首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Chek-Chikan Massif is a typical representative of basic magmatism, which is widely spread within the Dzhugdzhur-Stanovoi superterrane. The massif consists of gabbronorites, amphibole gabbros, gabbroanorthosites, and anorthosites. The geochemical similarity of the gabbronorites, amphibole gabbros, and anorthosites suggests their genetic link and allows us to consider them as products of intrachamber differentiation. The main geochemical peculiarity of this rock association is the high degree of the melt fractionation. The rocks of the considered massif are enriched in large ion lithophile elements such as Sr (424–1018 ppm) and Ba (50–754 ppm) and have moderate to low contents of such high-field strength elements as Nb (1–17 ppm), Hf (0.4–1.0 ppm), and Th (0.05–1.14 ppm). According to the model calculations, the initial melt had a basaltic composition and crystallized at a temperature of ∼1180 °C and pressure up to 4 kbar. The U-Pb zircon age of the massif is 203 ± 1 Ma. The geochemical peculiarities of the massif and its confinement to the northern framing of the eastern segment of the Mongol-Okhotsk fold belt make it possible to presume that its formation was related to either the activity of the Siberian plume, to one of the stages of closure of the Mongol-Okhotsk paleoocean in the rear part of subduction zone, or to the slab break off.  相似文献   

2.
造山带内蛇绿混杂岩带结构与组成的精细研究可为古板块构造格局重建和古洋盆演化提供最直接证据。北山造山带内存在多条蛇绿混杂岩带,记录了古亚洲洋古生代以来的俯冲和闭合过程,然而其大地构造演化长期存在争议。红石山—百合山蛇绿混杂岩带位于北山造山带北部,主要由蛇绿(混杂)岩和增生杂岩组成,具典型的"块体裹夹于基质"的混杂岩结构特征,发育紧闭褶皱、无根褶皱、透入性面理和双重逆冲构造。蛇绿混杂岩带中岩块主要由超镁铁质-镁铁质岩(变质橄榄岩、辉石橄榄岩、异剥辉石岩、蛇纹岩)、辉长岩、玄武岩、斜长花岗岩、硅质岩等洋壳残块以及奥陶纪火山岩、灰岩等外来岩块组成,基质则主要为蛇纹岩、砂板岩及少量的绿帘绿泥片岩;在蛇绿混杂岩带北侧发育有台地相灰岩与深水浊积岩组成的沉积混杂块体,具滑塌堆积特征。蛇绿混杂岩带内发育三期构造变形,前两期为中深构造层次下形成的透入性变形,第三期为浅表层次的脆性变形,未形成区域性面理。空间上,由增生杂岩和蛇绿(混杂)岩组成的百合山蛇绿混杂岩带共同仰冲于绿条山组浊积岩之上,具有与红石山地区蛇绿混杂岩带相似的岩石组成、构造变形和时空结构特征。百合山蛇绿混杂岩带南侧发育同期的明水岩浆弧,由晚石炭世石英闪长岩-花岗闪长岩-二长花岗岩以及白山组岛弧火山岩组成,其与百合山蛇绿混杂岩带共同构成了北山造山带北部石炭—二叠纪的沟-弧体系,指示了红石山—百合山洋盆向南俯冲的极性。  相似文献   

3.
内蒙古西乌旗迪彦庙蛇绿岩位于二连浩特—贺根山蛇绿岩带与交其尔—锡林浩特蛇绿岩带一线之间,大地构造位于中亚造山带中段的锡林浩特晚古生代褶皱带。本文主要对其内的辉长岩进行了地球化学及年代学研究。研究结果表明:辉长岩w(SiO2)为45.49%~50.48%,w(Al2O3)为13.31%~17.05%,w(K2O)为0.01%~0.65%,w(Na2O)为0.30%~4.15%,w(CaO)为8.00%~19.54%,w(MgO)为5.22%~10.92%,w(P2O5)为0.03%~0.23%,显示西乌旗迪彦庙蛇绿岩中的辉长岩属于高铝、低钾、低钠的拉斑系列;辉长岩的稀土元素总量低,重稀土元素比轻稀土元素富集,微量元素Nb、Zr、Hf、Ti相对亏损,K、Ta、Sr相对富集;La-ICP-MS锆石U-Pb测年获得辉长岩的年龄为(345.3±2.3)Ma,为早石炭世。综合分析,辉长岩可能为受到俯冲作用产生的流体交代而成,而并非结晶分异作用所致;迪彦庙蛇绿岩形成环境为弧前环境。  相似文献   

