首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A new method for measuring H2S mass flux from the ground, based on the digital analysis of the interference colours produced by the sulphidation of copper passive samplers (CPS), is proposed and discussed in this article. CPS sulphidation has a wide range of linear responses to H2S doses and can be used together the accumulation chamber method to estimate gas fluxes from natural degassing areas. These are often characterized by the presence of vent centred degassing areas (VCDAs), which are recognizable from the absence or rarefaction of vegetation due to high acid gas concentrations in the soil pores and in the air at ground level. A reference emission curve, accounting for the advective and diffusive components of the flux, can be modelled and used to estimate the total H2S mass released from each VCDA. The application of this method can be supported by remote sensing analysis that helps identify VCDAs in the field in perivolcanic H2S degassing areas.As an illustrative application, H2S gas fluxes from the ground were measured in spring 2007 at the Zolforata di Pomezia degassing area (ZPDA, Alban Hills, Central Italy) using an accumulation chamber internally equipped with CPS. H2S peak fluxes were measured over the vents after remote sensing assisted identification of the VCDAs. Further measurements were carried out in two ponds and one artificial channel bordering the study area. The total atmospheric flux released at the ZPDA, estimated to be about 1207.6 kg day? 1, was calculated as the summation of the fluxes from all the H2S sources, the background flux being negligible.  相似文献   

2.
The zones of tectono-magmatic activation (TMA) that bound and traverse the major volcanogenic belts in the Russian Northeast were previously thought to be satellites of these belts. We even suggested an appropriate term, “perivolcanic zones” [Sidorov et al., 1978]. However, these supra-subduction and their perivolcanic zones are generally radically different from the deep-seated TMA zones of the Chukchi or Omsukchan types in that they are less deep and are short-lived. In contrast to volcanogenic belts, which are characterized by numerous small volcanic features with numerous mineralization occurrences of base and noble metals among regional propilitization fields, it is exactly in the zones of activation of these types that long-lived, volcano-plutonic centers with major mineralization fields are formed.  相似文献   

3.
This paper considers the geochemistry of volcanogenic mineralization in the northeastern segment of the Pacific Ore Belt (Northeast Russia). We give new evidence for the compositions and concentrations of trace and rare-earth elements (REE) in the ores of volcanogenic fields: Au-Ag epithermal (of various types and ages), Cu-Mo-Au porphyritic, Au-Bi related to granitoidal intrusions, Sn-Ag subvolcanic and kies polymetallic enriched in Au and Ag, as well as REEs in alkaline volcanic rocks. Geochemical signatures have been compiled for 17 formation types of volcanogenic fields. It was found that the ore-forming fluids in most fields belonged to an NaCl-H2O hydrothermal system that was enriched in Cl relative to F; the values of Y/Ho in the ores of nearly all types correspond with the interval of ratios characteristic for present-day hydrothermal fluids in backarc basins; most of the ores that we studied had near-chondrite spectra with configurations similar to those of the REE spectra in volcanic rock sequences of the andesite-diorite series. Comparative analysis of REE spectra in the distribution of trace elements over classes of gold concentration shows synchronous enrichment of ores in similar sets of trace elements. The high Co/Ni ratio in volcanogenic ores probably reflects the superposition of a later magmatic fluid upon an earlier mineralization. Samples from ores of volcanogenic fields, except for Kuroko, show δCe and δEu varying from negative to mildly positive values, thus indicating low-oxidizing conditions during deposition. It was found for Au-Ag epithermal ores that they are enriched in a wide range of trace elements; they have low concentrations of REEs, the light REEs are more abundant than the heavy ones, and the Eu anomalies vary considerably from small negative to low and high positive values. The results provide evidence of an exhalation hydrothermal origin of the Khotoidokh field. It has been shown that the REEs in the ores of the Bol’shoe field are of the type that is most valuable to industry. The results can be used to deal with practical problems: determining the formation type and evaluating the industrial value of a field; detecting accessory components in ores; and discriminating between the types of geochemical anomalies (in rocks or in soil) and stray fluxes as to the potential of a field.  相似文献   

