首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Newly identified ??a?? lava flows outcrop intermittently over an area of ~110?km2 in the western Deccan Volcanic Province (DVP), India. They occur in the upper Thakurvadi Formation in the region south of Sangamner. The flows, one of which is compound, are 15?C25?m thick, and exhibit well-developed basal and flow-top breccias. The lavas have microcrystalline groundmasses and are porphyritic or glomerocrystic and contain phenocrysts of olivine, clinopyroxene or plagioclase feldspar. They are chemically similar to compound p??hoehoe flows at a similar stratigraphic horizon along the Western Ghats. Petrographic and geochemical differences between ??a?? flows at widely spaced outcrops at the same stratigraphic horizon suggest that they are the product of several eruptions, potentially from different sources. Their presence in the DVP could suggest relative proximity to vents. This discovery is significant because ??a?? lavas are generally scarce in large continental flood basalt provinces, which typically consist of numerous inflated compound p??hoehoe lobes and sheet lobes. Their scarcity is intriguing, and may relate to either their occurrence only in poorly preserved or exposed proximal areas or to the flat plateau-like topography of flood basalt provinces that may inhibit channelization and ??a?? formation, or both. In this context, the ??a?? flow fields described here are inferred to be the products of eruptions that produced unusually high-effusion-rate lavas compared to typical flood basalt eruptions. Whether these phases were transitional to lower intensity, sustained eruptions that fed extensive low effusion rate p??hoehoe flow fields remains unclear.  相似文献   

2.
Nine basaltic lava-flows, which vary in thickness between 60 feet and 300 feet, were established in the NW Rajmahals. The flows were, at places, laid down one above the other and, at others, were found to contain intervening intertrappean horizons. All the flows are essentially of basaltic composition and are made up of labradoritie plagioclase, pigeonitic and augitic pyroxene, opaque ore, primary glass and secondary minerals (palagonite, secondary silica, calcite and zeolite). The phenocrystic plagioclase ranges in composition between An72 and An62, while the constituents of the groundmass range between An50 and An17. The microphenocrysts of pyroxene are mainly augitic and occasionally pigeonitic while the constituents of the groundmass are essentially pigeonitic. The opaque minerals are magnetite and ilmenite. Petrographically, the lava-flows are more or less similar to one another. The first three flows are, however, more remarkably porphyritic and a little coarser in grain size than the six overlying flows. The eighth flow is devoid of palagonite. Calcite occurs only in certain portions of the second flow. There is a gradual increase in the percentage of primary glass from the first to the ninth flow with a corresponding fall in the total percentage of plagioclase and pyroxene. Statistical analysis of the grain size variation in the plagioclases was carried out and the results were found to be directly related to the prevailing rates of cooling in the different flows and also in the different horizons of the same flow. Modal analysis of the nine flows (in all, 98 samples) was carried out and this brought out some interesting results. Samples from three of the flows were analysed chemically and the corresponding norms were calculated. The order of crystallisation of the primary constituents was established from petrographic and petrological studies. The basaltic magma, which gave rise to the lava-flows of this region, does not appear to have undergone any significant differentiation during the course of its cooling and consolidation. The only discernible effect of crystallisati on differentiation was an enrichment of silica (and, perhaps, alkalis) in the residual liquids and no noteworthy enrichment of iron appears to have occurred at any stage.  相似文献   