4.
The Makran accretionary prism in southeastern Iran contains extensive Mesozoic zones of melange and large intact ophiolites, representing remnants of the Tethys oceanic crust that was subducted beneath Eurasia. To the north of the Makran accretionary prism lies the Jaz Murian depression which is a subduction-related back-arc basin. The Band-e-Zeyarat/Dar Anar ophiolite is one of the ophiolite complexes; it is located on the west side of the Makran accretionary prism and Jaz Murian depression, and is bounded by two major fault systems. The principal rock units of this complex are a gabbro sequence which includes low- and high-level gabbros, an extensive sheeted diabase dike sequence, late intrusive rocks which consist largely of trondhjemites and diorites, and volcanic rocks which are largely pillow basalts interbedded with pelagic sedimentary rocks, including radiolarian chert. Chondrite- and primitive-mantle-normalized incompatible trace element data and age-corrected Nd, Pb, and Sr isotopic data indicate that the Band-e-Zeyarat/Dar Anar ophiolite was derived from a midocean ridge basalt-like mantle source. The isotopic data also reveal that the source for basalts was Indian-Ocean-type mantle. Based on the rare earth element (REE) data and small isotopic range, all the rocks from the Band-e-Zeyarat/Dar Anar ophiolite are cogenetic and were derived by fractionation from melts with a composition similar to average E-MORB; fractionation was controlled by the removal of clinopyroxene, hornblende and plagioclase. Three 40Ar–39Ar plateau ages of 140.7±2.2, 142.9±3.5 and 141.7±1.0 Ma, and five previously published K–Ar ages ranging from 121±4 to 146±5 Ma for the hornblende gabbros suggest that rocks from this ophiolite were formed during the Late Jurassic–Early Cretaceous. Plate reconstructions suggest that the rocks of this complex appear to be approximately contemporaneous with the Masirah ophiolite which has crystallization age of (150 Ma). Like Masirah, the rocks from the Band-e-Zeyarat/Dar Anar ophiolite complex represent southern Tethyan ocean crust that was formed distinctly earlier than crust preserved in the 90–100 Ma Bitlis-Zagros ophiolites (including the Samail ophiolite).  相似文献   

5.
通过对辽吉朝古元古代褶皱带的构造演化分析,尤其对褶皱带南带内发育的典型构造组合及相应出现的岩浆活动、变质作用和变形作用的系统构造分析,提出岩浆核杂岩是古元古代褶皱带早期演化过程中形成的主要构造型式。岩浆核杂岩主要由3种成分、性质、特点及变质演化不同的构造单元构成,即核部岩浆杂岩、外部的滑覆体壳及其间的幔部顺层韧性剪切带。岩浆核杂岩的构造分析,揭示出它们形成于褶皱带早期阶段演化的伸展作用过程中。  相似文献   

6.
张天羽  李才  苏犁  解超明  吴彦旺  王明 《地质通报》2014,33(11):1662-1672
在藏北羌塘中部日湾茶卡地区发现蛇绿混杂岩,岩石单元包括堆晶辉长岩、辉长岩岩墙、玄武岩等。通过对该蛇绿岩中堆晶辉长岩的地球化学研究发现,它们属于E-MORB型,与桃形湖和果干加年山地区的蛇绿岩比较相似。堆晶辉长岩(R12T11)中用于LA-ICP-MS定年的锆石具有明显的Ce正异常和Eu负异常,属于典型的岩浆成因锆石;12个测试点的年龄加权平均值为442.7Ma±3.4Ma,表明日湾茶卡蛇绿岩形成于早志留世。日湾茶卡蛇绿岩是龙木错—双湖—澜沧江缝合带内一处新的早古生代洋壳残片,将为进一步揭示龙木错—双湖—澜沧江洋的构造演化提供新依据。  相似文献   