4.
相山矿田铀矿地质研究进展与趋势   总被引:1,自引:0,他引:1  
相山铀矿是华南最大的产于火山一侵入杂岩体中的热液脉型铀矿田。文章对相山铀矿地质研究的历史进行了简略回顾,重点阐述了铀矿地质研究的新进展,主要有:火山杂岩时代为早白垩世、火山岩浆具有反方向演化特点,成矿作用是一个相对连续的演化过程,铀矿类型归属斑岩型,属于与燕山晚期火山一斑岩作用有关的铀或铀一多金属矿床成矿系列。最后,文章展望了未来的研究方向。  相似文献   

5.
The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high pCO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol%) with an appreciable content of H2S (0.8–2%). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February–March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8–25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.  相似文献   

6.
Turrialba (10°02′N, 83°45′W) is a 3,349-m high stratovolcano belonging to the Holocene “Cordillera Central” volcanic belt of Costa Rica. The summit consists of three EW-oriented craters (East, Central, and West). Since its last eruptive phase (1864–1866), the Central and West craters have displayed modest fumarolic activity, with outlet temperatures clustering around 90°C. In 2001, seismic swarms, ground deformation, and increasing fumarolic activity occurred. From 2005 to 2008, new fumarolic vents opened between and within the Central and West craters, and along the western and southwestern outer flanks of the volcanic edifice. These physical changes were accompanied by a drastic modification in the gas chemistry that can be divided in three stages: (1) hydrothermal (from 1998 to autumn 2001), characterized by the presence of H2O, CO2, H2S, and, to a very minor extent, HCl and HF; (2) hydrothermal/magmatic (autumn 2001–2007), with the appearance of SO2 and a significant increase of HCl and HF; and (3) magmatic-dominated (2007–2008), characterized by increased SO2 content, SO2/H2S > 100, and temperatures up to 282°C. Accordingly, gas equilibrium in the CO2-CH4-H2 system suggests a progressive evolution of the deep fluid reservoir toward higher temperatures and more oxidizing conditions. The chemical–physical modifications of Turrialba in the last decade can be interpreted as part of a cyclic mechanism controlling the balance between the hydrothermal and the magmatic systems. Nevertheless, the risk of rejuvenation of the volcanic activity cannot be excluded, and an appropriate seismic, ground deformation, and geochemical monitoring program is highly recommended. Turrialba lies at a distance of 35 and 15 km from San José and Cartago, respectively, the two largest cities in Costa Rica.  相似文献   

7.
The chemical composition and D/H, and ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO2, SO2 and N2, exclusive of H2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate (δ34S = + 4‰) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.  相似文献   

8.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   

9.
Studies of late Tertiary silicic volcanic centres in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Cerro Bonete, Chile, provides a modern example of the volcanic superstructure which may have overlain isolated mineralized stocks and breccia pipes such as that of Salvadora at Llallagua, Bolivia.Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. Sites of porphyry-type subvolcanic tin mineralization in the Eastern Cordillera of Bolivia are distinguished by the absence of such andesitic structures. The surface expression of a typical subvolcanic porphyry tin deposit was probably an extrusive dome of quartz latite porphyry, sometimes related to a larger caldera structure. Evidence from the El Salvador porphyry copper deposit in the Eocene magmatic belt in Chile suggests that it too may be more closely related to a silicic volcanic structure than to an andesitic stratovolcano.The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth. Occurrence of mineralized porphyries, millions of years after caldera formation, does not necessarily indicate that intrusions and mineralization are not genetically related to the sub-caldera pluton, but may be a consequence of the long thermal histories (1–10 million years) of the lowermost parts of large plutons. Caldera formation can only inhibit mineralization by dispersal of ore metals when these are of magmatic origin, and ignimbrites should not be taken as being unlikely to be associated with porphyry mineralization. Whether ore metals are of wall rock or magmatic origin, the key to understanding the relationships between silicic volcanism and mineralization lies in the fractionation of trace elements within large zoned magma chambers during their igneous history, and their subsequent hydrothermal migration. Small, highly mineralized intrusions formed late in a caldera cycle (such as the Cerro Rico) may be due to the introduction of fresh supplies of mafic magma into the lower parts of the main pluton.  相似文献   