3.
The Deccan Traps, now occupying an area of 200,000 sq. miles, must originally have been more wide-spread. Their thickness in Western India reaches 6000 ft. They have been encountered at depths of over 1500 ft. in Kathiawar and Sind (Pakistan), and have been faulted down to a depth of over 6000 ft. in the Cambay area. They are composed of numerous flows whose thickness varies from a few ft. to 200 ft. The flows are often compact in the lower portions and vesicular in the upper portions. Over most of the area (east of the Western Ghats) the rock is a tholeiitic basalt (50 to 51.5 % silica) whose pyroxene is intermediate in composition between pigeonite and diopside, and whose CIPW norm generally shows the presence of some quartz. In the Bombay Kathiawar region there are numerous eruptive Centres associated with a large range of differentiated types comprising both very basic and acid types. The study of the analyses of the various types indicates the presence of both the alkali-olivine basalt as well as the Calc-alkali lines of differentiation, which has brought up the question of the nature of the primary magma. It is noted that while the greater part of the area shows tholeiitic rock, olivine basalts and connected types appear in the more western areas, perhaps as a result of the local tectonic conditions. Recent geophysical data point to the presence of an « oceanic basalt » layer all around the earth both in oceanic and continental crust, while a less dense (presumably tholeiitic) layer overlies it (below the sial) in the continental segments. The « oceanic basalt » should therefore be taken as representing the primary magma, and tholeiite as a major type derived from it in the continental crust.  相似文献   

4.
Stratigraphy,composition and form of the Deccan Basalts,Western Ghats,India   总被引:9,自引:0,他引:9  
In the Western Ghats between latitudes 18° 20 N and 19° 15 N, 7000 km2 of Deccan Basalt have been mapped with the primary objective of establishing a flow stratigraphy as a guide to the volcanic history of the flood basalts. Using over 70 measured vertical sections, major and trace element analyses of nearly 1200 samples, and rare-earth and87Sr/86Sr determinations for over 60 samples, we divide the basalt into three subgroups and ten formations. In this paper we describe the seven principal formations in the area and the most prominent individual flows.The Kalsubai Subgroup is formed by the lower five formations, the Jawhar, Igatpuri, Neral, Thakurvadi, and Bhimashankar formations, from botton to top. In these formations amygdaloidal compound flows predominate and have a typically high MgO content, including picrite basalt (> 10% MgO) and picrite (> 18% MgO) with phenocrysts of olivine and clinopyroxene. These flows are separated by others which contain giant plagioclase phenocrysts and have more evolved chamical compositions.The Lonavala Subgroup overlies the Kalsubai and is composed of two formations, the Khandala and the Bushe. Both are readily recognized in the field and by their chemical compositions.The Wai Subgroup includes the upper three formations, the Poladpur, the Ambenali, and the Mahabaleshwar. The whole subgroup is composed of simple flows with well-developed flow tops, small phenocrysts of plagioclase, pyroxene and olivine, and relatively evolved bulk compositions.Distribution and variation in thickness of the straitigraphic units within the Western Ghats provide a first comprehensive view of the development of the Deccan volcanic edifice. The persistent southerly dip and gentle southerly plunging anticlinal form of the flows, the lensoid shape of many of the formations, and nearly randomly oriented feeder-dike system are together interpreted as evidence of a central volcanic edifice formed as the Indian plate drifted northward over a mantle plume or hot spot.  相似文献   

5.
Phenocrysts in volcanic rocks are commonly used to deduce crystallization processes in magma chambers. A fundamental assumption is that the phenocrysts crystallized in the magma chambers at isobaric and nearly equilibrium conditions, on the basis of their large sizes. However, this assumption is not always true as demonstrated here for a porphyritic alkali basalt (Kutsugata lava) from Rishiri Volcano, northern Japan. All phenocryst phases in the Kutsugata lava, plagioclase, olivine, and augite, have macroscopically homogeneous distribution of textures showing features characteristic of rapid growth throughout the crystals. Rarely, a core region with distinct composition is present in all phenocryst phases. Phenocrysts, excluding this core, are occasionally in direct contact with each other, forming crystal aggregates. The equilibrium liquidus temperature of plagioclase, the dominant phase (35 vol%) in the Kutsugata lava, can never exceed the estimated magmatic temperature, unless the liquidus temperature increases significantly due to vesiculation of the magma during ascent. This suggests that most phenocrysts in the Kutsugata lava were formed by decompression of the magma during ascent in a conduit, rather than by cooling during residence in a magma reservoir. In the magma chamber before eruption, probably located at depth of more than 7 km, only cores of the phenocrysts were present and the magma was nearly aphyric (<5 vol% crystals), though the observed rock is highly porphyritic with up to 40 vol% crystals. The Kutsugata magma is inferred to have been rich in dissolved H2O (>4 wt.%) in the magma chamber, and liquidus temperatures of phenocryst phases were significantly suppressed. Large undercooling caused by decompression and degassing of the magma was the driving force for significant crystallization during ascent because of the increase in liquidus temperature due to vapor exsolution. Low ascent rate of the Kutsugata magma, which is suggested by pahoehoe lava morphology and no association of pyroclastics, gave sufficient time for crystallization. Furthermore, the large degree of superheating of plagioclase in the magma chamber caused plagioclase crystallization with low population density and large crystal size, which characterizes the porphyritic nature of the Kutsugata lava. Alkali basalt is likely to satisfy these conditions and similar phenomena are suggested to occur in other volcanic systems.  相似文献   