7.
The early Carboniferous Shuanggou ophiolite lies in the middle segment of the Ailao Shan orogenic belt between the South China Block to the north and the Indochina Block to the south. The ophiolite consists of meta-peridotite, gabbro, diabase and basalt, capped by radiolarian-bearing siliceous rocks. No layered gabbros or sheeted dikes have been observed. The meta-peridotite underwent low degrees of partial melting, consistent with the low magma budget of this oceanic lithosphere. Whole-rock rare earth element analyses of gabbro indicate a geochemical affinity with normal mid-ocean ridge basalts, consistent with the crystallization order of plagioclase followed by clinopyroxene recognized in the gabbros. The ophiolite is believed to have formed in a small, slow-spreading oceanic basin. Collision of the Indochina Block with the South China Block in the late Paleozoic was responsible for the closure of the oceanic basin and emplacement of the ophiolite in the Ailao Shan orogenic belt.  相似文献   

8.
The Ust’-Belaya mafic-ultramafic massif is assigned to the Western Koryak fold belt and largely composed of residual spinel peridotites, layered spinel and plagioclase peridotites, and gabbros. These rocks are crosscut by occasional plagiogranite and diorite veins and exhibit locally a close spatial association with basalts and carbonate-sedimentary deposits of Late Devonian and Early Carboniferous age. Based on this evidence, the massif was ascribed to the pre-Late Devonian ophiolite association. Our study presents new U-Pb SHPIMP II zircon ages and petrographic and mineralogical data on samples of the layered amphibole gabbro and vein diorite from the Ust’-Belaya massif. The approximate concordant U-Pb age corresponding to a timing of of amphibole gabbro crystallization is 799 ± 15 Ma, and the concordant U-Pb age reflecting a timing of of vein diorite crystallization is 575 ± 10 Ma. These ages coupled with geological studies of the massif, petrological and mineralogical investigations of the dated samples, as well as literature data on the petrology of peridotites and the age of formed plagiogranites suggest that the peridotites and layered gabbros of the Ust’-Belaya massif were formed by the Late Riphean, whereas the vein diorite and plagiogranite were resulted from a later (Vendian-Cambrian) magmatic stage. The peridotites and gabbros of the massif display no genetic relationship with spatially associated basalts and sedimentary rocks and, thus, they cannot be considered as members the pre-Late Devonian ophiolitic association. The results of this study will inevitably lead to a significant revision of geological and geodynamic interpretations of the Ust’-Belaya mafic-ultramafic massif. However, uneven study of the Precambrian complexes of the Koryak and Chukchi areas, their evolution in different structures of the region cannot yet be described by a single geodynamic scenario.  相似文献   

9.
南祁连拉脊山口增生楔的结构与组成特征   总被引:2,自引:1,他引:1  
造山带内增生楔/增生杂岩结构与组成的精细研究可为古洋盆演化和古板块构造格局重建提供最直接证据。北祁连构造带发育多条增生杂岩带,记录了阿拉善和中祁连地块之间原特提斯洋的俯冲和闭合过程,然而南祁连构造带大地构造演化长期存在争议。地质填图结果表明,南祁连构造带拉脊山口地区存在一套强烈片理化的玄武岩、灰黑色和红色硅质岩、砂岩和泥岩组合,它们与一套呈现"块体裹夹于基质"结构特征的混杂岩共同构成了增生杂岩,发育双重逆冲构造、逆冲断层、无根褶皱、紧闭褶皱和透入性面理。该增生杂岩与蛇绿岩之间为断层接触,并位于断层下盘。混杂岩是由斜长花岗岩(561Ma)、斜长岩(507Ma)、辉绿岩、玄武岩、硅质岩和砂岩等外来或原地岩块与浊流成因的细碎屑岩基质共同组成;基质和砂岩块体均发育同沉积构造,呈现出滑塌堆积典型特征。空间上,拉脊山口增生杂岩与上覆蛇绿岩被断层所分割且共同仰冲于中祁连南缘青石坡组浊积岩之上,具有与东侧昂思多地区增生杂岩和蛇绿岩相似的岩石组成、构造变形和时空结构特征。它们与南侧的岛弧带共同构成了南祁连构造带寒武纪-早奥陶世沟-弧体系,指示了寒武纪-早奥陶世时期南祁连洋盆向南俯冲。  相似文献   