10.
Gas emissions from Tatun volcanic group, northern Taiwan, were studied for the first time using a multi-component gas analyser system (Multi-GAS) in combination with Giggenbach flask methods at fumaroles and mud pools at Da-you-keng (DYK) and Geng-tze-ping (GZP). CO2/S molar ratios observed at DYK ranged from 3–17, similar ratios were observed using a Multi-GAS sensor box of 8–16. SO2 at GZP was low, higher concentrations were observed at DYK where SO2/H2S ratios were close to 1 for both methods. A lower CO2/H2S ratio was measured via Giggenbach flask sampling (7.2) than was found in the plume using the gas sensor at GZP (9.2). This may reflect rapid oxidation of H2S as it mixes with background air. Gaseous elemental mercury (GEM) levels were observed in the fumarole gases using a portable mercury spectrometer. These are the first such measurements of mercury at Tatun. Mean GEM concentrations in the fumarole plumes were ∼ 20 ng m− 3, with much higher concentrations observed close to the ground (mean [GEM] 130 and 290 ng m− 3 at DYK and GZP, respectively). The GEM in the fumarole plume was elevated above concentrations in industrial/urban air in northern Taiwan and the increase in GEM observed when the instrument was lowered suggests high levels of mercury are present in the surrounding ground surface. The GEM/CO2 (10− 8) and GEM/S (10− 6) ratios observed in the fumarole gases were comparable to those observed at other low-temperature fumaroles. Combining the Hg/CO2 ratio with a previous CO2 flux value for the area, the annual GEM flux from the Tatun field is estimated as 5–50 kg/year.  相似文献   

11.
The paper briefly describes the characteristics of the Chilean porphyry copper deposits, emphasizing the volcanic characteristics observed in the youngest ore bodies. Mention is made of the polymetallic ore bodies that are associated with rhyolitic porphyries intruding Jurassic sedimentary formations in the north of Chile, and the similarities and differences between the Chilean porphyry coppers and the Bolivian tin-bearing porphyries are pointed out.The models proposed by Sillitoe (1972), Brousse and Oyarzún (1971), and Mitchell and Garson (1972), are discussed and a new model is proposed agreeing with that of Mitchell and Garson for the genesis of the tin-bearing porphyries (the transportation of Sn as volatile halogenide by F liberated in the Benioff zone), but suggesting different generating mechanism for the porphyry coppers and polymetallic deposits related with porphyries. This mechanism, as a part of the global tectonic model, is based on the separation at depth of hydrogen sulphide from pyrite and water introduced with the upper layers of the lithospheric plate. The ascending migration of H2S to high levels in the crust would be responsible for the porphyry copper mineralization by segregating sulphides of Fe, Cu, Mo and other sulphophile metals contained in the calc-alkaline magmas, brines, or sedimentary-volcanic formations intruded by the porphyries. The excess of H2S would give rise to the formation of sulphur deposits normally present in the volcanic belt situated along the same line but at a higher level than those of the emplacement of porphyry coppers.The generation of copper and tin-bearing porphyries would be a consequence of the upward migration of volatile substances from different depths in the subduction zone, which explain its different emplacement with regards to the continental margins.  相似文献   