6.
In this paper, we compare the geology and petrography of Miocene and Archean submarine rhyolite hyaloclastites. The hyaloclastites are sparsely (10% or less) plagioclase- (± quartz and pyroxene-) phyric. The hyaloclastites consist of a feeder dyke from which branch lava lobes and irregularly shaped lava pods. The lava bodies consist of a holocrystalline core with microlitic texture, grading outward into a flow-layered rim zone and, finally, into obsidian. The proportion of plagioclase and pyroxene microlites decreases outward. Some layers of the rim zone may be pumiceous (vesicularity up to 50%, vesicle size 1 mm or less), but most of the lava has less than 5% vesicles one or a few cm long. The obsidian shows perlitic fracture patterns. The lava bodies grade through an in-situ breccia into a hyaloclastite composed of angular obsidian granules and, in many cases, of fragments of lava lobes.Evidence for alteration at high temperature is as follows: in the Archean rhyolite hyaloclastites, plagioclase microlites are overgrown by quartz-albite spherulites. Furthermore, parts of the Miocene and Archean hyaloclastite have been cemented and granules have been marginally replaced by quartz and albite. Hyaloclastite cemented at high temperature locally shows columnar joints. At low temperatures, obsidian has been hydrated and/or has been replaced by clay minerals, zeolites, chlorite or prehnite. “Chess-board” albite and fibroradial prehnite in Archean hyaloclastite is possibly a pseudomorph after zeolites.The sparsely porphyritic nature of the lava and the absence of microlites from the quenched glass suggests that the thyolite hyaloclastites extruded at high (near liquidus) temperature. Furthermore pumice is present only locally, in the flow-layered rim zone and in fragments derived from that zone. These features suggest that vesiculation was inhibited by the weight of the water column. High temperature and possibly the volatile (H2O) content explain the relatively low viscosity and shear strength of the lava, and resulted in the flow morphology particular to this type of hyaloclastic rhyolite flows.  相似文献   

7.
Ascertaining the emplacement mechanism of oceanic basaltic lavas is important in understanding how ocean floor topography is produced and oceanic plates evolve, particularly during the early stages of crustal development of a supra-subduction zone. A detailed study of the volcanic stratigraphy at International Ocean Discovery Program (IODP) Site U1438 in the Amami Sankaku Basin, west of the Kyushu–Palau Ridge, has revealed the development of lava accretion and ridge topography on the Philippine Sea plate at about 49 Ma. Igneous basement rocks penetrated at Site U1438 are the uppermost 150 m of ~6 km-thick oceanic crust, and comprise, in a downhole direction, sheet flows (12.6 m), lobate sheet flows (61.3 m), pillow lavas (50.7 m), and thin sheet flows (25.3 m). The lowermost sheet flows are intercalated with layers of limestone and epiclastic tuff. Lithofacies analysis reveals that the lowermost sheet flows, limestone, and tuff formed on an axial rise, the pillow lavas were emplaced on a ridge slope, and the lobate sheet flows formed off ridge on an abyssal plain. The lithofacies of the basement basalt corresponds to the upper portions of fast-spreading oceanic crust, suggesting that subduction initiation was associated with intermediate to fast rates of seafloor spreading. The surface sheet flows are olivine–clinopyroxene-phyric basalt and differ from the lower basalt flows that contain phenocrysts of olivine and plagioclase, with or without clinopyroxene. The depleted chrome-spinel composition and olivine–clinopyroxene phenocryst assemblage in the surface sheet flows suggests a slight contribution of water for magma generation not present for the lower basalt flows. Considering the lithological difference between the backarc and forearc oceanic crust in the Izu–Bonin–Mariana arc, with sheet flow dominant in the former, seafloor spreading occurred faster in the later stage of subduction initiation.  相似文献   