10.
The Amnay Ophiolitic Complex in Mindoro, the Philippines, is considered an emplaced Cenozoic South China Sea oceanic lithosphere as a result of the collision between the Palawan microcontinental block and the Philippine mobile belt. Middle Oligocene sedimentary rocks intercalated with dominantly MORB-like pillow lavas and volcanic flows suggest the generation of this ophiolite complex in an intermediate spreading ridge within a back-arc basin setting. The volcanic rock suite geochemistry also manifests a slab component suggesting that it is a supra-subduction zone ophiolite. Petrography of the gabbros shows a plagioclase-clinopyroxene crystallization order consistent with a back-arc basin setting. Spinel and pyroxene geochemistry shows that the lherzolites and aluminous-spinel harzburgites are products of low degrees of partial melting. The chromitites hosted by the harzburgites could have not been associated with the MORB-like volcanic suites, gabbros, lherzolites and aluminous-spinel harzburgites. The chromitites are products of mantle sources that have undergone higher degrees of partial melting that would have involved the presence of water. The study of this ophiolitic complex gives us a glimpse of the characteristics of the South China Sea.  相似文献   

11.
乌兰敖包基性-超基性岩位于阿拉善北缘兴蒙造山带,由方辉橄榄岩、辉绿岩、辉长岩组成。地球化学分析表明:蛇纹石化橄榄岩为地幔橄榄岩,辉绿岩和辉长岩为拉斑玄武岩系列岩石,均具有与N-MORB相似的微量元素特征,但区别于N-MORB,3种岩石共同组成了蛇绿混杂岩。矿物学分析表明蛇纹石化橄榄岩中橄榄石为地幔橄榄岩中镁橄榄石(Fo=91.10~91.81),铬铁矿为铬尖晶石,具有高的Cr~#和Mg~#值分别为61.04~64.44、50.40~56.37)。单斜辉石出现在方辉橄榄岩、辉长岩及辉绿岩中,而斜方辉石只出现在方辉橄榄岩中,其中方辉橄榄岩中单斜辉石为顽透辉石,辉长岩中为普通辉石,而辉长岩中为次透辉石、贫钙普通辉石、普通辉石,斜方辉石均为斜顽辉石。辉长岩U-Pb年龄为344.5±1.5 Ma,表明该蛇绿混杂岩形成于早石炭世。地球化学及矿物学特征表明乌兰敖包蛇绿岩形成于俯冲早期的弧前环境中,属于SSZ型蛇绿岩。蛇绿混杂岩成因提供铬铁矿形成的有利条件,因此应围绕铬铁矿进行找矿工作。  相似文献   

