共查询到17条相似文献,搜索用时 62 毫秒
1.
粘弹性阻尼器连接的相邻结构非线性随机地震反应分析 总被引:7,自引:1,他引:7
本文用随机等价线性化方法探讨了相邻结构之间用粘弹性阻尼器连接后的非线性随机地震反应,分析发现:在小震作用下,粘弹性阻尼器对相邻结构可以同时达到较好的控制效果;但是在强烈地震作用下,安装粘弹性阻尼器有可能会在减少一个结构的地震反应的同时,增大另外一个结构的地震反应。 相似文献
2.
粘弹性阻尼器(ved)是抗震被动控制中一种十分有效的耗能减震装置。本文根据粘弹性阻尼材料的应力-应变关系,推导了粘弹性阻尼器和人字型支撑的组合层间单元刚度矩阵及单元控制力向量;并基于框架结构的空间特性,建立了设置斜撑Ved框架结构在考虑空间协同分析的基础上地震反应时程分析的控制方法;最后,应用本文的方法,对设置Ved斜支撑后钢筋混凝土框架结构进行了结构地震反应时程分析,并根据计算结果对其减震效果进行了分析讨论。 相似文献
3.
粘弹性阻尼结构的性能、分析方法及工程应用 总被引:31,自引:3,他引:31
本文系统地介绍了粘弹性阻尼器和粘弹性阻尼结构的研究与应用情况,主要包括粘弹性阻尼材料的性能特征;粘弹性阻尼器构造,减震原理及力学模型,粘弹性阻尼结构的性能;分析方法与设计方法及工程应用,对粘弹性阻尼结构的适应性,安全性,经济性进行了评述,提出了今后应加强研究的若干问题。 相似文献
4.
粘弹性-摩擦阻尼器在底部框架砌体结构抗震加固中的控制应用 总被引:5,自引:0,他引:5
本文根据新型粘弹性-摩擦阻尼器的耗能特点和底部框架砌体结构动力特性,提出通过对底部框架砌体结构设置粘弹性-摩擦阻尼器,达到对底部框回体结构抗震加固的目的。文中推导了粘弹性-摩擦阻尼器和人字型支撑的组合层间单元刚度短阵和控制力向量,建立了设置粘弹性-摩擦阻尼器框架结构地震反应时程分析的控制方法。 相似文献
5.
粘弹性阻尼器是有效的被动消能装置,普通粘弹性阻尼器的力学性能主要受环境温度、激励频率和应变幅值的影响,对结构的设计结果会产生偏差.新型粘弹性阻尼材料,其力学性能不受环境温度和激励频率的影响,通过与普通粘弹性阻尼器动态力学性能的对比,可见新型粘弹性阻尼器作为耗能元件,对消能减震结构的设计结果会比较精确. 相似文献
6.
7.
8.
9.
10.
设有粘弹性阻尼器的结构体系的受力分析 总被引:6,自引:0,他引:6
探讨了安装有粘弹性阻尼器的结构体系在地震荷载作用下,其结构刚度,结构阻尼,阻尼器刚度和阻尼器经对体系层间剪力分配的影响,给出了大阻尼结构体系在进行结构抗震设计时层间剪力的分配原则,分析了粘弹性阻尼材料在地震荷载作用下,由于吸收地震能量而导致的温度升高对结构减震效果的影响。 相似文献
11.
铅粘弹性阻尼器的计算模型 总被引:10,自引:0,他引:10
本文首先介绍了作用所开发的铅粘弹性阻尼器的构造与性能,并根据铅弹性险尼器的试验滞回曲线,采用双线性模型和双线怀-RO模型来描述其力学性能,最后根据试验结果进行两种模型的对比分析。分析表明:双线性-RO模型比双线性模型更能真实地描述铅粘弹性尼器的滞回耗能特性。 相似文献
12.
黏滞阻尼器耗能减振工程应用设计方法研究 总被引:1,自引:0,他引:1
本中文阐述了黏滞阻尼器的构造、力学模型以及其耗能减振的基本原理,并基于国际结构振动控制公共平台Benchmark模型,采用ANSYS和SAP2000有限元软件对其进行无控和有控地震反应分析,研究了黏滞阻尼器自身参数、设置形式、速度指、阻尼系数、位置和数量等因素对其控制效果的影响规律.结合国内外规范,给出LVD安装形式、... 相似文献
13.
