首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
西天山阿吾拉勒石炭纪火山岩年代学和地球化学研究   总被引:4,自引:0,他引:4  
西天山阿吾拉勒裂谷带内广泛发育石炭纪火山岩, 主要由玄武岩、粗面玄武岩、玄武质粗安岩、玄武质安山岩、粗面岩和流纹岩组成。以中基性岩为主, 多为钙碱性系列。LA-ICP-MS锆石U-Pb测年结果显示, 区内流纹岩形成于(316.1±2.2) Ma, 为早石炭世晚期。微量和稀土元素特征表明, 本区的火山岩具有俯冲带大陆边缘岛弧火山岩的典型特征, 应形成于早石炭世晚期的准噶尔洋向伊犁板块俯冲的大陆边缘弧环境。可能是由受俯冲流(熔)体交代的地幔楔尖晶石二辉橄榄岩发生1%~5%的部分熔融, 并在上升过程中经历了不同程度的结晶分离和同化混染作用而形成的。  相似文献   

2.
Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust. Received: 26 March 1996 / Accepted: 14 November 1996  相似文献   

3.
浙江新昌早白垩世复合岩流中的岩浆混合作用   总被引:35,自引:7,他引:35  
周金城  俞云文 《岩石学报》1994,10(3):236-247
浙江新昌拔茅地区早白垩世复合岩流中各种火山岩(Rb-Sr等时线年龄为96.3Ma)属高钾钙碱性岩系,在其中发现了中生代火山活动中岩浆混合作用的确凿证据,岩相学及地球化学研究表明,这种复合岩流中的安山质岩浆是由同时代橄榄拉斑玄武岩浆和流纹岩浆相互混合而形成的。  相似文献   

4.
中国东北二连盆地周缘分布有三组时代不同的晚中生代火山岩,其中早、中期为两套地球化学性质不同的流纹岩,晚期为玄武质火山岩。本文通过测定火山岩基质Ar-Ar同位素年龄,表明早期查干诺尔组流纹岩形成于142Ma,晚期不拉根哈达组基性火山岩形成于129Ma,可见二连盆地北缘晚中生代火山岩时代均为早白垩世。通过对主、微量元素地球化学特征和Sr-Nd-Pb同位素组成研究,以及与邻区同期满克头鄂博组英安岩和流纹岩、玛尼吐组英安岩、霍林河地区查干诺尔组英安岩、流纹岩对比,认为早期查干诺尔组流纹岩来源于新成下地壳,岩浆演化过程经历了强烈分异作用;中期流纹岩源区为中上地壳或下地壳岩浆经历了上地壳强烈同化混染作用;晚期不拉根哈达组基性火山岩则源于受俯冲洋壳流体交代的富集岩石圈地幔。结合早白垩世区域岩石圈减薄背景,本文认为研究区早白垩世火山岩形成于陆内伸展构造环境。  相似文献   