12.
The paper presents results of petrochemical, geochemical, and isotope-geochemical study of the Patchemvarek and Severnyi gabbroanorthosite massifs of the Kola Peninsula. It was shown that the rocks of these massifs differ from the gabbroanorthosite massifs of the Neoarchean Keivy-Kolmozero Complex in the more calcic composition (70–85% An) of normative plagioclase, and low contents of TiO2, FeO, and Fe2O3. In terms of chemical composition, the gabbroanorthosites of the studied massifs are close to the rocks of the Fisken?sset Complex (Southwestern Greenland) and to the anorthosites of the Vermillion Lake Complex (Canada). U-Pb zircon dating established Mesoarchean ages of 2925 ± 7 and 2935 ± 8 Ma for the gabbroan-orthosites of the Patchemvarek and Severnyi massifs, respectively. It was shown that the gabbroanorthosites of the studied massifs have fairly low REE contents (Ce n = 2.2−4.2, Yb n = 1.6−2.6) and distinct positive Eu anomaly. Comagmatic ultrabasic differentiates have practically unfractionated REE pattern, low total REE contents (Ce n = 1.2, Yb n = 1.1, La/Yb n = 1.3), and no Eu anomaly. The studied samples of the Archean gabbroanorthosites are characterized by positive εNd = +2.68 for the gabbroanorthosites of the Severnyi Massif and from + 2.77 to + 1.66 for the Patchemvarek Massif. Initial strontium isotope ratios are 87Sr/86Sr i = 0.70204 ± 8 and 87Sr/86Sr i = 0.70258 ± 8 for the rocks of the Severnyi and Patchemvarek massifs, respectively. Our study showed that the obtained U-Pb zircon ages for the gabbroanorthosites of the Patchemvarek and Severnyi massifs represent the oldest date for the Kola peninsula, thus marking the oldest, Mesoarchean stage in the evolution of region. The differences in the initial 143Nd/144Nd ratios between the Neoarchean gabbroanorthosites of the Keivy-Kolmozero Complex and the Mesoarchean gabbroanorthosites of the studied massifs suggest the existence of two mantle sources. One of them produced intrusions with an age of 2.67–2.66 Ga, while other was responsible for the formation of massifs with an age of 2.93–2.92 Ga. The composition and temperature of “parental” melt of the gabbroanorthosites were simulated using COMAGMAT-3.5 program. According to the calculations, the parental melt represented aluminous basalt, whose differentiation at T = 1280°C and P = 7 kbar at the crust-mantle boundary was accompanied by plagioclase floatation and formation of “crystal mesh” that produced anorthosite complexes. The gabbroanorthosies of the Patchemvarek and Severnyi massifs were presumably derived from MORB-type basalts of oceanic settings, while the Tsaga, Achinskii, and other anorthosite massifs of the Neoarchean age were generated from subalkaline magma formed in within-plate anorogenic setting. Sm-Nd isotope data suggest the existence of several mantle sources in the Kola region, which produced melts for different-age gabbroanorthosite massifs since Mesoarchean to the middle Paleoproterozoic. The Archean-Early Proterozoic anorthosite magmatism of the Kola region records a complete cycle (∼ 800 Ma) of the formation and consolidation of continental block.  相似文献   

13.
The geological, structural and tectonic evolutions of the Yenisey Ridge fold-and-thrust belt are discussed in the context of the western margin of the Siberian craton during the Neoproterozoic. Previous work in the Yenisey Ridge had led to the interpretation that the fold belt is composed of high-grade metamorphic and igneous rocks comprising an Archean and Paleoproterozoic basement with an unconformably overlying Mesoproterozoic–Neoproterozoic cover, which was mainly metamorphosed under greenschist-facies conditions. Based on the existing data and new geological and zircon U–Pb data, we recognize several terranes of different age and composition that were assembled during Neoproterozoic collisional–accretional processes on the western margin of the Siberian craton. We suggest that there were three main Neoproterozoic tectonic events involved in the formation of the Yenisey Ridge fold-and-thrust belt at 880–860 Ma, 760–720 Ma and 700–630 Ma. On the basis of new geochronological and petrological data, we propose that the Yeruda and Teya granites (880–860 Ma) were formed as a result of the first event, which could have occurred in the Central Angara terrane before it collided with Siberia. We also propose that the Cherimba, Ayakhta, Garevka and Glushikha granites (760–720 Ma) were formed as a result of this collision. The third event (700–630 Ma) is fixed by the age of island-arc and ophiolite complexes and their obduction onto the Siberian craton margin. We conclude by discussing correlation of these complexes with those in other belts on the margin of the Siberian craton.  相似文献   

