首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
火山地震学是火山监测的一种重要方法,同时也是预测火山喷发最有效的方法。本文首先回顾了火山地震监测的历史,分析汇总了火山地震的类型和特征,并介绍了各类地震的形成机理。然后,对近年来发展起来的火山地震学方法进行了简要介绍,如地震活动性分析、实时振幅比测量、地震波速度变化和重复地震等,同时列举了具体的应用实例。最后,介绍了火山地震学方法在中国大陆火山监测中的应用。  相似文献   

2.
长白山天池火山地震类型及火山活动性的初步研究   总被引:3,自引:0,他引:3  
2002年以来,长白山天池火山区出现了地震活动增强、地形变加剧和多种地球化学异常等现象,火山口附近发生的多次有感地震在社会上产生了较大影响。本文利用2002年以来的流动地震观测资料,采用频谱分析、时频分析和多台站资料对比的方法,对火山区地震事件的类型进行了分析;对火山活动的危险性进行了初步研究。结果表明,目前天池火山区出现的大量地震活动仍然属于火山构造地震,少量台站地震记录中表现出的低频特征主要是由于局部介质影响造成的,排除了长周期地震引起的可能。尽管长白山天池火山地震活动明最增强,震群活动较为频繁,但仍属于岩浆活动的早期阶段,短期内发生火山喷发的危险性较小。  相似文献   

3.
INTRODUCTIONThe Changbaishan volcano is located in Jilin Province , along the border of China and NorthKorea .It isthelargest nature reservein China .Changbaishan belongstothe northeastern Asian activebelt in the eastern margin of the Euro-Asia plate . The Changbaishan volcano is a gigantic ,polygenetic ,central volcano,and has been active since Holocene .The early eruption started in thePliocene andformedthe basaltic shield. Duringthe middle and late Pleistocene ,the volcanic cone …  相似文献   

4.
长白山天池火山地震活动机理研究   总被引:2,自引:0,他引:2  
对1999年以来长白山火山观测站记录到的火山地震活动进行了研究,发现在西北太平洋5.0级以上中深源地震发生前后,均有火山地震活动发生变化。我们统计发现有以下三种情况:第一种是深源地震发生后火山地震随之增强;第二种是火山震群活动结束后发生中深源地震;第三种是深源地震前后火山地震活动频繁,在火山地震活动较少时发生中深源地震。本文通过对近年来长白山火山地震活动与西北太平洋俯冲板块的中、深源地震关系以及火山玄武岩地幔性质和长白山地热活动等资料并参考前人研究成果,建立了长白山地幔柱模型,对长白山火山地震活动机制进行了初步探讨。  相似文献   

5.
2002年夏季长白山天池火山区的地震活动研究   总被引:24,自引:8,他引:24       下载免费PDF全文
2002年6月以来,长白山天池火山区的地震活动明显增加. 本文利用2002年夏季布设在长白山天池火山区15套宽频带流动地震台站的记录资料,对天池火山区的地震活动进行了研究. 地震观测结果表明,2002年夏季长白山天池火山日平均地震发生频次超过30次. 地震主要位于长白山天池西南部和东北部两个区域,震源深度较浅,离地表的深度一般小于5km. 天池西南部和东北部的地震,b值存在较大的差异. 火山区地震记录的频谱分析和时频分析结果表明,这些地震主要为火山构造型地震. HSZ和DZD等台站地震记录中丰富的低频成分,可能与台站附近的局部介质或断层带有关. 我们认为2002年夏季频繁发生的地震和小震震群活动是由火山深部活动诱发的局部断裂活动引起.  相似文献   

6.
2002年8月20日长白山天池火山小震震群研究   总被引:17,自引:2,他引:17  
2002年7~9月,采用15台宽频带流动地震仪在长白山天池火山区进行了近3个月的地震观测,记录到大量发生在天池火山附近的地震和多次小震群。对2002年8月20日的小震群进行了分析,结果表明这些地震发生在长白山天池内的西南部,震源深度距离天池水面一般小于4km深,震群的震中位置呈北西向线性分布。地震记录的频谱分析表明,该震群为典型的火山构造类型地震。在观测中发现HSZ和DZD台的地震记录低频成份丰富,这可能与台站附近的局部介质变化或低速的断层带有关。我们认为震群可能是由火山深部活动诱发的局部断裂活动所引起。  相似文献   