5.
The Miocene Karamağara volcanics (KMV) crop out in the Saraykent region (Yozgat) of Central Anatolia. The KMV include four principal magmatic components based on their petrography and compositional features: basaltic andesites (KMB); enclaves (KME); andesites (KMA); and dacites (KMD). Rounded and ellipsoidal enclaves occur in the andesites, ranging in diameter from a few millimetres to ten centimetres. A non‐cognate origin for the enclaves is suggested due to their mineralogical dissimilarity to the enclosing andesites. The enclaves range in composition from basaltic andesite to andesite. Major and trace element data and primitive mantle‐normalized rare‐earth element (REE) patterns of the KMV exhibit the effects of fractional crystallization on the evolution of the KME which are the product of mantle‐derived magma. The KMA contain a wide variety of phenocrysts, including plagioclase, clinopyroxene, orthopyroxene, hornblende and opaque minerals. Comparison of textures indicates that many of the hornblende phenocrysts within the KMA were derived from basaltic andesites (KMB) and are not primary crystallization products of the KMA. Evidence of disequilibrium in the hybrid andesite includes the presence of reacted hornblendes, clinopyroxene mantled by orthopyroxene and vice versa, and sieve‐texture and inclusion zones within plagioclase. The KMV exhibit a complex history, including fractional crystallization, magma mixing and mingling processes between mantle and crust‐derived melts. Textural and geochemical characteristics of the enclaves and their hosts require that mantle‐derived basic magma intruded the deep continental crust followed by fractional crystallization and generation of silicic melts from the continental material. Hybridization between basic and silicic melts subsequently occurred in a shallow magma chamber. Modelling of major element geochemistry suggests that the hybrid andesite represents a 62:38 mix of dacite and basaltic andesite. The implication of this process is that calc‐alkaline intermediate volcanic rocks in the Saraykent region represent hybrids resulting from mixing between basic magma derived from the mantle and silicic magma derived from the continental crust. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
西乡群孙家河组为一套低绿片岩相浅变质火山-沉积岩系,主要由基性-中基性-酸性火山岩和凝灰岩、沉凝灰岩、泥岩、硅质岩组成,火山岩岩石类型包括玄武岩、安山岩、英安岩和流纹岩.LA-ICPMS锆石U-Pb定年揭示流纹岩形成时代为832.9±4.9Ma,辉石玄武岩的形成时代为845.0±17Ma,两者在误差范围内一致,属新元古代同期岩浆作用产物.元素地球化学研究表明,孙家河组玄武岩属拉斑玄武岩系列,具有受地壳混染的板内玄武岩的地球化学特点.玄武岩-安山岩-英安岩主量元素成分投点呈规律性变化、REE球粒陨石标准化及微量元素原始地幔标准化分配型式具有一致性并相互重叠,不相容元素Th和相容元素Cr相关模拟图中沿分离结晶线分布,证明玄武岩-安山岩-英安岩为同一基性岩浆分离结晶的产物.REE和微量元素分配型式以及微量元素比值对的显著差异,暗示流纹岩与玄武岩-安山岩-英安岩来源于不同源区.Sr-Nd同位素研究表明,玄武岩-安山岩-英安岩样品的ε_(Nd)(t)值均大于0以及在ε_(Nd)(t)-(~(87)Sr/~(86)Sr)_t图解中位于OIB成分区,表明其源区应为与洋岛玄武岩类似的地幔源区;流纹岩样品具有可与基性熔岩相比拟的ε_(Nd)(t)值,暗示流纹岩最有可能是初生玄武质地壳部分熔融而成.本文所研究的原划孙家河组火山岩系列的形成时代、构造环境的确定以及扬子陆块乃至世界上同一时间内普遍发育大陆裂谷岩浆岩组合的地质事实,说明原划孙家河组以及西乡群中的确存在新元古代的组成部分,它们应是新元古代大陆裂谷的产物,它和扬子地块820M8后造山裂解环境花岗岩均是新元古代晚期Rodinia超大陆裂解作用的岩浆响应.  相似文献   

7.
Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust.  相似文献   

8.
 A variety of cognate basalt to basaltic andesite inclusions and dacite pumices occur in the 7-Ma Rattlesnake Tuff of eastern Oregon. The tuff represents ∼280 km3 of high-silica rhyolite magma zoned from highly differentiated rhyolite near the roof to less evolved rhyolite at deeper levels. The mafic inclusions provide a window into the processes acting beneath a large silicic chamber. Quenched basaltic andesite inclusions are substantially enriched in incompatible trace elements compared to regional primitive high-alumina olivine tholeiite (HAOT) lavas, but continuous chemical and mineralogical trends indicate a genetic relationship between them. Basaltic andesite evolved from primitive basalt mainly through protracted crystal fractionation and multiple cycles (≥10) of mafic recharge, which enriched incompatible elements while maintaining a mafic bulk composition. The crystal fractionation history is partially preserved in the mineralogy of crystal-rich inclusions (olivine, plagioclase ± clinopyroxene) and the recharge history is supported by the presence of mafic inclusions containing olivines of Fo80. Small amounts of assimilation (∼2%) of high-silica rhyolite magma improves the calculated fit between observed and modeled enrichments in basaltic andesite and reduces the number of fractionation and recharge cycles needed. The composition of dacite pumices is consistent with mixing of equal proportions of basaltic andesite and least-evolved, high-silica rhyolite. In support of the mixing model, most dacite pumices have a bimodal mineral assemblage with crystals of rhyolitic and basaltic parentage. Equilibrium dacite phenocrysts are rare. Dacites are mainly the product of mingling of basaltic andesite and rhyolite before or during eruption and to a lesser extent of equilibration between the two. The Rattlesnake magma column illustrates the feedback between mafic and silicic magmas that drives differentiation in both. Low-density rhyolite traps basalts and induces extensive fractionation and recharge that causes incompatible element enrichment relative to the primitive input. The basaltic root zone, in turn, thermally maintains the rhyolitic magma chamber and promotes compositional zonation. Received: 1 June 1998 / Accepted: 5 February 1999  相似文献   