14.
The Late Vendian (540–550 Ma) U–Pb zircon age of postcollisional granitoids in the Osinovka Massif was obtained for the first time. The Osinovka Massif is located in rocks of the island-arc complex of the Isakovka Terrane, in the northwestern part of the Sayany–Yenisei accretion belt. These events stand for the final stage of the Neoproterozoic history of the Yenisei Ridge, related to the completing accretion of the oceanic crust fragments and the beginning of the Caledonian orogenesis. The petrogeochemical composition and the Sm–Nd isotopic characteristics support the fact that the granitoid melt originated from a highly differentiated continental crust of the southwestern margin of the Siberian Craton. Hence, the granite-bearing Late Riphean island-arc complexes were thrust over the craton margin at a distance considerably exceeding the dimensions of the Osinovka Massif.  相似文献   

15.
The Bayan Gol ophiolite fragment is a portion of the North Tianshan Early Carboniferous ophiolite belt. This ophiolite belt represents a geological record of an Early Carboniferous “Red Sea type” ocean basin that was developed on the northern margin of the Tianshan Carboniferous-Permian rift system in northwestern China. The late Early Carboniferous Bayan Gol ophiolite suite was emplaced in an Early Carboniferous rift volcanosedimentary succession of shallow-marine to continental facies (Volcanics Unit). Ophiolitic rocks in the Bayan Gol area comprise ultramafic rocks, gabbros with associated plagiogranite veins, diorite, diabase, pillow basalts and massive lavas. The Early Carboniferous tiffing and the opening process of the North Tianshan ocean basin produced mafic magmas in composition of tholeiite and minor amounts of evolved magmas. Compositions of trace elements and Nd, Sr and Pb isotopes reveal the presence of two distinct mantle sources: (1) the Early Carboniferous rift mafic lavas from the Volcanics Unit were generated by a relatively low degree of partial melting of an asthenospheric OIB-type intraplate source; (2)younger (late Early Carboniferous, -324.8 Ma ago) mafic lavas from the Ophiolite Unit were formed in a relatively depleted MORB-like mantle source, located in the uppermost asthenosphere and then gradually mixed with melts from the asthenospheric OIB-like mantle. A slight interaction between asthenosphere-derived magmas and lithospheric mantle took place during ascent to the surface. Subsequently, the most depleted mafic lavas of the ophiolite assemblage were contaminated by upper-crustal components (seawater or carbonate crust).  相似文献   

16.
GeochemicalFeaturesofOphioliteinMianxianLueyangSutureZone,QinlingOrogenicBeltLaiShaocong;ZhangGuowei(DepartmentofGeology,Nort...  相似文献   

17.
The Qilian orogen along the NE edge of the Tibet‐Qinghai Plateau records the evolution of Proto‐Tethyan Ocean that closed through subduction along the southern margin of the North China block during the Early Paleozoic. The South Qilian belt is the southern unit of this orogen and dominated by Cambrian‐Ordovician volcano‐sedimentary rocks and Neoproteozoic Hualong complex that contains similar rock assemblages of the Central Qilian block. Our recent geological mapping and petrologic results demonstrate that volcano‐sedimentary rocks show typical rock assembles of a Cambrian‐early Ordovician arc‐trench system in Lajishan Mts. along the northern margin of the Hualong Complex. Island arc rocks including basalt, andesite, dacite, rhyolite, and breccia is in fault contact with ophiolite complex consisting of mantle peridotite, serpentinite, gabbro, dolerite, plagiogranite, and basalt. Accretionary complexes are tectonically separated from the ophiolite‐arc rocks, with various rock assemblages spatially. They consist of pillow basalt, basalt breccia, tuff, chert, and limestone blocks with a seamount origin within the scaly shale in Dingmaoshan and Donggoumeikuang areas, and basalt, chert, and sandstone blocks within muddy shale matrix and mélange at Lajishankou area. Abundant radiolarians occur in red chert, and trilobite, brachiopod, and coral fossils occur within Dingmaoshan limestone blocks. Although partial basalt or chert blocks are highly disrupted, duplex, thrust fault, rootless intrafolial fold, tight fold, and penetrative foliation are well‐developed at Donggoumeikuang area. Spatially, accretionary complexes lie structurally beneath ophiolite complex and above the turbidites of the Central Qilian block. Ophiolite and accretionary complexes are also overlapped by late Ordovician molasse deposits sourced from Cambrian arc‐trench system and the Central Qilian block. These observations demonstrate that a Cambrian‐early Ordovician trench‐arc system within the South Qilian belt formed during the early Paleozoic southward subduction of the South Qilian Ocean collided with the Central Qilian block prior to the late Ordovician.  相似文献   