12.
Volcanoes of the East Japan volcanic arc are divided into two groups on the basis of their phenocryst assemblages; volcanoes with lavas or pyroclastic rocks containing quartz phenocrysts and no hornblende phenocrysts (type A), and those with rocks containing hornblende phenocrysts and no quartz phenocrysts (type B). Type A volcanoes occur only in the narrow region along the volcanic front, whereas type B volcanoes are distributed in the area closer to the Sea of Japan.Recent experimental studies on calc-alkaline andesite-dacite under H2O-saturated and -undersaturated conditions indicate that the liquidus temperature (maximum thermal stability limit) of quartz decreases drastically with increasing H2O content in magma, whereas the liquidus temperatures of hornblende and biotite are relatively constant with variations in the H2O content and bulk chemical composition of the magma.It is suggested from the lateral variation of mafic phenocryst assemblages [1] and from the above result that the temperature of the parental magmas of these volcanoes increases, and their H2O contents decrease, towards the volcanic front in the East Japan volcanic arc.Such lateral variations in the H2O contents of magmas under the East Japan volcanic arc are in agreement with those of other incompatible elements (K, Rb, REE, etc.). If H2O-undersaturated partial melting of upper mantle peridotite can be represented by the univariant line (olivine, Ca-rich clinopyroxene, orthopyroxene and liquid coexist) in the system H2OMg2SiO4z.sbnd;CaMgSi2O6z.sbnd;SiO2, the decrease of H2O content in the magma suggests that the melting temperature of the peridotitic mantle may gradually increase, and so the degree of partial melting may increase, towards the volcanic front. The lateral variation of other incompatible elements can also be explained by this model.  相似文献   

13.
The marine sector surrounding Panarea Island (Aeolian Islands, South Italy) is affected by widespread submarine emissions of CO2 -rich gases and thermal water discharges which have been known since the Roman Age. On November 3rd, 2002 an anomalous degassing event affected the area, probably in response to a submarine explosion. The concentrations of minor reactive gases (CO, CH4 and H2) of samples collected in November and December, 2002 show drastic compositional changes when compared to previous samples collected from the same area in the 1980s. In particular the samples collected after the November 3rd phenomenon display relative increases in H2 and CO and a strong decrease in the CH4 contents, while other gas species show no significant change. The interaction of the original gas with seawater explains the variable contents of CO2, H2S, N2, Ar and He which characterize the different samples, but cannot explain the large variations of CO, CH4 and H2 which are instead compatible with changes in the redox, temperature and pressure conditions of the system. Two models, both implying an increasing input of magmatic fluids are compatible with the observed variations of minor reactive species. In the first one, the input of magmatic fluids drives the hydrothermal system towards atypical (more oxidizing) redox conditions, slowly pressurizing the system up to a critical state. In the second one, the hydrothermal system is flashed by the rising high-T volcanic fluid, suddenly released by a magmatic body at depth. The two models have different implications for volcanic surveillance and risk assessment: In the first case, the November 3rd event may represent both the culmination of a relatively slow process which caused the overpressurization of the hydrothermal system and the beginning of a new phase of quiescence. The possible evolution of the second model is unforeseeable because it is mainly related to the thermal, baric and compositional state of the deep magmatic system that is poorly known.  相似文献   

14.
Kohei  Sato Katsuo  Kase 《Island Arc》1996,5(3):216-228
Abstract The metallogeny of Japan can be grouped into four environments: (1) Paleozoic-Mesozoic stratiform Cu and Mn deposits within accretionary complexes, (2) Cretaceous-Paleogene post-accretionary deposits related to felsic magmatism in a continental-margin are environment, (3) Miocene epigenetic and syngenetic deposits related to felsic magmatism during back-arc opening, and (4) late Miocene-Quaternary volcanogenic deposits in an island-are environment. Group (1) deposits were a major source of Cu and Mn for the Japanese mining industry, and this style of mineralization is reviewed here. The stratiform Cu and Mn deposits were formed on the sea floor during the late Paleozoic to Mesozoic, and were subsequently accreted to active continental margins mainly in Jurassic to Cretaceous age. The Cu sulfide deposits, termed Besshi type, are classified into two subtypes: the Besshi-subtype deposit is related to basaltic volcanism, probably at a mid-oceanic ridge or rise; the Hitachi subtype is related to bimodal volcanism, probably in a back-arc or continental rift. Most of the Besshisubtype deposits occur in the Sanbagawa metamorphic belt, with some occurrences in weakly metamorphosed Jurassic and Cretaceous accretionary terrains. This subtype is divided into two groups: the sediment-barren group is hosted by basalt-chert sequences; whereas the sedimentcovered group is hosted by basalt-shale sequences. Both subtypes are characterized by S isotope trends similar to those of sea-floor sulfide deposits now forming at mid-oceanic ridges. The Hitachi-subtype deposits occur in late Paleozoic volcanic-sedimentary sequences and lack pelagic sediments. These deposits are characterized by association of sphalerite- and barite-rich ores. The Mn deposits occur mainly in Middle Jurassic to Early Cretaceous accretionary complexes containing abundant chert beds of Triassic to Jurassic age. Their locations are well separated from those of the Cu sulfide deposits. The Mn deposits are divided into two types: the Mn type, hosted by chert, and the Fe-Mn type, sandwiched between chert and basaltic volcanic rocks. The Mn-type ores appear to have deposited on the deep-sea floor further from the site of hydrothermal activity than the Fe-Mn type. Primary Mn precipitates may have been transformed to rhodochrosite and other Mn-minerals during diagenesis. Many of the Mn deposits were significantly metamorphosed during intrusion of Cretaceous granitoids, resulting in a very complex mineralogy.  相似文献   