9.
The Late Paleozoic volcanic and sedimentary rocks are widespread in the North Tianshan along the north margin of the Yili block. They consist of basalt, basaltic andesite, andesite, trachyandesite, dacite, rhyolite, tuff, and tuffaceous sandstone. According to zircon sensitive high-resolution ion microprobe (SHRIMP) dating, the age of the Late Paleozoic volcanic rocks in Tulasu basin in western part of North Tianshan is constrained to be Early Devonian to Early Carboniferous (417–356 Ma), rather than Early Carboniferous as accepted previously. Geochemical characteristics of the Early Devonian to Early Carboniferous volcanic rocks are similar to those of arc volcanic rocks, which suggest that these volcanic rocks could be the major constituents of a continental arc formed by the southward subduction of North Tianshan Oceanic lithosphere. Geochemical studies indicate that the magma source of the volcanic rocks might be the mantle wedge mixed with subduction fluid, which is geochemically enriched than primitive mantle but depleted than E-MORB. The calculation shows that the basalt could be formed by ∼10% partial melting of subduction fluid modified mantle wedge. Andesites with high initial 87Sr/86Sr (0.7094–0.7104) and negative εNd(t) (−4.45 to −4.79) values reveal the contribution of continental crust to its source. The calculation of assimilation–fractional crystallization (AFC) shows that the fractional crystallization process of the basaltic magma, which was accompanied with assimilation by different degree of continental crust, produced andesite (7–9%), dacite (∼12%) and rhyolite (>20%).  相似文献   

10.
The volcanic rocks of the Xiong'er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong'er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong'er Group.The Xiong'er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong'er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zircon ε_(Hf)_(t) values of-17.4 to 8.8,whole-rock initial ~(87)Sr/~(86)Sr values of 0.7023 to 0.7177 andε_(Nd)(t) values of-10.9 to 6.4.and Pb isotopes(~(206)Pb/~(204)Pb =14.366-16.431,~(207)Pb/~(204)Pb =15.106-15.371,~(208)Pb/~(204)Pb= 32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong'er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong'er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.  相似文献   

11.
西准噶尔萨吾尔地区吉木乃组为一套以火山碎屑岩、火山熔岩、沉积岩为主的火山-沉积地层。对该剖面顶部玄武安山岩进行LA-ICP-MS锆石U-Pb测年结果表明,吉木乃组顶部火山岩结晶年龄为(294.0±1.4) Ma,为早二叠世。结合吉木乃组内古生物化石组合,将其时代归属为晚石炭世—早二叠世。该组火山岩w(SiO2)介于48.10%~54.35%之间,主要为玄武岩、玄武安山岩;w(TFeO)为7.38%~10.92%,w(MgO)为3.35%~5.16%,Mg#介于41.02~55.05之间,主要为拉斑系列。稀土分配模式呈右倾型,轻稀土富集((La/Yb)N为4.00~6.04)且重稀土轻微分异((Gd/Yb)N为1.68~2.26),δEu=0.91~1.07,δCe=0.91~1.06。微量元素蛛网图上表现为大离子亲石元素(Rb、Ba、Sr、P)富集,除样品JM2和JM3外均表现为高场强元素(Nb、Ta、Ti)相对亏损的特征。大部分样品(Th/Nb)N值介于1.39~2.10之间,Nb/La值介于0.39~0.74之间,显示样品受到岩石圈地幔和地壳的轻微混染。吉木乃组火山岩Zr/Y值以及微量元素质量分数较高,结合相关判别图解,该组火山岩形成于后碰撞构造背景,是源于软流圈地幔的玄武质岩浆上涌,在上升过程中受到岩石圈地幔和地壳轻微混染后的产物。  相似文献   