18.
This study presents new data on the geochemistry and mineral chemistry of ultramafic and mafic rocks in ophiolits from the base of the Kumroch segment of the Achayvayam-Valagin paleoarc. The new data enabled us to consider peridotites and the associated diabases and gabbros enclosed as separated blocks into a serpentinite mélange as a single ophiolite complex formed in a supra-subduction setting and subsequently disintegrated as a result of nappe formation. The variations identified in the geochemistry and compositions of rock-forming minerals are shown to be characteristic of the other study ophiolite complexes of Eastern Kamchatka. This is suggested to reflect spatial-temporal heterogeneity of partial melting during evolution of the Achayvayam-Valagin island arc.  相似文献   

19.
One of the best-preserved Neo-Tethyan ophiolite complexes of Iran (Southern Caspian Sea ophiolite complex) is exposed in north of Iran. Crustal ultramafic cumulative rocks are mainly composed of dunite, wehrlite, olivine clinopyroxenite and clinopyroxenite. Mafic plutonic rocks consist of isotropic and layered gabbros. Geochemical studies show that these rocks have subalkalic tholeiitic affinity. Partial melting has been an important process in the formation of the studied rocks. Normalized trace element patterns in the studied rocks show enrichment in LREE and depletion in Nb and Zr. Studied mafic–ultramafic samples are formed by 30 % partial melting of mantle lherzolite from a depleted-arc source. These characteristics show suprasubduction environment and formation in a marginal basin above a subduction zone.  相似文献   

20.
The SW Antalya Complex is an assemblage of Mesozoic carbonate platform, margin and ophiolitic rocks which record the formation and tectonic emplacement of a small Mesozoic ocean basin. The late Cretaceous ophiolitic rocks are located at two localities, namely the relatively intact Tekirova ophiolite to the east of Kemer zone and the dismembered Gödene ophiolite to the west of Kemer zone. The Tekirova (Antalya) ophiolite comprises harzburgitic tectonites, ultramafic to mafic cumulates, isotropic gabbros and sheeted dikes. Numerous isolated dikes, ranging in thickness from 5 cm to 10 m, intruded the crustal rocks at different structural levels. The isotropic gabbros are represented by gabbro, diorite and quartz diorite rocks with granular to ophitic–subophitic textures. The isolated dikes are characterized by dolerite, diabase and microdiorite with ophitic, intersertal and microgranular textures. These rocks exhibit tholeiitic to alkaline compositions. New geochemical data presented in this paper from the isolated dikes and isotropic gabbros suggest that there are three main types of parental basic magmas that form the oceanic crustal rocks of the Tekirova (Antalya) ophiolite. These are (1) IAT series which can be referred to the Group I isolated dikes and isotropic gabbros; (2) low-Ti boninitic series characterized by the Group II isolated dike and isotropic gabbros; and (3) OIB-type including the Group III isotropic gabbros. The geochemical evidence suggests that the crustal rocks of the Tekirova (Antalya) ophiolite were generated from a progressive source depletion from island arc tholeiites (IAT) to boninites. Therefore, a fore-arc tectonic setting seems likely for the generation of the crustal rocks from the Tekirova (Antalya) ophiolite in the southern branch of Neotethys during the Late Cretaceous. The OIB-type alkaline isotropic gabbros are thought to have resulted from either (1) a late-stage magmatic activity fed by melts that originated within an asthenospheric window due to slab break-off or (2) subduction of a ridge system which generated OIB source across the asthenospheric window that has been no influence of fluids from the subducted slab into the overlying mantle wedge, shortly before the emplacement of the Tekirova (Antalya) ophiolite onto the Tauride platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号