8.
This paper gives an account of some unusual porphyritic basalts containing very large phenocrysts of plagioclase, averaging from 3 cm to 5 cm in length, and at places as large as 10 to 12 cm in length. These flows have been noticed at more than 20 localities, spread all over Western Maharashtra, occurring between levels of 100 feet below sea level (seen in a drill-core) and an elevation of more than 4000 feet above sea level. They appear to have a considerable lateral extent, some of them having been observed to extend for more than ten miles. In vertical extent, the flows were found to vary from 40 to 150 feet. The giant phenocrysts commonly show cross-twinning. In some flows due to repeated cross-twinning they give star shaped appearance. At places they also occur in clusters. In portions of some flows the tablets seem to have settled at the bottom and are seen in horizontal positions. In hydrothermally altered portions of some flows the phenocrysts are altered and in some patches seem to have been completely destroyed. As a rule, the plagioclase weathers more quickly than the ground mass producing a very characteristic pitted appearance. Some flows seem to have contained large crystals of olivine which have been altered to iddingsite. Highly vesicular and amygdaloidal giant phenocrvst basalts are also met with.  相似文献   

9.
Since the formation of the primal nucleus at 3.8Ga[1], the North China had underwent the multi-cycle geologic processes such as arc accretion[2—4] andrift[5—7], and finally accomplished the craton[8] aroundat 1.8 Ga[2,3,9]. Paleozoic Fuxian kimberlites (LiaoningProvince) contain not only abundant peridotitic butalso mafic xenoliths. The investigation on peridotiticxenoliths indicted that the North China Craton hadcold and thick lithospheric root in the middle Ordovi-cian. The deep part o…  相似文献   

10.
Seventy-one samples from seven volcanic centers of Basse Terre, Guadeloupe have been analysed. Low-K pyroxene andesite, associated with minor basaltic andesite and basalt is the dominant rock type, in all but two of the centers. Of these two exceptions, one. Mts. Caraibes, is composed mainly of high-alumina (plagioclase) basalt, while Les Deux Mamelles, are two prominent domes of sodic rhyolite, being one of the three known occurrences of this rock in the active are of the Lesser Antilles. On the basis of differences in such elements as K.O. Rb, and Ba, the various centers may be distinguished one from another, with the maximum differences being as large as the reported chemical differences between different islands in the are. This fact, together with the occurrence of both basalte and andesitic dominated volcanoes on the same island seem to argue against any systematic variation in chemistry of magma type along the arc.  相似文献   