12.
The mid-Tertiary ignimbrites of the Sierra Madre Occidental of western Mexico constitute the largest continuous rhyolitic province in the world. The rhyolites appear to represent part of a continental magmatic arc that was emplaced when an eastward-dipping subduction zone was located beneath western Mexico.In the Batopilas region of the northern Sierra Madre Occidental the mid-Tertiary Upper Volcanic sequence is composed predominantly of rhyolitic ignimbrites, but volumetrically minor lava flows as mafic as basaltic andesite are also present. The basaltic andesite to rhyolite series is calc-alkalic and contains 1% K2O at 60% SiO2. Trace element abundances of a typical ignimbrite with 73% SiO2 are Sr 225 ppm, Rb 130 ppm, Y 32 ppm, Th 12 ppm, Zr 200 ppm, and Nb 15 ppm. The entire series plots as coherent and continuous trends on variation diagrams involving major and trace elements, and the trends are distinct from those of geographicallyassociated rocks of other suites. We interpret these and other geochemical variations to indicate that the rocks are comagmatic. Mineral chemistry, Sr isotopic data, and REE modelling support this interpretation.Least squares calculations show that the major element variations are consistent with formation of the basaltic andesite to rhyolite series by crystal fractionation of observed phenocryst phases in approximate modal proportions. In addition, calculations modelling the behavior of Sr with the incompatible trace element Th favor a fractional crystallization origin over a crustal anatexis origin for the rock series. The fractionating minerals included plagioclase (> 50%), and lesser amounts of Fe-Ti oxides, pyroxenes, and/or hornblende. The voluminous ignimbrites represent no more than 20% of the original mass of a mantle-derived mafic parental magma.  相似文献   

13.
东天山石炭纪企鹅山群火山岩岩石成因   总被引:12,自引:1,他引:12  
土屋矿区南北大沟企鹅山群火山岩的岩石地球化学研究表明:东天山企鹅山群火山岩主要为拉斑系列,少量为钙碱系列;岩石类型为玄武岩、玄武安山岩、英安岩和流纹岩。稀土、微量元素和Sr、Nd同位素特点揭示:该火山岩系形成于大陆裂谷环境;其源区主要为软流圈地幔,同时有岩石圈地幔源组分卷入,酸性岩浆是玄武质岩浆结晶分异的产物。  相似文献   

14.
Remnants of the Proto-Tethys are mainly preserved in the region between south of the North China-Tarim Block and north of Qiangtang-Sibumasu/Baoshan Blocks. Magmatic-metallogenic events related to the Proto-Tethyan subductions were rarely reported, and the subduction history and polarity of the Proto-Tethyan are still under debate. Here, we presented new data of zircon UPb ages, whole-rock Sr–Nd–Pb isotopes, major and trace elements and zircon Hf isotopes for the volcanic rocks in the northeastern Altyn Mountains. Information of over 14 volcanic-hosted deposits/prospects in the region has been compiled. These volcanic ore hosts consist mainly of basaltic andesite, andesite, dacite and rhyolite rocks. The andesite and rhyolite rocks are newly zircon UPb dated to be Late Cambrian-Early Ordovician (andesite: 490.5 ± 5.2 Ma; rhyolite: 492.6 ± 2.9 Ma and 491.6 ± 5.6 Ma), representing the timing of volcanism and VMS (Volcanogenic Massive Sulfide) mineralization. All the volcanic rocks belong to the high-K calc-alkaline and shoshonite series: the andesite rocks from the Kaladawan area in north of the region display arc geochemical affinities and contain (87Sr/86Sr)i (0.7082–0.7083) and εNd(t) (−9.7 to −7.6), indicating that they were likely formed by partial melting of the mantle wedge with subducted sediment inputs. The rhyolite rocks from the Kaladaban area in south of the region are characterized by high SiO2 (64.46–78.55 wt%), low alkali (Na2O + K2O, 3.46–7.17 wt%), and contain (87Sr/86Sr)i (0.7063–0.7095), εNd(t) (−6.6 to −1.5), and zircon εHf(t) (−5.5 to 5.4), indicating that they were likely derived from partial melting of the lower crust with depleted mantle inputs. Rock assemblage and geochemistry suggest that volcanic rocks in the northeastern Altyn Mountains may have formed in a continental arc setting. Their spatial distributions with respect to the ophiolites in the region suggest that the subduction was likely south-dipping. This subduction-related arc magmatism may have formed the many important VMS and porphyry–skarn deposits in the region.  相似文献   