7.
长白山天池火山区的震群活动研究   总被引:7,自引:3,他引:4       下载免费PDF全文
2002和2003年夏季流动地震观测揭示,天池火山口附近存在大量的微震活动和一系列震群活动.地震定位结果表明地震主要发生在火山口附近,以震群形式发生的地震全部集中在天池火山口西南部,东北部地震密集区没有观测到震群活动.在夏季以外的其他季节,天池火山区只有一个固定地震台站(CBS)用于地震监测.利用CBS台不同时间的观测纪录,通过波形相关分析发现其他季节的主要震群活动仍然集中在天池西南部.震群的高精度相对定位揭示震源位置沿北西-南东向分布,倾向西南,倾角约80°. 2003年7月13日的震群发生期间,地震震源位置出现从深到浅的迁移现象,同时震源深度较大的地震在不同台站的地震波初动方向几乎全部向上,表明震源具有明显的膨胀分量.考虑到长白山天池火山2002年以来出现明显的地表形变、地球化学异常和谐频地震等现象,我们认为震群活动可能与5 km深度附近存在岩浆热液活动和岩浆增压有关.  相似文献   

8.
A new Klyuchevskoy volcano eruptive cycle encompasses terminal (March 30, 1972 to August 23, 1974) and lateral (August 23, 1974 to December, 1974) eruption stages. The terminal eruption stage resulted in lava flows and parasitic cones that formed on the south-western flank of the volcano. Eruption products are moderately alkalic high-alumina olivine-bearing andesite-basalts. The terminal eruption stage was accompanied by volcanic earthquakes and volcanic tremor. The lateral eruption was accompanied by explosive earthquakes. Volcanic tremor was the most useful prognostic sign indicating the onset of the lateral eruption. Eruptive mechanisms are discussed.  相似文献   

9.
Gravity changes of up to 1.2 ± 0.1 mgal (1 standard deviation) were measured at three points within 400 m of an active vent on Pacaya volcano, Guatemala during eleven days of January, 1975. For five continuous days gravity varied inversely with the average muzzle velocity of ejecta, the frequency of volcanic explosions, and the frequency of volcanic earthquakes. The gravity changes are most reasonably interpreted as the product of intravolcanic movements of magma with masses one to two orders of magnitude larger than any flow ever erupted from the volcano. However, elevation changes and/or combination of elevation and mass distribution changes could also have been an important factor in effecting the observed gravity variations. Because we lack elevation control on the gravity stations, we are unable to unequivocally conclude which factor or which combination of factors produced the gravity changes. The study indicates the possibility of gravity monitoring of hazardous volcanoes as a predictive tool, and as an added means for investigating the internal mechanism of volcanic eruptions.  相似文献   

10.
Continuous seismic monitoring at Martinique since the 1902 eruption of the Montagne Pelée volcano did not detect local earthquakes for the first 70 years. For the only eruption which occurred in this time span in 1929 the seismograph was 20 km away and of a standard type, not particularly suited for the detection of small-scale local seismicity. Improvement of the monitoring array over the last 15 years with the installation of sensors on the volcano itself allowed the detection of signals of local origin which were interpreted as being due to surface sources, such as rockfalls and landslides. Since December 1985 seismic sources in the volcano itself, i.e. small earthquakes at shallow depth, were identified and located with the aid of a temporary upgrading of the array close to these weak sources. Such an onset of local seismicity could not have been detected with previous seismic equipment; such episodes of seismicity in the volcano might have occurred in the past, apparently quiescent history of the volcano as the reinterpretation of seismograms of some events in 1976 would indicate, without evolving to more important volcanic phenomena. For seismographs on volcanoes the constant upgrading of observation capabilities is certainly perferred to a strict continuity of standard observations.  相似文献   

11.
A violent outburst of the Lopevi volcano in the central New Hebrides occurred on the 10th July, 1960. The eruption was preceded 4 months before by a deep earthquake (h=250 kms, Mag. 7 1/4), the focus of which was just under the volcano. An inventory of all shocks recorded in the Group since 1910 has been made and all informations about volcanic eruptions in this region have been collected. A close correlation appeared between these two phenomena. Each of the large volcanic eruptions recorded between 1910 and 1962 followed a deep focus earthquake of magnitude greater than 7. Moderate eruptions were preceded by earthquakes of magnitude between 5 3/4 and 6 3/4. The time between the tectonic shock and the climactic phase of the volcanic activity appears to be related to the distance between the focus and the volcano (i.e. the focal depth), the type of the volcano and the pattern of its eruption. It is of few months duration for the volcanoes in the Central group: Ambrym, Lopévi, the submarine volcano east of Epi and Karua. The authors tried to find the same correlations for others volcanoes in the world for which they have been able to collect dates of eruptions: Asama-Yama (Japan), Bezymiannyi (Kamtchatka), Paricutin and Izalco (Central America), Vesuve, Stromboli (Italy). Thus volcanic eruptions would appear to have their first origin in the mantle. A systematic survey of all volcanoes and deep regional earthquakes would bring evidence of this correlation and may permit a long term prediction of their eruptions.  相似文献   