15.
The concentration of dissolved uranium and234U/238U alpha activity ratio (“A.R.”) were determined in water samples from 23 locations in the Edwards carbonate aquifer of south central Texas by isotope dilution methods and alpha spectrometry. This aquifer consists of two parts, an updip oxidized portion and a downdip reduced portion. At some places the boundary is associated with faulting and at others it is not. The boundary between the two portions of the aquifer can be located by an abrupt change in chemical properties of the water such as a large increase in concentration of Cl?, SO42? and total dissolved solids, the presence of H2S and a decrease in Eh in moving from updip to downdip. Compared with the oxidized samples, the uranium concentration is much lower and the A.R. higher in the reduced samples so that the uranium from each portion falls in a distinct field. The oxidized aquifer samples show very little variation in the measured uranium parameters even though, in some cases, there is evidence that the water has flowed through some tens of kilometers of aquifer. Samples collected near the boundary at those places not associated with faulting yield dissolved uranium values which fall in neither field and which, for the most part, cannot result from mixing of the oxidized and reduced waters. These samples probably result from changes in location of the oxidation-reduction boundary.  相似文献   

16.
In addition to traditional degassing of the melt in the subsurface magma chambers of the “dormant” El’brus volcano, alsodegassing through pores and microcracks that occur in the top of magma chambers has also been detected. It is proven by studies of compactness, porosity, and permeability of the rocks. The speeds at which gases (H, He, H2S, CO2, F, and Cl) pass through gneiss and volcanic rocks were estimated. Magma chambers on the ground surface are expressed in stable thermal anomalies revealed by night-time thermal sounding from an NOAA satellite. The presence of magma chambers at depths of 2–12 km was proven by magnetotelluric sounding [Sobisevich et al., 2003] and gravity studies. In addition to occasional “columns” of bright-white fluorescence above the thermal anomalies, aerosol “clouds” and hydrogen flows were detected by lidar and hydrogen surveying [Alekseev et al., 2007, 2009]. Observation at the same sites detected steam outbursts occurring periodically, the snow-ice cover thaws and the smell of hydrogen sulfide is felt. Geochemical characteristics of degassing were studied by snow sampling from up to 1 m deep pits. They were taken within contours of the thermal anomalies, above active fault zones, in the sites of bright-white fluorescence “columns,” and on a new fumarole locality. It is shown that the degassing of melt was accompanied by the gas transporting many elements (Li, B, Si, P, S, Ca, Zn, Pb, Mo, Ba, W, Hg, Ag, U, Th, I, Au, and Pt) in a fine-grained state (a few microns or possibly nanometers) with an active participation of F and Cl. Native platinum, chalcopyrite, halite, sylvite, barite, gypsum, zircon, opal, chlorinated organics, etc. were for the first time discovered in the Mt. El’brus area using electron microscope studies of solid residue from dehydrated snow samples. “Hidden” ore mineralization genetically related to degassing of melts enriched in ore elements may be supposedly found in paleo- and present-day areas of volcanic activity.  相似文献   