11.
The interactions of seafloor hydrothermal fluid with igneous rocks can result in leaching elements from the rocks,creating potential ore-forming fluids and influencing the chemical compositions of near-bottom seawater.The hydrothermal alteration of plagioclase microphenocrysts and basaltic glass in the pillow basalts from one dredge station(103°57.62′′W,12°50.55′N,water depth 2480 m)on the East Pacific Rise(EPR)near 13°N were analyzed using a scanning electron microscope(SEM)and energy dispersive X-ray spectrometry(EDS).The results show that the edges of the plagioclase microphenocrysts and the basaltic glass fragments are altered but the pyroxene and olivine microphenocrysts in the interior of the pillow basalts appear to be unaffected by the hydrothermal fluids.In addition,our results show that the chemical alteration at the rims of the plagioclase microphenocrysts and the edges of basaltic glass fragments can be divided into separate types of alteration.The chemical difference in hydrothermal alteration of the plagioclase microphenocrysts and the basaltic glass indicate that different degrees of hydrothermal fluid-solid phase interaction have taken place at the surface of the pillow basalts.If the degree of hydrothermal fluid-solid phase interaction is relatively minor,Si,Al,Ca and Na diffuse from the inside of the solid phase out and as a result these elements have a tendency to accumulate in the edge of the plagioclase microphenocrysts or basaltic glass.If the degree of hydrothermal fluid-solid phase interaction is relatively strong,Si,Al,Ca and Na also diffuse from the inside of solid phase out but these elements will have a relatively low concentration in the edge of the plagioclase microphenocrysts or basaltic glass.Based on the chemical variation observed in the edges of plagioclase microphenocrysts and basaltic glass,we estimate that the content of Si,Al and Fe in the edges of plagioclase microphenocrysts can have a variation of 10.69%,17.59%and 109%,respectively.Similarly,the Si,Al and Fe concentrations in the edges of basaltic glass can have a variation of 9.79%,16.30%and 37.83%,respectively,during the interaction of hydrothermal fluids and seafloor pillow basalt.  相似文献   

12.
Luna 16 sample B-1 was the largest fragment (62 mg) obtained in the sample exchange with the USSR. Petrologic, mineralogic, and chemical investigations have been made on this fragment in conjunction with Rb-Sr and40Ar/39Ar investigations by our colleagues. Sample B-1 is a fine-grained ophitic basalt but is distinguished from the Apollo samples by containing a single pyroxene, predominantly pigeonitic, an ilmenite content (7%) intermediate to that of the Apollo 11 and 12 samples, and subequal amounts of pyroxene (50%) and plagioclase (40%). Chemically it is distinguished by a high Sr content (437 ppm) and a high K/U value (4700). The K-content (1396 ppm) is higher than that of Luna 16 soil sample A-2.  相似文献   

13.
The lesser antilles — A discussion of the Island arc magmatism   总被引:1,自引:0,他引:1  
The active island arc of Lesser Antilles marks the junction between the Atlantic and Carribbean lithospheric plates. With the exception of the alkali basalts of Grenada, the volcanics of the arc can be regarded as belonging to the low-K, island arc, calc-alkaline suite. Although compositions ranging from basalt to rhyolite have been described, porphyritic andesite appears to be the dominant rock type on most volcanoes (intermediate centers). Variable amounts of basalt and basaltic andesite occur and rarely predominate over andesite (latter are basic centers), whereas the more silicic members are only occasionally found. The calc-alkaline suite is characterized by relatively high Al2O3 and CaO and low K2O, Rb and Ni. Variations, especially in the alkali elements, occur both with space and time. A characteristic feature of many of the volcanoes is the occurrence in the basalt and basaltic andesite volcanics of plutonic blocks, often showing cumulate textures. The blocks which ware composed of plagioclase — amphibole — olivine — clinopyroxene — magnetite are thought to be the products of fractionation. The differences between basic and intermediate centers is probably due to the frequency that the magma ascended to the surface or remained in high level chambers where fractionation occurred.  相似文献   