12.
We analyze data from three seismic antennas deployed in Las Cañadas caldera (Tenerife) during May–July 2004. The period selected for the analysis (May 12–31, 2004) constitutes one of the most active seismic episodes reported in the area, except for the precursory seismicity accompanying historical eruptions. Most seismic signals recorded by the antennas were volcano-tectonic (VT) earthquakes. They usually exhibited low magnitudes, although some of them were large enough to be felt at nearby villages. A few long-period (LP) events, generally associated with the presence of volcanic fluids in the medium, were also detected. Furthermore, we detected the appearance of a continuous tremor that started on May 18 and lasted for several weeks, at least until the end of the recording period. It is the first time that volcanic tremor has been reported at Teide volcano. This tremor was a small-amplitude, narrow-band signal with central frequency in the range 1–6 Hz. It was detected at the three antennas located in Las Cañadas caldera. We applied the zero-lag cross-correlation (ZLCC) method to estimate the propagation parameters (back-azimuth and apparent slowness) of the recorded signals. For VT earthquakes, we also determined the S–P times and source locations. Our results indicate that at the beginning of the analyzed period most earthquakes clustered in a deep volume below the northwest flank of Teide volcano. The similarity of the propagation parameters obtained for LP events and these early VT earthquakes suggests that LP events might also originate within the source volume of the VT cluster. During the last two weeks of May, VT earthquakes were generally shallower, and spread all over Las Cañadas caldera. Finally, the analysis of the tremor wavefield points to the presence of multiple, low-energy sources acting simultaneously. We propose a model to explain the pattern of seismicity observed at Teide volcano. The process started in early April with a deep magma injection under the northwest flank of Teide volcano, related to a basaltic magma chamber inferred by geological and geophysical studies. The stress changes associated with the injection produced the deep VT cluster. In turn, the occurrence of earthquakes permitted an enhanced supply of fresh magmatic gases toward the surface. This gas flow induced the generation of LP events. The gases permeated the volcanic edifice, producing lubrication of pre-existing fractures and thus favoring the occurrence of VT earthquakes. On May 18, the flow front reached the shallow aquifer located under Las Cañadas caldera. The induced instability constituted the driving mechanism of the observed tremor.  相似文献   

13.
Volcanic eruptions typically produce a number of hazards, and many regions are at risk from more than one volcano or volcanic field. So that detailed risk assessments can be carried out, it is necessary to rank potential volcanic hazards and events in terms of risk. As it is often difficult to make accurate predictions regarding the characteristics of future eruptions, a method for ranking hazards and events has been developed that does not rely on precise values. Risk is calculated individually for each hazard from each source as the product of likelihood, extent and effect, based on the parameters order of magnitude. So that multiple events and outcomes can be considered, risk is further multiplied by the relative probability of the event occurring (probabilitye) and the relative importance of the outcome (importanceo). By adding the values obtained, total risk is calculated and a ranking can be carried out.This method was used to rank volcanic hazards and events that may impact the Auckland Region, New Zealand. Auckland is at risk from the Auckland volcanic field, Okataina volcanic centre, Taupo volcano, Tuhua volcano, Tongariro volcanic centre, and Mt. Taranaki volcano. Relative probabilities were determined for each event, with the highest given to Mt. Taranaki. Hazards considered were, for local events: tephra fall, scoria fall and ballistic impacts, lava flow, base surge and associated shock waves, tsunami, volcanic gases and acid rain, earthquakes and ground deformation, mudflows and mudfills, lightning and flooding; and for distal events: tephra fall, pyroclastic flows, poisonous gases and acid rain, mudflows and mudfills, climate variations and earthquakes. Hazards from each source were assigned values for likelihood, with the largest for tephra fall from all sources, earthquakes and ground deformation, lava flows, scoria fall and base surge for an Auckland eruption on land, and earthquakes and ground deformation from an Auckland eruption in the ocean. The largest values for extent were for tephra fall and climate variation from each of the distal centres. However, these parameters do not give a true indication of risk. In a companion paper the effect of each hazard is fully investigated and the risk ranking completed.  相似文献   

