence of Cu–Mo porphyry deposits in the adjacent region of Zhejiang, Jiangxi, and Anhui provinces (Zhe-Gan-Wan region) after 140 Ma.  相似文献   

16.
http://www.sciencedirect.com/science/article/pii/S167498711400067X   总被引:1,自引:0,他引:1  
The Proterozoic Bamble Sector, South Norway, is one of the world's classic amphiboliteto granulite- facies transition zones. It is characterized by a well-developed isograd sequence, with isolated 'granulite-facies islands' in the amphibolite-facies portion of the transition zone. The area is notable for the discovery of C02-dominated fluid inclusions in the granolite-facies rocks by Jacques Touter in the late 1960's, which triggered discussion of the role of carbonic fluids during granulite genesis. The aim of this review is to provide an overview of the current state of knowledge of the Bamble Sector, with an emphasis on the Arendal-Froland-Nelaug-Tvedestrand area and off shore islands (most prominantly Tromay and Hisoy) where the transition zone is best developed. After a brief overview of the history of geological research and mining in the area, aspects of sedimentary, metamorphic and magmatic petrology of the Bamble Sector are discussed, including the role of fluids. Issues relevant to current geotectonic models for SW Scandinavia, directly related to the Bamble Sector, are discussed at the end of the review.  相似文献   

17.
部分熔融作用与高级变质岩变形作用是相互制约,变形作用能够提高岩石部分熔融程度,降低熔融温度。熔体存在影响和制约岩石强度和变形机制。大青山高级岩经历了下部地壳构造层次变质变形和深熔作用改造,形成了复杂构造要素组合。宏观与微观构造特点表明:高级变质岩变形机制主要为熔体增强颗粒边界扩散和颗粒流动,使岩石发生大规模的塑性流动。在宏观上形成了不对称流动组构、熔融线理、岩石和矿物条带、层内底辟褶皱和大型穹窿构造。但是,在微观上矿物颗粒变形不明显,晶内变形组构不发育,表现为三边平衡结构,与静态结晶变质岩结构相似,形成了地壳深部构造层次上变质构造岩-构造片麻岩。  相似文献   

18.
Vein-controlled retrograde infiltration of H2O-CO2 fluids into Dalradian epidote amphibolite facies rocks of the SW Scottish Highlands under greenschist facies conditions resulted in alteration of calcite-rich marble bands to dolomite and spatially associated 18O enrichment of about 10%. on a scale of metres. Fluid inclusion data indicate that the retrograde fluid was an H2O-salt mixture with a low CO2 content, and that the temperature of the fluid was about 400d? C. Detailed petrographic and textural (backscattered electron imaging) studies at one garnet-grade locality show that advection of fluid into marbles proceeded by a calcite-calcite grain edge flow mechanism, while alteration of non-carbonate wall-rock is associated with veinlets and microcracks. Stable isotopic analysis of carbonates from marble bands provides evidence for advection of isotopic fronts through carbonate wall-rocks perpendicular to dolomite veins, and fluid fluxes in the range 2.4–28.6 m3/m2 have been computed from measured advection distances. Coincidence of isotope and reaction fronts is considered to result from reaction-enhanced kinetics of isotope exchange at the reaction front. Front advection distances are related to the proportion of calcite to quartz in each marble band, with the largest advection distance occurring in nearly pure calcite matrix. This relationship indicates that fluid flow in carbonates is only possible along fluid-calcite-calcite grain edges. However, experimental constraints on dihedral angles in calcite-fluid systems require that pervasive infiltration occurred in response to calcite dissolution initiated at calcite-calcite grain junctions rather than to an open calcite pore geometry. The regional extent of the retrograde infiltration event has been documented from the high δ18O of dolomite-ankerite carbonates from veins and host-rocks over an area of least 50 × 50 km in the SW Scottish Highlands. Isotopically exotic 18O-rich retrograde fluids have moved rapidly upwards through the crust, inducing isotopic exchange and mineral reaction in wall-rocks only where lithology, pore geometry or mineral solubilities, pressure and temperature have been appropriate for pervasive infiltration to occur.  相似文献   

19.
Extreme uplift associated with the formation of the 2.02 Ga Vredefort dome has exposed a substantial cross section through the crystalline early Archean basement complex rocks of the Kaapvaal craton. The rocks comprise polydeformed high-grade tonalite-trondhjemite-granodiorite (TTG) gneisses, migmatites and late-tectonic intrusive granitoids that straddle the upper amphibolite-to granulite-facies transition. Field, petrographic and geochemical data indicate that compositional heterogeneity occurs on a local scale and reflects the migmatitic character of the rocks rather than crustal-scale layering as has been previously proposed. No evidence has been found to support exposure of either a melt-depleted, refractory, lower crust or an upper crustal batholithic granite layer; however, the immense volume of granitic leucosome in the rocks suggests that the exposed section represents an intermediate level between these two zones. Granitic leucosomes in the upper amphibolite-facies migmatites appear to be intrusive into the predominantly trondhjemitic host rocks, rather than of in situ derivation. Leucosome compositions in the granulite-facies migmatites are more variable, ranging from granitic and charnockitic to enderbitic, probably reflecting at least some local derivation. Leucosomes and small granitoid bodies show local-scale geochemical variation that can be explained in terms of variable amounts of melt segregation and migration, and fractionation of minerals such as K-feldspar within the melts.  相似文献   

20.
Spectacular reaction textures in poikiloblastic scapolitite boudins, within marbles in the continental crust exposed in the Lützow–Holm Complex, East Antarctica, provide insights into the changing fluid composition and movement of fluid along grain boundaries and fractures. Petrographic and geochemical features indicate scapolite formation under contrasting fluid compositions. Core composition of scapolite poikiloblasts (ScpI) are marialitic (Cl = 0.7 apfu) whereas rims in contact with biotite or clinopyroxene are meionite rich. Fine‐grained recrystallized equigranular scapolite (ScpII) shows prominent chemical zoning, with a marialitic core and a meionitic rim (Cl = 0.36 apfu). Scapolite poikiloblasts are traversed by ScpIII reaction zones along fractures with compositional gradients. Pure CO2 fluid inclusions are observed in healed fractures in scapolite poikiloblasts. These negative crystal‐shaped fluid inclusions are moderately dense, and are believed to be coeval with ScpIII formation at temperatures >600 °C and a minimum pressure of c. 3.8 kbar. Grain‐scale LA‐ICPMS studies on trace and rare earth elements on different textural types of scaplolites and a traverse through scapolite reaction zone with compositional gradient suggest a multistage fluid evolution history. ScpI developed in the presence of an internally buffered, brine‐rich fluid derived probably from an evaporite source during prograde to peak metamorphism. Recrystallization and grain size reduction occurred in the presence of an externally sourced carbonate (CaCO3)‐bearing fluid, resulting in the leaching of Cl, K, Rb and Ba from ScpI along fractures and grain boundaries. Movement of fluids was enhanced by micro‐fracturing during the transformation of ScpI to ScpIII. Fractures in fluorapatite are altered to chlorapatite proving evidence for the pathways of escaping Cl‐bearing fluids released from ScpI. The present study thus provides evidence for the usefulness of scapolite in fingerprinting changing volatile composition and trace element contents of fluids that percolate within the continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号