14.
Segregation structures in vapor-differentiated basaltic flows   总被引:1,自引:0,他引:1  
 Vesicle cylinders represent a spectacular kind of segregation structure involving residual liquids formed in situ during the cooling of lava flows. These vertical pipes, commonly found within basalt flows typically 2–10 m thick, are interpreted as the product of a vapor-driven differentiation process. The olivine phenocrysts and the earliest generation of groundmass olivines found in cylinder-bearing basalts appear to have been generally affected by magmatic oxidation, resulting in high-temperature iddingsite (HTI) alteration. This feature is also observed within cylinder-free basalt flows which exhibit other kinds of vesicular segregation structures, such as vesicle-rich pegmatoid segregation sheets and/or segregation vesicles. Detailed textural, petrological, and geochemical characteristics of two types of cylinders, three types of vesicle sheets, and five types of segregation vesicles are described, based on the study of 12 occurrences of HTI-bearing basalt flows from oceanic shield volcanoes or continental basalt plateaus. We propose a general classification of these segregation structures likely to derive from vapor differentiation. Flow thickness is probably the main factor influencing their morphology. Finally, we suggest that the concomitant occurrence of olivine oxidation and vapor-differentiation effects results from the late persistence of water oversaturation after eruption, perhaps due to a high rate of magma ascent. Received: 27 March 1999 / Accepted: 15 February 2000  相似文献   

15.
This study focuses on Middle Miocene tholeiitic flood basalt lava flows from the Oregon Plateau, northwestern USA (Steens Basalt), and is the first to comprehensively document and evaluate their morphology. Field observations of flows from several sections within and proximal to the main exposures at Steens Mountain have been supplemented with textural and geochemical data, and are used to offer preliminary insights into their emplacement. Compound pahoehoe flows of variable thickness appear to be common throughout the study area, laterally and vertically. These tend to be plagioclase phyric and the morphology and disposition of constituent flow lobes are quite similar to those from other provinces such as Hawaii and the Snake River Plain. Classic a’a flows with brecciated upper and basal crusts are not abundant, but by no means uncommon. Flows with characters different from typical pahoehoe and a’a are also common. Such flows display a range in morphology; flows with preserved upper crusts but brecciated basal crusts, as well as those displaying well-developed flow-top breccias and preserved basal crusts (rubbly pahoehoe) are observed. The Steens Basalt appears to display greater morphological and textural diversity at the outcrop scale than that described for some other flood basalt provinces. The abundant compound pahoehoe flows (often rich in plagioclase phenocrysts) were likely emplaced during slow but sustained eruptive episodes; their constituent lobes show clear evidence for endogenous growth. The relatively aphyric flows with brecciated surfaces (including a’a) hint at higher strain rates and/or higher viscosity, probably caused by higher effusion rates. A couple of sections are characterized by compositionally similar, but morphologically different flows that were possibly part of the same eruption. While differences in pre-eruptive topography could explain this, it is also possible that certain physical parameters changed substantially and abruptly during eruption and that such changes were accompanied by differentiation processes within the plumbing system. It is possible that such observations indicate temporal fluctuations within complex magmatic and eruptive systems, and deserve closer scrutiny.  相似文献   

16.
Abstract Field, geochemical and geophysical evidence show that the southern Zambales Ophiolite Complex attained its present-day configuration through the juxtapositioning of an arc terrane (San Antonio massif) to a back-arc crust (Cabangan massif). The San Antonio massif manifests island arc-related characteristics (i.e. spinel XCr [Cr/(Cr + Al)] >0.60; mostly plagioclase An92–95; pyroxene crystallizing ahead of plagioclase; orthopyroxene as an early, major crystallizing phase) which cannot be directly parental to the Cabangan massif transitional mid-ocean ridge basalt to island arc tholeiitic volcanic carapace. The two massifs are believed to be separated by a left-lateral strike–slip fault, the Subic Bay Fault Zone. Apart from the presence of highly sheared, allochthonous outcrops, the Subic Bay Fault Zone is generally defined by northwest–southeast trending magnetic and bouguer anomalies. The San Antonio massif was translated southward from the northern part of the Zambales Ophiolite Complex through the Subic Bay Fault Zone. This resulted into its suturing with the Cabangan massif and could have led to the formation of the present-day Subic Bay.  相似文献   