14.
Broadband seismic data collected on Ruapehu volcano, New Zealand, in 1994 and 1998 show that the 1995-1996 eruptions of Ruapehu resulted in a significant change in the frequency content of tremor and volcanic earthquakes at the volcano. The pre-eruption volcanic seismicity was characterized by several independent dominant frequencies, with a 2 Hz spectral peak dominating the strongest tremor and volcanic earthquakes and higher frequencies forming the background signal. The post-eruption volcanic seismicity was dominated by a 0.8-1.4 Hz spectral peak not seen before the eruptions. The 2 Hz and higher frequency signals remained, but were subordinate to the 0.8-1.4 Hz energy. That the dominant frequencies of volcanic tremor and volcanic earthquakes were identical during the individual time periods prior to and following the 1995-1996 eruptions suggests that during each of these time periods the volcanic tremor and earthquakes were generated by the same source process. The overall change in the frequency content, which occurred during the 1995-1996 eruptions and remains as of the time of the writing of this paper, most likely resulted from changes in the volcanic plumbing system and has significant implications for forecasting and real-time assessment of future eruptive activity at Ruapehu.  相似文献   

15.
地震、形变、火山气体地球化学等观测结果表明2002~2005年长白山天池火山经历了1次扰动事件。长白山站地震台(CBS台)记录到了扰动事件前后连续稳定的宽频带地震观测资料。前人的观测研究结果认为长白山天池火山扰动期间的火山地震类型主要为构造型火山地震,伴随少量的谐频型地震。本文通过匹配滤波技术,对1999~2007年扰动事件前后CBS台单台三分量地震观测数据进行模板扫描,获得3763个清晰的火山地震事件,其中谐频(HS)事件125个,构造(VT)事件3618个,并发现长周期(LP)事件20个。进而将火山扰动期间火山地震事件分为3种类型:构造型事件、长周期事件和谐频型事件,并提出2002~2005年长白山天池火山扰动机制模型:深源地震-火山能量传递模型,即汪清深源地震能量释放和传递,引发长白山火山区岩石圈应力状态波动。地幔岩浆房受应力干扰后,岩浆通道打开,少量岩浆侵入地壳岩浆房。岩浆混合脱气导致地壳岩浆房升压,引起顶部岩石微破裂,产生构造型火山地震,气体和流体填充这些裂隙,从而产生LP和HS型火山地震事件。  相似文献   

16.
The continuous background seismic activity contains information on the internal state of a volcanic system. Here, we report the influence of major regional tectonic earthquakes (M > 5 in most cases) on such state, reflected as changes in the spectral and dynamical parameters of the volcano continuous seismic data. Although changes do not always occur, analysis of five cases of earthquake-induced variations in the signals recorded at Popocatépetl volcano in central México reveal significant fluctuations following the tectonic earthquakes. External visible volcanic activity, such as small to moderate explosions and ash emissions, were related to those fluctuations. We briefly discuss possible causes of the variations. We conclude that recognition of fluctuations in the dynamical parameters in volcano monitoring seismic signals after tectonic earthquakes, even those located in the far field, hundreds of kilometers away, may provide an additional criterion for eruption forecasting, and for decision making in the definition of volcanic alert levels.  相似文献   

17.
Field investigation and lab analysis on samples were carried out for Quaternary volcanoes, including Xiaoshan volcano, Dashan volcano and Bianzhuang hidden volcano, in Haixing area, east of North China. Results show that Xiaoshan volcano with the eruptive material of volcanic scoria, crystal fragments and volcanic ash is a maar volcano, the eruptive pattern is pheatomagmatic eruption, and the influence scope is near the crater. Dashan volcano exploded in the early stage, and then the magma intruded, forming the volcanic neck. The eruption strength and scale are limited, and the eruptive materials are scoria, volcanic agglomerate and dense lava neck. The volcanic rocks in Bianzhuang are porosity and dense volcanic rocks and volcanic breccia, reflecting the pattern of weak explosive eruption and lava flow, and the K-Ar age dating on volcanic rocks indicates that the eruption happened in early Pleistocene. Xiaoshan volcanic scoria and Bianzhuang hidden volcanic rocks are mainly basaltic, Dashan volcanic rocks with lower SiO2 content are nephelinite in composition. Their oxide contents have no linear relationship, indicating that there is no magma evolution relationship between these magmas from the three places. Three volcanic rocks all have enrichment of light rare earth. The Bianzhuang volcanic rocks are rich in large ion lithophile elements, and have no high field strength elements Zr and Hf, Ti losses. The volcanic materials from Xiaoshan and Dashan are intensively rich in Th, U, Nb and Ta, and significantly poor in K and Ti. Although the magmas from these three places in Haixing area may all come from asthenosphere, the volcanic materials have different petrological and geochemical features, and relatively independent volcanic structures, therefore, they experienced different magma processes.  相似文献   