Vibration control systems are being used increasingly worldwide to provide enhanced seismic protection for new and retrofitted buildings. This paper presents a new vibration control system on the basis of a seesaw mechanism with viscoelastic dampers. The proposed vibration control system comprises three parts: brace, seesaw member, and viscoelastic dampers. In this system, only tensile force appears in bracing members. Consequently, the brace buckling problem is negligible, which enables the use of steel rods for bracing members. By introducing pre‐tension in rods, long steel rods are applicable as bracing between the seesaw members and the moment frame connections over some stories. Seesaw mechanisms can magnify the damper deformation according to the damper system configuration. In this paper, first, the magnification factor, that is, the ratio of the damper deformation to the story drift, is delivered, which includes the rod deformation. Results of a case study demonstrate that the magnification factor of the proposed system is greater than unity for some cases. Seismic response analysis is conducted for steel moment frames with the proposed vibration control system. Energy dissipation characteristics are examined using the time‐history response results of energy. The maximum story drift angle distributions and time‐history response results of displacement show that the proposed system can reduce the seismic response of the frames effectively. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
Systematic development of a new hysteretic damper based on torsional yielding: part II—experimental phase 下载免费PDF全文
This paper reports on experimental studies carried out on a 200 kN, 120 mm‐capacity prototype of the newly developed multidirectional torsional hysteretic damper for seismic protection of structures. The main goal of the experiments is to test the validity of the theory developed in a companion paper and to evaluate the low‐cycle fatigue performance of the energy dissipaters of the damper. Because the design and configuration of the damper allow easy replacement of the energy dissipaters, four sets of energy dissipaters were produced out of S355J2 + N, C45 (two sets), and 42CrMo4 + QT steel grades. Force–displacement response of the multidirectional torsional hysteretic damper is studied through fully reversed cyclic quasi‐static displacement‐controlled tests that were carried out in compliance with EN 15129. Following the verification tests, with the aim of studying fatigue and fracture behavior of the cylindrical energy dissipaters of the device, certain numbers of them were subjected to further cyclic tests up to failure, and observations on their fatigue/fracture behavior are reported. The experimental verification test results proved the validity of the developed theory and component design assumptions presented in a companion paper. Furthermore, the energy dissipaters exhibited excellent torsional low‐cycle fatigue performance with number of cycles to failure reaching 118 at a maximum shear strain of 8% for S355J2 + N steel grade. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
Systematic development of a new hysteretic damper based on torsional yielding: part I—design and development 下载免费PDF全文
Analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented in two papers. Although the subject matter of the papers is a specific system, they are also intended as an illustration of practical application of diverse engineering tools in systematic development of an anti‐seismic product. The Multi‐directional Torsional Hysteretic Damper (MTHD) is a recently patented invention in which a symmetrical arrangement of identical cylindrical steel energy dissipaters is configured to yield in torsion while the structure experiences planar movements due to earthquake shakings. The device has gone through many stages of design refinement, prototype verification tests and development of design guidelines and computer codes to facilitate its implementation in practice. The first of this two‐part paper summarizes the development stages of the new system, conceptual and analytical. The experimental phase of the research is the focus of the accompanying paper. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable‐via‐design or adaptive post‐elastic stiffness. This feature gives the isolated structure the capability to evade the dominant period of the ground motion leading to reduced displacements while having force levels comparable to regular bilinear isolation systems. The device has already been applied to four major bridges. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
基于AFSMC算法的结构非线性振动MR控制与仿真分析 总被引:2,自引:0,他引:2
作为最近发展起来的高性能半主动控制装置,磁流变阻尼器通过改变磁场强度来调节控制力,可靠度高,体积小,出力大,并且具有Fail-Safe的特点,是一种具有广泛应用前景的新型结构控制装置。本文主要研究结构非线性振动的磁流变阻尼半主动控制。首先采用我们提出的自适应模糊滑模控制(AFSMC)算法得到了结构非线性振动的主动控制力,然后参照主动控制力,提出和仿真实现了结构非线性振动的磁流变阻尼半主动控制。最后,针对3层和20层benchm ark非线性模型,每层均设置一个磁流变阻尼器,对在给定的地震动下的结构响应进行了计算,分析了半主动控制跟踪主动控制的效果,并且对于半主动控制下的结构位移响应、加速度响应等各项指标也进行了对比分析。仿真结果表明,由于自适应模糊滑模控制算法与半主动控制算法相结合可以很好地实现结构非线性振动的半主动控制,所以能够得到令人满意的控制结果。 相似文献
17.
The concept of the hybrid passive control system is studied analytically by investigating the seismic response of steel frame structures. Hybrid control systems consist of two different passive elements combined into a single device or system. The hybrid systems investigated in this research consist of a rate‐dependent damping device paired with a rate‐independent energy dissipation element. The innovative configurations exploit individual element strengths and offset their weaknesses through multiphased behavior. A nine‐story, five‐bay steel moment‐frame was used for the analysis. Six different seismic resisting systems were analyzed and compared. The conventional systems included a special moment‐resisting frame (SMRF) and a dual SMRF–buckling‐restrained brace (BRB) system. The final four configurations are hybrid passive systems. The different hybrid configurations utilize a BRB and either a high‐damping rubber damper or viscous fluid damper. The analyses were run in the form of an incremental dynamic analysis. Several damage measures were calculated, including maximum roof drift, base shear, and total roof acceleration. The results demonstrate the capability of hybrid passive control systems to improve structural response compared with conventional lateral systems and to be effective for performance‐based seismic design. Each hybrid configuration improved some aspect of structural response with some providing benefits for multiple damage measures. The multiphased nature provides improved response for frequent and severe seismic events. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献