15.
 The Neoproterozoic Dokhan volcanics of the Fatira area in eastern Egypt comprise two main rock suites: (a) an intermediate volcanic suite, consisting of basaltic andesite, andesite, dacite, and their associated pyroclastic rocks; and (b) a felsic volcanic suite composed of rhyolite and rhyolitic tuffs. The two suites display well-defined major and trace element trends and a continuum in composition with wide ranges in SiO2 (54–76%), CaO (8.19–0.14%), MgO (6.96–0.04%), Sr (983–7 ppm), Zr (328–95 ppm), Cr (297–1 ppm), and Ni (72–1 ppm). They are enriched in LILEs (Rb, Ba, K, Th, Ce) relative to high field strength elements (Nb, Zr, P, Ti) and show strong affinity to calc-alkaline subduction-related rocks. However, their undeformed character, their emplacement temporally and spatially with post-orogenic A-type granite, and their high Zr/Y values suggest that their emplacement follow the cessation of subduction in eastern Egypt in an extensional-related within-plate setting. Major and trace element variations in the intermediate volcanics are consistent with their formation via partial melting of an enriched subcontinental lithospheric mantle source followed by a limited low-pressure fractional crystallization of olivine and pyroxene before emplacement. The LILE enrichment relative to HFSE is attributed to the inheritance of a subduction component from mantle material which constituted the mantle wedge during previous subduction events in eastern Egypt. The evolution of the whole volcanic spectrum was governed mainly by crystal/melt fractionation of amphibole, plagioclase, titanomagnetite, and apatite in the intermediate varieties and plagioclase, amphibole, biotite, Fe–Ti oxides, apatite, and zircon in the felsic varieties. At each stage of evolution, crystal fractionation was accompanied by variable degrees of crustal contamination. Received: 28 June 1998 / Accepted: 25 August 1999  相似文献   

16.
The Eocene volcano-sedimentary units in the southern part of the Eastern Pontides (NE Turkey) are confined within a narrow zone of east–west trending, semi-isolated basins in Bayburt, Gümü?hane, ?iran and Alucra areas. The volcanic rocks in these areas are mainly basalt and andesite through dacite, with a dominant calc-alkaline to rare tholeiitic tendency. 40Ar–39Ar dating of these volcanic rocks places them between 37.7 ± 0.2 and 44.5 ± 0.2 Ma (Middle Eocene). Differences in the major and trace element variations can be explained by the fractionation of clinopyroxene ± magnetite in basaltic rocks and that of hornblende + plagioclase ± magnetite ± apatite in andesitic rocks. Primitive mantle-normalized multi-element variations exhibit enrichment of large-ion lithophile elements and to a lesser extent, of light rare earth elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magma derived from an enriched mantle source. Chondrite-normalized rare earth element patterns of the aforementioned volcanic rocks resemble each other and are spoon-shaped with low-to-medium enrichment (LaN/LuN = 2–14), indicating similar spinel lherzolitic mantle source(s). Sr, Nd and Pb isotopic systematics imply that the volcanic rocks are derived from a subduction-modified subcontinental lithospheric mantle. Furthermore, post-collisional thickened continental crust, lithospheric delamination and a subduction-imposed thermal structure are very important in generating Tertiary magma(s). The predominantly calc-alkaline nature of Eocene volcanic rocks is associated with increasing geodynamic regime-extension, whereas tholeiitic volcanism results from local variations in the stress regime of the ongoing extension and the thermal structure, as well as the thickness of the crust and the mantle-crust source regions. Based on volcanic variety and distribution, as well as on petrological data, Tertiary magmatic activity in Eastern Pontides is closely related to post-collisional thinning of the young lithosphere, which, in turn, is caused by extension and lithospheric delamination after collisional events between the Tauride–Anatolide Platform and the Eurasian Plate.  相似文献   