17.
The Eyjafjallajökull volcanic eruption, which occurred on April 14, 2010, caused many environmental, air traffic and health problems. An attempt has been made to demonstrate for the first time that certain improvements could be made in the quantitative prediction of the volcanic ash parameters, and in the accounting of the processes in the immediate vicinity of the volcano, using a cloud-resolving model. This type of explicit modeling by treatment of volcanic ash and sulfate chemistry parameterization, with input of a number parameters describing the volcanic source, is the way forward for understanding the complex processes in plumes and in the future plume dispersion modeling. Results imply that the most significant microphysical processes are those related to accretion of cloud water, cloud ice and rainwater by snow, and accretion of rain and snow by hail. The dominant chemical conversion rates that give a great contribution to the sulfate budget are nucleation and dynamic scavenging and oxidation processes. A three-dimensional numerical experiment has shown a very realistic simulation of volcanic ash and other chemical compounds evolution, with a sloping structure strongly influenced by the meteorological conditions. In-cloud oxidation by H2O2 is the dominant pathway for SO2 oxidation and allows sulfate to be produced within the SO2 source region. The averaged cloud water pH of about 5.8 and rainwater pH of 4.5 over simulation time show quantitatively how the oxidation may strongly influence the sulfate budget and acidity of volcanic cloud. Compared to observations, model results are close in many aspects. Information on the near field volcanic plume behavior is essential for early preparedness and evacuation. This approach demonstrates a potential improvement in quantitative predictions regarding the volcanic plume distribution at different altitudes. It could be a useful tool for modeling volcanic plumes for better emergency measures planning.  相似文献   

18.
This paper reveals the physicochemical properties such as component, formulation, genesis, tem-perature, pH, Eh, salinity and pressure of all main alteration fluid of interlayer oxidation zone sand-stone-type uranium deposits after studying the geologic process and geochemistry of internal typical sandstone-type uranium deposits such as Shihongtan deposit in the Turpan-Hami basin, 512 deposit in the Yili basin, Dongsheng deposit in the Ordos basin. The composition of fluid can be divided into two parts based on the analysis of inclusion: one can be affirmed as atmospheric water with ordinary temperature epigenesist according to the character of hydrogen and oxygen isotope of inclusion, the other is natural gas containing gaseous hydrocarbon like CH4, and CO2 as well as a little H2S, CO, H2, N2 and so on, it always contains a small quantity of hydrocarbon liquid in petroliferous basins. The fluid property of oxidation alteration zone is always oxidation alkaline, and neutrality or weak acid-weak alkaline and reducibility during the metallizing process, but at secondary reduction or deoxidization zone it becomes strong reduction alkaline. Oxygenic groundwater in the fluid is the activate and mig-ratory medium of uranium element, but the gaseous hydrocarbon like CH4 as well as H2, H2S, CO from natural gas is the important sedimentary reducer of uranium mineral; the transformation of pH,Eh in fluid environment is the main reason for the formation of uranium metallization.  相似文献   

19.
The CO2 and H2S concentration in the Solfatara atmosphere has been measured. The concentrations of both gases are higher neraby the more active areas and decrease away from them. A sharp horizontal and vertical gradient of the CO2 content has been recognized.Such gradient is assumed to result from a diffusion of gas from the ground to the atmosphere.The total output of CO2 has been computed based on a turbulent diffusion model. The obtained value is in good agreement with previously abserved values (Italiano et al., 1984).The feasibility of monitoring the atmosphere of Solfatara for either gas hazard and surveillance of volcanic activity has also been evaluated.  相似文献   

20.
From the magmatic emanations differentiation point of view it is possible to calculate some ratios such as F/CO2, Cl/CO2, SO2/CO2, SO2/H2S, H2S/CO2 and CO2/N2 in the tumarolic gases for the forecasting of volcanic activity. In order to predict the cruptions of a volcano it is needed to select several fumaroles or hot springs having different regimes of variation of the above ratios. The study of some fumaroles composition at the Asama. Mihara, Kirishima and other volcanoes in Japan showed a close connection between volcanic gas compositions and state of the volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号