17.
万园  许建东  于红梅  赵波  潘波 《地震地质》2011,33(2):452-461
文中主要探讨缅甸兰里岛泥火山灾害与成因机制,结合兰里岛地质背景以及泥火山活动现状,对在兰里岛东北部、中部以及西部所取3个泥火山采样点的样品进行粒度分析以及显微形貌分析,发现样品粒度在1~100μm之间,均呈单峰正态分布,粒径中值相近,粒度分布集中,分选较差,粒度对称程度呈很正偏态;样品基质以泥质为主含有大量泥质碎屑、细...  相似文献   

18.
In the course of studying the Deccan Trap Hows around Igatpuri (latitudes 19°38′ and 19°45′: longitudes 73°30′ and 73°42′), picrite-basalts, not hitherto reported from this area, have been found occurring associated with basaltic flows. Thirty-eight flows, of a total thickness of 2200 feet, have been delimited. Of these, 8 flows may be termed picrite-basalts with a thickness varying from 25 to 75 feet. A feature of these basic flows is the abundance of olivine phenocrysts, with a complete absence of pyroxene phenocrysts in two of the flows. Two flows may be termed oceanite, two ankaramite, while four flows have phenocrysts of olivine, pyroxene and lelspar of An 65–70 %. In the oceanite flows the olivine phenocrysts constitute 20 to 30 per cent of the rock. They are mostly fresh, but some are altered to iddingsite. As regards the basaltic flows, about half have scanty olivine phenocrysts, the remainder being devoid of olivine. Eight are coarse enough to be termed olivine-dolerites. In the picrite-basalts the pyroxene phenocrysts have an optic axial angle of from 55° to 60°. In the basaltic flows the angle varies from 45° to 52°. The olivine phenocrysts of the picrite-basalts are highly magnesian, whereas those of the basalts are more ferruginous, as determined by optical methods. West’s view that the origin of these picrite-basalts is due to differentiation by crystal settling followed by freezing and extrusion, seems to be supported by this study.  相似文献   

19.
A summit eruption of Kartala commenced on September 8th, 1972 and finished on October 5th, 1972. In the course of this eruption, approximately 5×106 m3 of alkali olivine basalt was erupted from a N-S fissure system within and adjacent to the caldera. Aa flows were partly ponded within the caldera, almost filling the 1918 Choungou Chagnoumeni crater pit, and partly spilled NW down the flanks of the volcano. The lavas are of uniform composition, almost identical to those erupted in 1965 and closely resembling the majority of flows erupted during the last 115 years. One-atmosphere melting experiments support petrographic and chemical evidence that the lavas are coctetic, with coprecipitation of olivine, augite and plagioclase. The lavas were crupted at, or close to, their liquidus temperature, determined at approximately 1170°C. Whereas eruptions of Kartala in the nineteenth century were distributed widely along a fissure system approximately 45 km long by 7 km wide, the eruptions since 1918 have been confined to the vicinity of the summit caldera.  相似文献   

20.
Dredged rocks from an area of about 15 km2 within the inner floor and on the adjacent walls of the Rift Valley were collected. Based on petrographic and chemical data, four types of basaltic rocks were recognized: (1) picritic basalts with olivine xenocrysts, TiO2 < 0.6%, K2O < 0.1%, (2) olivine basalts with olivine megacrysts, TiO2 = 0.8–1.5%,K2O = 0.1–0.2%, (3) highly phyric and moderately phyric plagioclase basalts with megacrystic plagioclase, TiO2 < 1.3%, K2O < 0.3%, and (4) pyroxene basalts with pyroxene > plagioclase, TiO2 = 0.8–1%,K2O = 0.2–0.4%. The Cr and Ni having high partition coefficients show different variation trends for each type of rock and their values decrease continuously as crystallization proceeds within each type of basalt. It is speculated that two different magmas have given rise to the above-mentioned rocks. One has yielded the picritic basalts and subsequently the olivine basalts after a separation of the olivine cumulates; the other gave rise to the plagioclase basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号