17.
The Xiong'er volcanic belt, covering an area of more than 60,000 km2 along the southern margin of the North China Craton, has long been considered an intra-continental rift zone and recently interpreted as part of a large igneous province formed by a mantle plume that led to the breakup of the Paleo-Mesoproterozoic supercontinent Columbia. However, such interpretations cannot be accommodated by lithology, mineralogy, geochemistry and geochronology of the volcanic rocks in the belt. Lithologically, the Xiong'er volcanic belt is dominated by basaltic andesite and andesite, with minor dacite and rhyolite, different from rock associations related to continental rifts or mantle plumes, which are generally bimodal and dominated by mafic components. However, they are remarkably similar to those rock associations in modern continental margin arcs. In some of the basaltic andesites and andesites, amphibole is a common phenocryst phase, suggesting the involvement of H2O-rich fluids in the petrogenesis of the Xiong'er volcanic rocks. Geochemically, the Xiong'er volcanic rocks fall in the calc-alkaline series, and in most tectono-magmatic discrimination diagrams, the majority of the Xiong'er volcanic rocks show affinities to magmatic arcs. In the primitive mantle normalized trace-element diagrams, the Xiong'er volcanic rocks show enrichments in the LILE and LREE, and negative Nb–Ta–Ti anomalies, similar to arc-related volcanic rocks produced by the hydrous melting of metasomatized mantle wedge. Nd-isotope compositions of the Xiong'er volcanic rocks suggest that 5–15% older crust has been transferred into the upper lithospheric mantle by subduction-related recycling during Archean to Paleoproterozoic time. Available SHRIMP and LA-ICP-MS U–Pb zircon age data indicate that the Xiong'er volcanic rocks erupted intermittently over a protracted interval from 1.78 Ga, through 1.76–1.75 Ga and 1.65 Ga, to 1.45 Ga, though the major phase of the volcanism occurred at 1.78–1.75 Ga. Such multiple and intermittent volcanism is inconsistent with a mantle plume-driven rifting event, but is not uncommon in ancient and existing continental margin arcs. Taken together, the Xiong'er volcanic belt was most likely a Paleo-Mesoproterozoic continental magmatic arc that formed at the southern margin of the North China Craton. Similar Paleo-Mesoproterozoic continental magmatic arcs were also present at the southern and southeastern margins of Laurentia, the southern margin of Baltica, the northwestern margin of Amonzonia, and the southern and eastern margins of the North Australia Craton, which are considered to represent subduction-related episodic outbuilding on the continental margins of the Paleo-Mesoproterozoic supercontinent Columbia. Therefore, in any configuration of the supercontinent Columbia, the southern margin of the North China Craton could not have been connected to any other continental block as proposed in a recent configuration, but must have faced an open ocean whose lithosphere was subducted beneath the southern margin of the North China Craton.  相似文献   

18.
Amphibole-bearing mafic inclusions (low to medium-K high-alumina basalt to basaltic andesite) comprise 4.1 vol% of calc-alkaline rhyolite and rhyodacite lavas on Akrotiri Peninsula, Santorini, Greece. Physical features indicate a magmatic origin for the inclusions, involving mingling with the host silicic magma and quenching. Water contents of the mafic magmas are estimated to have been above 4% at water pressures of 1.8 kbars or more at temperatures of approximately 950–1,000 °C. Three evolutionary stages are inferred in their petrogenesis. In the first stage infiltration of slab fluids promotes partial melting in the mantle to generate primitive wet basaltic magmas enriched in LREE, LILE, Th and U in comparison to N-type MORB. In the second stage storage and crystal differentiation of primitive magmas occurred in the lithospheric mantle or deep crust, involving olivine, spinel and clinopyroxene followed by amphibole and plagioclase. In the third stage differentiated mafic magma intrudes into porphyritic silicic magma at shallower crustal levels (estimated at 7–10 km). Mingling and quenching of the mafic magmas within the silicic host causes chemical or physical interactions between the inclusions and the host prior to and during eruption. The silicic lavas have geochemical affinities with the mafic inclusions, but are relatively depleted in MREE, HREE and Y and enriched in Rb relative to Ba and K. These observations are consistent with involvement of amphibole in magma genesis due either to crystal differentiation from wet basalt or to partial melting of mafic rocks with residual amphibole. Crystallization of wet basalt in the deep crust is preferred on the basis of physical considerations.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: I. Parsons  相似文献   