18.
Data analyzed in the present work correspond to a 40 days field experiment carried out in Teide Volcano (Canary Islands, Spain) with two short-period small-aperture dense seismic antennas in 1994. The objective of this experiment was to detect, analyze and locate the local seismicity. We analyzed also the background seismic noise to investigate the possible presence of volcanic tremor. From a set of 76 events, we selected 21 of them in base of their good signal-to-noise ratio and their possibility to locate their seismic source by using the seismic antennas. A visual classification based on the S–P time and seismogram shape has permitted to establish three groups of events: local seismicity (S–P time between 3 and 5 s), very local earthquakes (S–P time smaller than 3 s) and artificial explosions. These earthquakes have been located by applying the Zero Lag Cross-Correlation technique and the inverse ray-tracing procedure. Those earthquakes that were recorded simultaneously by both seismic antennas were also located by intersecting both back-azimuths. The analysis of the seismicity has revealed that the amount of seismicity in Teide Volcano is moderate. This seismicity could be distributed in three main areas: inside the Caldera Edifice (below the Teide–Pico Viejo complex), in the eastern border of the Caldera Edifice and offshore of the island. At present, this activity is the only indicator of the volcano dynamics. The analysis of the back-ground seismic noise has revealed that at frequencies lower than 2 Hz, the Oceanic Load signal is predominant over other signals, even over local earthquakes with a magnitude of 2.0. Due to this, although if in the Teide area were present a weak volcanic tremor, or other volcanic signals with predominant peaks below 2 Hz, to observe them would be a very difficult task.  相似文献   

19.
Principal and subsidiary building structure characteristics and their distribution have been inventoried in Icod, Tenerife (Canary Islands) and used to evaluate the vulnerability of individual buildings to three volcanic hazards: tephra fallout, volcanogenic earthquakes and pyroclastic flows. The procedures described in this paper represent a methodological framework for a comprehensive survey of all the buildings at risk in the area around the Teide volcano in Tenerife. Such a methodology would need to be implemented for the completion of a comprehensive risk assessment for the populations under threat of explosive eruptions in this area. The information presented in the paper is a sample of the necessary data required for the impact estimation and risk assessment exercises that would need to be carried out by emergency managers, local authorities and those responsible for recovery and repair in the event of a volcanic eruption. The data shows there are micro variations in building stock characteristics that would influence the likely impact of an eruption in the area. As an example of the use of this methodology for vulnerability assessment, we have applied a deterministic simulation model of a volcanic eruption from Teide volcano and its associated ash fallout which, when combined with the vulnerability data collected, allows us to obtain the vulnerability map of the studied area. This map is obtained by performing spatial analysis with a Geographical Information System (GIS). This vulnerability analysis is included in the framework of an automatic information system specifically developed for hazard assessment and risk management on Tenerife, but which can be also applied to other volcanic areas. The work presented is part of the EU-funded EXPLORIS project (Explosive Eruption Risk and Decision Support for EU Populations Threatened by Volcanoes, EVR1-2001-00047).  相似文献   

20.
The classification of earthquakes at White Island volcano, New Zealand, has been revised to address problems in existing classification schemes, to better reflect new data and to try to focus more on source processes. Seismicity generated by the direct involvement of magmatic or hydrothermal fluids are referred to as volcanic, and that generated by fault movement in response to stresses caused by those fluids, regional stresses, thermal effects and so on are referred to as volcano-tectonic. Spasmodic bursts form a separate category, as we have insufficient information to classify them as volcanic or volcano-tectonic. Volcanic seismicity is divided into short-duration, long-period volcanic earthquakes, long-duration volcanic earthquakes, and harmonic- and non-harmonic volcanic tremor, while volcano-tectonic seismicity is divided into shallow and deep volcano-tectonic earthquakes. Harmonic volcanic tremor is related to sub-surface intrusive processes, while non-harmonic volcanic tremor originates close to active craters at shallow depth, and usually occurs during eruptive activity. Short-duration, long-period volcanic earthquakes come from a single source close to the active craters, but originate deeper than non-harmonic volcanic tremor, and are not related to eruptive activity. Long-duration volcanic earthquakes often accompany larger discrete eruptions. The waveform of these events consists of an initial low-frequency part from a deep source, and a later cigar-shaped part of mixed frequencies from a shallow crater source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号