19.
The Songliao Basin is characterized by episodic rifting and intense volcanism during its early development, and forms a key concealed part of the Late Mesozoic magmatic province of NE China. Few precise geochronological and geochemical data were previously available for the volcanic elements of this basin, restricting understanding of its geodynamic setting and evolution. We present new SHRIMP U–Pb zircon ages and geochemical data for the volcanic rocks from the northern Songliao Basin, which limit this volcanism to the Early Cretaceous period (115–109 Ma). Although dominated by rhyolite, the rocks cover a wide compositional spectrum encompassing trachyandesite, basaltic trachyandesite, trachyte and dacite. This suite exhibits a range of geochemical signatures characteristic of subduction-related genesis, falling into a high-K calc-alkaline series, with enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), and weak depletion in high field strength elements (HFSE) and heavy rare earth elements (HREE). The suite also shares a common isotopic composition, consistent with derivation from partial melting of a single depleted mantle source. This Early Cretaceous volcanism occurred in an extensional back-arc setting associated with the subduction of the Paleo-Pacific plate, large scale upwelling of the asthenosphere, and intensive lithospheric thinning of the eastern continental margin of NE China which may have lasted until ca. 109 Ma.  相似文献   

20.
唐杰  许文良  李宇  孙晨阳 《地球科学》2019,44(4):1096-1112
近年来,东北地区地幔热演化过程的相关研究相对较少,而揭示东北地区地幔热演化过程的有效手段就是研究东北地区玄武岩的成分变异特征.系统总结并对比了大兴安岭北段早白垩世玄武质岩石和新生代玄武质岩石的化学成分变异,以便揭示研究区中生代晚期-新生代的地幔热演化过程.大兴安岭北段早白垩世玄武岩在化学上属于拉斑玄武岩系列,以亏损Nb、Ta、Ti等高场强元素为特征,它们的La/Nb和La/Ta比值分别介于1.8~5.6和30~87,暗示岩浆起源于岩石圈地幔;它们的初始87Sr/86Sr值、εNd(t)和εHf(t)值分别介于0.704 5~0.706 9、-1.52~+3.60和+1.74~+7.77,表明岩浆源区属于弱亏损-弱富集的岩石圈地幔;早白垩世玄武质岩石的Sr-Nd-Pb同位素成分指示岩浆源区是由DM和EMⅡ型地幔端元混合而成,并经历了俯冲流体的交代.表明大兴安岭北段早白垩世玄武质岩浆源区为受早期俯冲流体交代的岩石圈地幔.新生代超钾质和钾质玄武岩具有Nb-Ta的弱负异常,87Sr/86Sr值为0.704 7~0.705 7、εNd(t)值为-6.3~-0.8,而地幔捕掳体具有Sr-Nd同位素亏损特征;钠质玄武岩具有Nb-Ta的正异常,较超钾质和钾质玄武岩具有低的87Sr/86Sr(0.703 5~0.704 2)以及高的εNd(t)值(+3.4~+6.6),类似MORB的同位素组成,这些特征说明大兴安岭北段新生代玄武质岩石起源于软流圈地幔.综上所述,大兴安岭北段早白垩世和新生代玄武质岩石成分的差异不仅指示其岩浆源区从岩石圈地幔转变为软流圈地幔,更为重要的是它揭示了研究区地幔的热演化过程——从早白垩世高的地温梯度到新生代低的地温梯度的转变.这一过程也是岩石圈从中生代晚期到新生代逐渐增厚的过程.结合区域构造演化,可以得出大兴安岭北段早白垩世的玄武质岩浆作用与岩石圈伸展、减薄形成的裂陷作用相关,而新生代玄武质岩浆作用则与陆内裂谷作用相关.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号